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Summary

Micromanipulation plays an important role in the industrial and academic areas.

For instance, it is used in the surgery and manufacturing of micro-parts. The wide

applications make it an active research area. Since motion is much smaller than

in conventional manipulation systems, the existing technology has to be reviewed.

It is known that microscopic forces, like van der Waals and electrostatic forces,

become significant in the micro-systems. The gravitational force is, however,

insignificant and can be ignored. One of the problems caused by the microscopic

forces, which never considered in the conventional system, is the adhesive effect

which the objects are adhered to the tool resulting in problems in picking and

releasing. Another problem arising is the long-range effect of microscopic forces

such as the van der Waals force. The significant amount of the van der Waals force

can disturb the dynamics of the system. The control of the micromanipulation

system has to be able to attenuate the effect of van der Waals forces. The first

problem has been studied in much literature and is not considered in this thesis.

On the other hand, the second problem is also worth the study since the under-

standing of the van der Waals force effect on the system may help to improve the

performance of micromanipulation. We decided to make it the centre of this thesis.

The main purpose of the thesis is to investigate various control approaches
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on a micromanipulation system under the influence of van der Waals force. It

also examines the ability of the control laws in attenuating the effect of van der

Waals force on the system. The control laws covered includes both linear and

nonlinear. A general conceptual micromanipulation system was developed for the

investigation. The system consists of a piezostack actuator, a gripping tool and

spheres. The objective is to move an object from a distance to ‘touch’ another

object. During this motion, the system exhibits significant van der Waals force.

A dynamic model of the system was developed. It includes the van der Waals

force between two spheres. System parameters and a desired trajectory were also

determined for simulations. The linear controllers employed are the PID and lead-

lag control, which are both simple and easy to implement. The nonlinear control

law applied is the inverse dynamics robust control, which uses a technique so-called

Second method of Lyapunov. This robotic control law uses the desired trajectory

to calculate the required torque ‘inversely’ which is able to give low position error.

Robustness of the control is achieved by adding the extra control signal. This

additional control is derived from the estimation of bound system uncertainty or

modelling error. In the derivation of control law, van der Waals force is treated as

the system uncertainty for the estimation. The Lyapunov equation is also used in

the derivation which ensures the stability. This nonlinear control is found to give

very low position tracking error. Its robustness is able to reduce the effect of van

der Waals force on the system.



Nomenclature

A Hamaker constant (J)

A, Ā, B state space matrix parameters

B electric field strength (V/mm)

C distance between centers of spheres (m);

controller equation or transfer function;

coriolis and centrifugal force vector

D initial height of sphere A (m)

E Young’s Modulus (Pa); system uncertainty parameters; error

F force (N)

Fp force exerted by piezostack (N)

FvdW , Fv, Fh van der Waals force (N)

G plant transfer function

H system parameter consists of coriolis and centrifugal, frictional

and gravitational force.

Ĥ, M̂ incorrectly-modelled system parameters

∆H, ∆M modelling error of system parameters

I identity matrix

K controller gain

K1, K2 position and velocity gain matrix
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KP proportional control gain

KI integral control gain

KD derivative control gain

L length of piezostack (m)

M mass (kg); inertia matrix

N number of piezodiscs in piezostack

P,Q positive define matrices in Lyapunov equation

Q̄, α, φ, M bounds of system parameters

R radius of sphere (m); reference input

T closed-loop transfer function

W interaction energy (J)

V voltage (V)

Y system output

c damping coefficient (Ns/m)

d33 piezoeletric charge constant (m/V)

e error

f function

g gravitational force (N)

h Planck’s constant (6.626×10−34 Js)

k stiffness (N/m)

kp stiffness of piezostack (m)

l horizontal distance between centers of spheres A and B (m)

m mass (kg)

mp mass of piezostack (kg)

ms mass of sphere (kg)

p pole in lead-lag compensator



ix

q number of atoms or molecules per unit volume (m−3),

vector of joint variables, position vector

qd, xd desired position

r distance between two atoms or molecules (m);

reference input vector

rp radius of piezostack (m)

s variable in transfer function

t time (sec)

u control signal

v orbiting frequency of the electron (Hz); feedback control input

∆v additional feedback control input

wi natural frequency

x position (m)

xv displacement due to van der Waals force

z zero in lead-lag compensator

α0 electronic polarizability (C2m2J−1)

