86 research outputs found

    A Review of Haptic Feedback Teleoperation Systems for Micromanipulation and Microassembly

    No full text
    International audienceThis paper presents a review of the major haptic feedback teleoperation systems for micromanipulation. During the last decade, the handling of micrometer-sized objects has become a critical issue. Fields of application from material science to electronics demonstrate an urgent need for intuitive and flexible manipulation systems able to deal with small-scale industrial projects and assembly tasks. Two main approaches have been considered: fully automated tasks and manual operation. The first one require fully pre determined tasks, while the later necessitates highly trained operators. To overcome these issues the use of haptic feedback teleoperation where the user manipulates the tool through a joystick whilst feeling a force feedback, appears to be a promising solution as it allows high intuitiveness and flexibility. Major advances have been achieved during this last decade, starting with systems that enable the operator to feel the substrate topology, to the current state-of-the-art where 3D haptic feedback is provided to aid manipulation tasks. This paper details the major achievements and the solutions that have been developed to propose 3D haptic feedback for tools that often lack 3D force measurements. The use of virtual reality to enhance the immersion is also addressed. The strategies developed provide haptic feedback teleoperation systems with a high degree of assistance and for a wide range of micromanipulation tools. Based on this expertise on haptic for micromanipulation and virtual reality assistance it is now possible to propose microassembly systems for objects as small as 1 to 10 micrometers. This is a mature field and will benefit small-scale industrial projects where precision and flexibility in microassembly are required

    Micromanipulation and Micro-Assembly Systems.

    No full text
    International audienceThe needs to manipulate micrometer sized objects keeps growing and concerns numerous and various fields like microsystems (MEMS1 and MOEMS2), micromechanics, optics, biology or pharmacy. The specificities of size, material, geometry and consistency of manipulated micro-objects, their surrounding, the kind of task to perform and the free size are all the more specific parameters that strongly influence the design and working of micromanipulation and micro-assembly systems. These systems are widely developing because they correspond both to industrial needs and really challenging scientific problematics. For these reasons, the present paper aimed at dealing with a review that mainly focuses on systems recently developed to assemble small series of microcomponents. The paper especially points out different solutions of carriers structures, gripping principles, sensors, other peri-microrobotic systems and control systems presenting the main solution and justifying their use and interest

    Automated Micro-assembly tasks based on hybrid Force/position Control.

    No full text
    International audienceFull automated micro-assembly is an ongoing challenge for researchers. The use of force control constitutes a suitable approach to achieve automated micro-assembly. It takes into account microscale specificities like pull off forces, measurement resolution... The integration of force sensors in micro-assembly station is discussed. An experimental setup is proposed to achieve automated guiding tasks of 2mm x 50 μm x 50 μm microparts. It is based on two-sensing-finger microgripper of 2 mN force range. Interaction forces are modeled and used to establish suitable strategy for guiding according to stability conditions and response time. Control scheme which combines force and position control is proposed and its integration to dSPACE board for real time control is achieved. Automated guiding task is performed with dynamic rejection of perturbation within 35 ms and a ramp tracking with a contact force of 20 μN between the rail side and the micropart is obtained

    Automated Guiding Task of a Flexible Micropart Using a Two-Sensing-Finger Microgripper.

    No full text
    International audienceThis paper studies automated tasks based on hybrid force/position control of a flexible object at the microscale. A guiding task of a flexible micropart is the case of the study and is achieved by a two-sensing-finger microgripper. An experimental model of the behavior of the microgripper is given and the interaction forces are studied. Based on grasp stability, a guiding strategy taking into account the pull off forces is proposed. A specific control strategy using an external hybrid force/position control and taking into account microscale specificities is proposed. The experimental results of automated guiding task are presented

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Force Sensing and Control in Micromanipulation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Control of micromanipulation in the presence of van der waals force

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Development of a Novel Handheld Device for Active Compensation of Physiological Tremor

    Get PDF
    In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation of physiological tremor in the hand. MEMS-based accelerometers and gyroscopes have been used for sensing the motion of the hand in six degrees of freedom (DOF). An augmented state complementary Kalman filter is used to calculate 2 DOF orientation. An adaptive filtering algorithm, band-limited Multiple Fourier linear combiner (BMFLC), is used to calculate the tremor component in the hand in real-time. Ionic Polymer Metallic Composites (IPMCs) have been used as actuators for deflecting the tool-tip to compensate for the tremor
    corecore