δ nearest surface separation of two spheres (m)

ε0 permittivity of free space (8.854×10−12 C2m−1J−1)

η uncertainty

θ angle (deg or rad)

λ London-van der Waals constant (Jm6)

ρ continuous function for ∆v estimation; density

ωpd pole added to derivative path in PID control
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Chapter 1
Introduction

In these last few years, robotics has entered a new era since micro-technology was

introduced. Micro-robotics became a popular and active research area, and micro-

manipulation has become particular interest due to its wide applications such as

in the manufacture of micro-parts, micro-machines and devices. Applications have

extended to microsurgery and other bioengineering related areas. One example

is the molecular surgery of DNA by Yamamoto [1]. However micromanipulation

requires different principles and implementation than usual macro-manipulation.

Many new aspects to be taken care of.

1.1 Problems in Micromanipulation

Micromanipulation deals with the manoeuvre of tiny objects such as human

cells. The environment and the mechanics of the system are different from

classical prehension. It is expected that classical knowledge, including control

and modelling, may not be applied fully. In addition, conventional devices may

not be able to handle the micro-scale motion. For example, it is not possible to

use normal force sensors down to nanonewtons. These differences between micro

and macro-manipulation require research and development in the theoretical and

practical aspects of micromanipulation.

1



Chapter 1. Introduction 2

Generally, the weight of the objects being manipulated is ignored in micro-

scopic sizes as its effect is relatively insignificant. For instance, in this thesis, the

weight of the sphere being manipulated is at the order of 10−11N while the van

der Waals force is at the order of 10−7N (see Chapter 4). On the other hand,

other microscopic forces, such as van der Waals force, which are not normally

considered in macro-scale systems become significant. Beside van der Waals force,

electrostatic force and surface tension are also significant in the microscopic world.

However, they can be reduced to a very small amount. Papers [2]-[3] described that

the capillary force is very much dependent on the humidity. They suggested that

setting low humidity condition and applying hydrophobic treatment to the object

surface can greatly reduce the capillary force. Electrostatic force arises when

charges are generated on the micro-objects. Sitti et. al.[4] suggested that if the

objects are coated with gold and by grounding all the substrate and objects, the

electrostatic forces can be negligible. Arai et. al.[2] and Feddema et. al.[5] studied

their micromanipulation subject while neglecting the capillary and electrostatic

forces and only focused on the van der Waals force. Based on the study above,

the author ignored the effect of capillary and electrostatic force while only focused

van der Waals force in the thesis.

One of the major influence of the microscopic forces is the sticking between

objects. This affects the motion of picking up and releasing of tiny objects.

There are a lot of literature studying this problem. For example, Arai et. al.[6]

constructed a gripper with ‘Micropyramid’ on contact surface to reduce the

contact adhesion force. Similar concept was also used by Zhou et. al.[7] who

increased the roughness of gripper finger surface to achieve lower contact adhesion

force. Rollot et. al.[8] developed an object releasing model and a set of release

condition including material combinations, geometry and speed. He concluded
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that at certain combinations, the successful releasing rate of micro-object was

higher. Feddema et. al.[5] studied the contact adhesion forces and motion planning

on pick and release of a spherical particle. More studies can be found in [2], [3]

and [4]. Since the contact force appears to be well studied, it will not be studied

in this thesis.

Another major influence of the microscopic force which is seldom seen in the

literature is the long-range effect of the micro-forces. In inter-molecular terms, long-

range means distance of few nano-metres which is long compared to the ‘touching’

distance of two particles about 0.165nm between surfaces. It is well-known that the

van der Waals force is a long-range force. At a distance of few nanometers, objects

can attract each other due to the inherent van der Waals force. The attraction is

able to disturb the motion of the system. Unlike the capillary and electrostatic

forces which can be reduced to a very low amount as mentioned above by changing

the working environment parameters, the van der Waals force always exists and

it is contributing a large force. Therefore, this project focuses on the long-range

influence of the van der Waals force on the micromanipulation system and assumes

that other microscopic forces are negligible.

1.2 Problem Formulation

The purpose of the thesis is to investigate the influence of van der Waals force on

various control methods in micromanipulation, and how the van der Waals force

affects the position tracking of the system and the ability of the control methods

in dealing with the van der Waals force. For the investigation, a typical operation

of micromanipulation – an object transferring system, will be used. The system

centers on transferring one object from a starting point towards another object.

The range of motion is within few nanometres. In this range, the van der Waals
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force shows significant effect on the system dynamics. Thus, the effectiveness of

the control methods in dealing with van der Waals force can be seen clearly.

Consider a general single degree of freedom system as shown in Figure 1.1.

The object A is pushed by an actuating force Fp towards Object B. Fv is the van

der Waals force acting between A and B. During the motion, while the distance

between two objects is getting smaller, the van der Waals force is varying from a

small amount to a large force. It is able to disturb the trajectory of the moving

object. In modelling, it is treated as an additional force other than the actuating

force. The dynamic equation of Object A can be expressed as

mẍ + cẋ + kx = Fp + Fv (1.1)

where

m = mass

c = damping coefficient

k = stiffness

x = displacement.

In micromanipulation, Fv always exists and can not be diminished. A controller

is to be designed to gives accurate result while taking into account this additional

force.

x

c

k

pF

vF
BA

Figure 1.1: The single degree of freedom system
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In the thesis, the system is assumed to be actuated by a piezoelectric stack.

Ignoring hysteretic behaviour, the piezostack can be modelled as a general linear

mass-damper-spring system. The van der Waals force is derived from the London

equation for the dispersion interaction energy between two atoms or molecules.

Using the additivity property, the non-retarded van der Waals force formula can

be obtained. In order to run computer simulations, parameters such as system

geometries, material properties and working conditions are established. Besides, a

reference trajectory is also designed as a desired input for simulation to give better

understanding of the van der Waals force effect.

1.3 Control and Simulations

Due to microscopic forces on the system, the control used in macroscopic system

may not work properly in micromanipulation. To examine the efficiency of control

methods for micromanipulation, this thesis simulates the micromanipulation task

with several control methods. The micromanipulation system investigated in the

thesis is a linear system, so at first glance linear control laws should be able to

control it. However, the van der Waals force is complex and depends on system

state. This makes the system dynamics nonlinear and may require a nonlinear

control law. Hence, both linear and nonlinear controllers are investigated and

compared to control the system. Linear controllers used are a conventional PID

and a lead-lag compensator, which are simple and easy to implement. Integral

part’s ability of rejecting disturbance may also help in the control.

The nonlinear control law employed is the inverse dynamics robust control.

Inverse dynamics technique is widely used in robot control. It uses the given

trajectory and model of the system to calculate the torque required to perform the

desired motion. The incorporated robust control method is an algorithm which
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estimates the bound of system uncertainty or modelling error and determines an

extra control signal to eliminate the uncertainty effect. In addition, it is required

to solve the Lyapunov equation for the control signal and, hence, the stability of

the system can be achieved. The method is also known as the Second Method of

Lyapunov.

In this thesis, simulation are conducted to verify the analytical results. The

controlled systems are simulated using MATLAB Simulinkr. The results are

presented by using the position tracking errors. The system simulations are

conducted in two modes, with and without van der Waals force. By compar-

ing the position tracking errors of these two modes, the ability of the control

methods in attenuating the van der Waals force can be observed. Figure 1.2

shows the result of the three control methods in dealing with the van der Waals

force. Smaller values indicate smaller effect of van der Waals force on the

system. PID control is worse in the transient response but efficient at steady

state. The curve converges at around 3.49× 10−21. Lead-lag compensation

has a better response in transient state. However, the steady state response

is the worst. The inverse dynamics robust control has excellent performance

throughout the whole process. Value at steady state is around 1.33×10−21 which is

the smallest among all. It has the best ability to attenuate the van der Waals force.
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Figure 1.2: Difference of position tracking error of different control methods

1.4 Organization of the Thesis

This thesis consists of 8 chapters:

(i). Chapter 1 gave a brief introduction to the background of the thesis and a

overview of the work.

(ii). Chapter 2 provides a literature review. It includes recent result on mi-

croscopic force sensing techniques, microgripper, piezoelectric actuator and

micromanipulation system.

(iii). Chapter 3 gives background about van der Waals force including the origin
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of the force and some related issues. The van der Waals force formula between

two spheres is also derived.

(iv). Chapter 4 describes the micromanipulation system used in the simulations.

The dynamic model of the system is derived. In addition, a desired trajectory

and the parameters for the system model are determined. Simulation results

are presented for the characteristics of the system and the effect of van der

Waals force.

(v). Chapter 5 describes the design of linear controllers, PID and lead-lag com-

pensator. Simulations and results are presented.

(vi). Chapter 6 focuses on inverse dynamics robust control of the system. The

principle of the control algorithm is briefly introduced and the derivation of

the control law for the micromanipulation is presented. The designed control

law is applied for simulations. The results are discussed.

(vii). Chapter 7 is the conclusion of the work.



Chapter 2
Literature Review on

Micromanipulation

In this chapter, recent developments in the field of micromanipulation are reviewed.

The first section describes several sensing techniques for force down to the resolu-

tion of a few nano Newtons. The techniques are important for micromanipulation

systems especially when force feedback is required. The following section intro-

duces some microgrippers with different actuating methods. A brief description

of the properties and application of piezoelectric actuator is given next. The last

section describes some recently developed manipulation systems and devices such

as the model of pushing a sphere.

2.1 Microscopic Force Sensing Techniques

Measuring micro-force is important in the control of micromanipulation especially

when force feedback is necessary. Since the force involved is less than a micro

Newton, conventional force sensors are unsuitable. Precise sensing methods are

required. Zhou et. al.[9] developed an optical beam deflection sensor which is

based on a modified atomic force microscope. The sensor is integrated into

a microgripper such that it can provide nanonewton level force feedback or

9
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nanometric level position feedback. The force sensor is able to measure force as

low as 2nN. The advantages of this sensing method are that it is insensitive to

many of the sources of noise and it can be fabricated to meet the requirements for

different force range and resolution. Another new force measurement technique is

using Laser Raman Spectrophotometry [10]. It measures the stress of the micro

structure instead of the displacement. The accuracy is expected to be better than

µN order if the configuration of the device is designed properly. Micro strain gauge

is also used for measurement [11], [12]. The resolution is not as good as the first

two mentioned sensing methods. It is about 4µN in [11]. Zhang et. al. [13]-[15]

used force transducer developed by Cambridge Technology Inc. to determine the

properties of biological materials. The force transducer has a resolution of 0.01µN.

Other methods used for force sensing in micromanipulation include piezoresistive,

piezoelectric and piezomagnetic effects, as well as capacitive sensors [16].

2.2 Microgripper

The development of microgrippers has been an active research topic. Differences

among the microgrippers include the material and actuators used and in fact

most microgrippers designs closely depend on the materials used. With the help

of the material properties and actuating mechanisms, better performance of the

gripper can be achieved. In [17], shape memory alloy (SMA) is fabricated as

one piece material which integrates the functionality of the device. Büttgenbach

et. al.[18] used SMA as an micro-actuator in the microgripper as it has high

power-to-volume ratio and ease of control. Kim et. al.[19] designed a polysilicon,

electrostatic, comb-drive microgripper which has smooth, stable and controllable

motion. Greitman et. al.[20] designed a microgripper using a thermal bimorph as

actuator. The materials used for the bimorph are silicon and aluminium. Besides
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thermal bimorph actuators, piezoelectric ceramic is also widely used to actuate

microgrippers (more details of piezoceramics is given in the next section). As

in [21], it is used in the flexure based designed microgripper to give precision

positioning. Another microgripper designed with flexure hinges also employs

the piezoelectric actuator for its high accuracy and reliability in producing

displacements [22]. Some other gripping principles were introduced by Fischer

et. al.[23], such as vacuum, adhesion, tong gripper with DC-motor and wire-loop

gripper.

2.3 Piezoelectric Actuator

Piezoelectricity is a property of some materials that can transduce energy

between electrical and mechanical domains. Applying an electric field across the

piezoelectric materials produces mechanical strain and, conversely, application of

mechanical stress on the materials induces electrical charge. This property can be

found in ceramic materials, for example Lead Zirconate Titanate (PZT).

Piezoelectric ceramic is widely used as actuator in precision positioning systems

requiring small displacements. Its characteristics of low mass, low heat generation,

nonmagnetic and low cost as well as the ability of generating a large force with

small displacements make it a favourite actuator for micromanipulation. The

main drawback is the hysteretic behaviour.

Many forms of piezoceramics can be used. The most commonly are piezo-

plates and piezostacks. Wang et. al.[24] constructed a bimorph actuator from the

piezoplates, which is able to provide linear displacement and a force of 0.8N. The
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individual piezoplates can be made into a stack which provides larger displace-

ment. This configuration increases the usage of piezoceramics. Newton et. al.[25]

designed a linear piezoelectric motor using the piezostack actuators. It can per-

form a inchworm motion to move an object. The piezostacks can also be used in

a translation stage which generates displacements with nanometer accuracy and

a range of micro meters [26]. Nelson et. al.[27] used the piezostack actuator to

operate a microgripper which is another example of using piezostack.

2.4 Micromanipulation Systems

In recent research in the field of micromanipulation, one of the most active areas

is the influence of the adhesive forces on the system. The problems caused by the

adhesive forces exist in micro object handling and motion control. Since in the

microworld the gravitational force on the object is much smaller than the adhesive

forces, the handling process, in particular the pick-up and release, is greatly

affected. The micro object gripped by a microgripper often sticks to its finger and

does not leave the finger when the gripper is opened [3]. Arai et. al.[6] proposed

that the adhesive force can be reduced by increasing the surface roughness of

the end-effectors. This can be done by adding ‘micropyramids∗’ on the gripping

surface of the fingers. Other methods to control the adhesive force are proposed

in [2], such as controlling the moisture on end-effectors, controlling electrostatic

forces, etc.

The adhesive forces also affect the dynamics of micromanipulation. Thus,

modelling of adhesive forces is important and need to be considered for proper

∗A sharp pyramid-like object which can generate high electric field that reduces electrostatic
forces. It is also effective for reducing the van der Waals force.
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control and planning of micromanipulation. Rollot et. al.[8] modelled and simu-

lated the pick-up and release of a micro-sphere in the influence of other spheres.

They presented different handling results in terms of different combination of

materials, size of spheres and speed of end-effector. Zhou et. al.[28] studied the

task of pushing a micro-sphere. Pushing work was also studied in [4] and [29]. In

contrast to [28] which only simulated the dynamic of the pushing, they developed

force control algorithms and implemented the operation.

Besides pushing, several systems were developed to assemble micro-devices,

manipulate biological cells, etc. Zhou et. al.[7] developed a microgripper to study

the force controlled gripping of micro-objects. Tanikawa et. al.[30] designed a

two-fingered micro-hand for manipulating micro-parts such as white blood cells of

humans. Nakamura et. al.[31] showed a one-finger system which is able to draw a

circle less than 1mm diameter.

A lot of research have been carrying out in the micromanipulation area. This

indicates that the existing control methods and devices including grippers and sen-

sors used for macroscopic systems are not suitable to be applied on the microscopic

systems. The major consideration in the literature is microscopic forces. It is the

main factor that causes the difference of macro and micro systems. Thus finding

the method to attenuate the microscopic forces is an important work to achieve

good system performance. The papers showed that much research have been done

on hardware for this purpose. Novel grippers and manipulation planning were de-

veloped. On the contrary, this thesis focuses on the ‘software’ aspect in dealing

with the microscopic forces.



Chapter 3
Van der Waals Force

3.1 Introduction

This thesis deals with the effect of microscopic forces in micromanipulation sys-

tems. It is necessary to study the microscopic forces in detail. Microscopic forces

usually refer to forces of which magnitudes are smaller than one micro-Newton

(µN). In the field of micro-robotics, the adhesive forces, which are microscopic

forces have been actively investigated due to their influence on the system motion.

The adhesive forces include van der Waals force, electrostatic force, surface tension

and others. As mentioned in Chapter 1, this project focuses on the van der Waals

force. The influence of this force occurs not only while two objects touch each

other (distance between surface of molecules about 0.16nm), but also when they

are at a certain distance up to 5nm. It affects the micromanipulation system

dynamics significantly.

The van der Waals force has been studied for more than 200 years. The study

of the van der Waals force started from the observation of the wetting of solids

by liquids in the early 1700s. In the 1800s, many scientists were interested in the

behaviour of liquids, in particular, the phenomena of wetting and capillarity. In

the 1930s, London [32], using advances of the quantum mechanics, demonstrated

14
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that the van der Waals force is a result of transient-induced dipoles. He showed

that the induced dipoles result from the intrinsic polarizability of the interatomic

bonds and the presence of a propagating electromagnetic field are long range

and do not disappear at high temperatures. In the same decade, Hamaker

[33] extended the study of London by summing the point-by-point interactions

among molecules and producing a measure of the net attraction of two separate

bodies. This led to the development of the Hamaker constant in establishing the

magnitude of the van der Waals force.

The concept developed by London is described in Section 3.2, which also in-

cludes the origin of van der Waals force. It is followed by a description of the

retardation effect. Hamaker’s work is introduced in the fourth section. The last

section is the derivation of the van der Waals force formulas between two spheres.

3.2 Origin of van der Waals Force

The long-range van der Waals force between atoms or molecules in materials result

from the interaction of dipoles. For uncharged molecules consisting of a permanent

or induced dipole, the van der Waals forces can be considered as a result of three

additive terms – the Keesom force, the Debye force, and the London force, as shown

in Eq. (3.1).

FvdW = FKeesom + FDebye + FLondon (3.1)

(i). Keesom Force (Orientation Effect): For two permanent dipoles, the interac-

tion of the dipole’s electric fields results in either an attractive force when the

dipoles are antiparallel, or a repulsive force when the dipoles are parallel. This

force vanishes when temperature increases since thermally induced motions

of permanent dipoles can disorder the mutual alignment at high temperature.
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(ii). Debye Force (Induction Effect): For a molecule consisting of a permanent

dipole, it can induce a dipole moment in the electron cloud of another atom

or molecule. These induced electronic dipole moments can interact with the

permanent dipolar molecule. This interaction energy results in the Debye

force. It requires at least one permanent dipole.

(iii). London Force (Dispersion Effect): Since the Keesom and Debye forces require

the presence of permanent dipole moments, London pointed out that they

cannot be solely the forces contributing to the van der Waals forces. London

utilized an idea from quantum mechanics, which stated that an electron, even

in its ground state and at absolute zero temperature, universally exhibits

a zero point motion. This zero point motion of the electron results in a

propagating electromagnetic wave such that their associated fields can induce

dipole moments in the electron clouds of nearby atoms or molecules. It is

these induced-dipole and induced-dipole interactions that forms the attractive

force which is the basis of the London force.

Comparison of the contributions of these three forces shows that the London

force dominates [34], i.e. the dispersion effect has the largest proportion in the van

der Waals forces. This force is independent of temperature and does not require a

permanent dipole.

London’s equation describes the dispersion interaction energy between two iden-

tical atoms or molecules, i.e.,

W (r) = − λ

r6
= − 3α2

0hv

4(4πε0)2r6
(3.2)

where

r = distance between two atoms or molecules,

λ =
3α2

0hv

4(4πε0)2
, London-van der Waals constant,
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α0 = electronic polarizability,

h = Planck’s constant,

v = orbiting frequency of the electron,

ε0 = permittivity of free space.

This equation was derived by London in 1937 using quantum mechanics. It will

be used to compute the van der Waals force between two objects in later sections.

More details of the origin of the van der Waals force can be found in Israelachvili[34]

and French[35] or any quantum mechanics textbook.

3.3 Retardation Effect

For two molecules in free space, retardation effect begins at a separation greater

than 5nm. In the van der Waals force formula derived theoretically such as the one

in the later Section 3.5, this effect is normally not considered. Hence, the van der

Waals force is always overestimated for separations above 5nm. The retardation

is not linear and the derivation of the actual retarded van der Waals force is very

complex.

The retardation effect is due to the longer transit time of the electromagnetic

wave between the dipoles. When the distance is small, this transit time can be

neglected. However, when the distance between two dipoles increases, the transit

time of the two electromagnetic waves become longer causing the highest energy

interatomic bands out of phase, which reduces their contributions to the dispersion

interaction.

In this project, the system studied is set such that the separation between two

objects is below 5nm, so that the retardation effect of the van der Waals force is

neglected. Therefore, only non-retarded van der Waals forces are considered.
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3.4 Hamaker Constant

In determining the van der Waals interaction energy and force between two bodies,

it is always assumed that the interaction is non-retarded and additive. With the

assumption of the additivity property, Hamaker [33] was able to determine the van

der Waals force between two spherical particles by summing all dipolar interactions

of the atoms or molecules of the particles. He introduced a constant A in his work

which was later named as the Hamaker constant and is widely used in the study of

van der Waals force. The Hamaker constant is a function of the material properties

and is defined as

A = π2q1q2λ12 (3.3)

where q1, q2 are the number of atoms per unit volume in the two interacting bodies,

λ12 is the London-van der Waals constant for the pairs of atoms indicated by the

subscript. It is positive for an attractive force and negative for a repulsive force.

The unit of the Hamaker constant is Joule and its value is generally in the range of

0.4 ∼ 4×10−19J. In [33], Hamaker proved that the van der Waals forces between two

particles of the same material are always attractive. He also stated that if the par-

ticles are of different composition, the resultant force may be attractive or repulsive.

One important property of the Hamaker constant is the combining relations

(or combining laws). It is useful in obtaining approximate values for unknown

Hamaker constants in terms of known ones. It states that if A132 is defined as the

non-retarded Hamaker constant for media 1 and 2 interacting across medium 3,

A132 may be approximately related to A131 and A232 as

A132 ≈ ±
√

A131A232 (3.4)

From this, we have

A12 ≈
√

A11A22 (3.5)
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where A12 is for media 1 and 2 interacting across vacuum, i.e., with no medium 3

in between.

3.5 The van der Waals force between two spheres

of same material

The derivation of the van der Waals forces between objects starts from London’s

equation (3.2), the dispersion interaction energy between two atoms or molecules.

By assuming the additivity of the interaction energy, the total dispersion interaction

energy between two objects can be obtained. Hamaker [33] derived the formula of

dispersion energy of interaction between two spheres, shown in Figure 3.1, as

W = −A

6

[
2R1R2

C2 − (R1 + R2)2
+

2R1R2

C2 − (R1 −R2)2
+ ln

C2 − (R1 + R2)
2

C2 − (R1 −R2)2

]
(3.6)

where

A = π2q2λ, Hamaker constant of the material,

q = number of atoms or molecules per unit volume,

λ = London-van der Waals constant,

R1, R2 = radii of the two spheres,

C = distance between the spheres’ centres.
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Figure 3.1: Notation for two spheres in interaction

The van der Waals force of the two spheres can be obtained by differentiating

this formula with respect to the distance C.

∂W

∂C
= −A

6

{ −2R1R2 × 2C

[C2 − (R1 + R2)2]2
+

−2R1R2 × 2C

[C2 − (R1 −R2)2]2
+

+
2C

C2 − (R1 + R2)2
− 2C

C2 − (R1 −R2)2

}

= −AC

3

{ −2R1R2

[C2 − (R1 + R2)2]2
+

−2R1R2

[C2 − (R1 −R2)2]2
+

+
C2 − (R1 − 2R1R2 + R2

2)− C2 + (R2
1 + 2R1R2 + R2

2)

[C2 − (R1 + R2)2][C2 − (R1 −R2)2]

}

=
AC × 2R1R2

3

{
1

[C2 − (R1 + R2)2]2
+

1

[C2 − (R1 −R2)2]2
−

− 2

[C2 − (R1 + R2)2][C2 − (R1 −R2)2]

}

=
2ACR1R2

3

{
1

[C2 − (R1 + R2)2]2[C2 − (R1 −R2)2]2

} {
[C2 − (R1 −R2)

2]2 +

+ [C2 − (R1 + R2)
2]2 − 2[C2 − (R1 + R2)

2][C2 − (R1 −R2)
2]

}

=
2ACR1R2

3

{
[C2 − (R1 −R2)

2 − C2 + (R1 + R2)
2]2

[C2 − (R1 + R2)2]2 [C2 − (R1 −R2)2]2

}

F =
ACR1R2

3

{
32R2

1R
2
2

[C2 − (R1 + R2)2]2 [C2 − (R1 −R2)2]2

}
(3.7)

This is the non-retarded van der Waals force between two macroscopic spheres.

Expression in term of the nearest surface separation δ can also be obtained by
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substituting C = R1 + R2 + δ into Eq. (3.7). The force becomes

F =
32A(R1 + R2 + δ)R3

1R
3
2

3[(C + R1 + R2)(C −R1 −R2)]2 [(C + R1 −R2)(C −R1 + R2)]2

=
32A(R1 + R2 + δ)R3

1R
3
2

3(2R1 + 2R2 + δ)2 δ2 (2R1 + δ)2 (2R2 + δ)2
(3.8)



Chapter 4
Development of a Micromanipulation

System

The general system described in Section 1.2 is not sufficient to explore the control

of micromanipulation system. A more concrete system has to be developed which

is developed in this chapter. This chapter presents the configuration and modelling

of the micromanipulation system, including the materials, geometry and devices

assumed. The interaction of the system with the van der Waals force is also con-

sidered. System parameters to run the simulation are determined according to the

system configuration and a desired trajectory is selected. Several simulations are

conducted on the system to observe its characteristics and the effect of the van der

Waals force on the system.

4.1 System Configuration

Consider a micro-assembly task as shown in Figure 4.1. Two spheres B and C are

fixed on a substrate. Sphere A is held stationary by a tool at an initial height.

From that starting height, sphere A is moved down to ‘touch’ spheres B and C.

The range of movement is set to be few nanometers. During the maneuver, motion

trajectory and velocity of sphere A are affected by the van der Waals force between

22
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the spheres B, C and A. This motion is to be controlled.

Figure 4.1: System Configuration

The tool is assumed to include a piezoelectric stack actuator and a microgripper

which holds the sphere firmly throughout the whole process. The reasons of using

the piezostack are its advantage in giving precise displacement and force and, also,

the ease of control. It is assumed that its hysteretic behaviour is negligible and

the dynamics of the piezostack is linear.

The spheres in the system are set to be identical, i.e. of same material and

same radius. When the spheres are in contact, it means the separation of spheres

is 0.165nm from surface to surface. This is called the contact distance. (refer to

[34])

4.2 Model of Piezoelectric Stack Actuator

The modelling of the piezoelectric stack can be found in [26] and [36]. It can be

modelled as a simple mass-damper-spring system as shown in Figure 4.2, where

mp, c and kp are the mass, damping coefficient and stiffness of the piezostack
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cpk

x

pm

pF

Figure 4.2: Model of piezoelectric stack

respectively, and Fp is the force transduced from the electrical input. The piezo-

electric element converts the input voltage to force. If the input voltage is V , the

transduced force Fp can be calculated as

Fp = Nkp d33V (4.1)

where

d33 = piezoeletric charge constant,

N = number of piezodiscs which make up the stack.

4.3 Dynamic Model of the System

According to the system configuration and the piezostack model, a free body di-

agram of the system is obtained, as shown in Figure 4.3, where M is the mass

including the masses of piezostack, sphere A and the tool holding it, c, kp and

Fp are as mentioned above, Fv is the vertical component of van der Waals force

between spheres and x is the position of mass from equilibrium position.
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c
pk

x

M

pF vF

Figure 4.3: Free body diagram of the system

The dynamic equation of the system is

Mẍ + cẋ + kpx = Fp + Fv (4.2)

The derivation of Fv is as follow. Referring to Figure 4.4, recall that the van der

Waals force between two spheres is expressed as Equation (3.7)

Fvdw =
32ACR3

1R
3
2

3
[
C2 − (R1 + R2)

2]2 [
C2 − (R1 −R2)

2]2

Since two spheres B and C are identical, the van der Waals forces exerted on A by

B and C have the same magnitude. The horizontal components Fh are cancelled

due to the symmetry of the configuration. The remaining force is the vertical

component of the van der Waals force Fvdw.
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Fv = 2× 32ACR3
1R

3
2

3
[
C2 − (R1 + R2)

2]2 [
C2 − (R1 −R2)

2]2 × cos θ

=
64AR6C

3 [C2 − 4R2]2 [C2]2
× cos θ

=
64AR6C

3 [C2 − 4R2]2 [C2]2
× D − x

C

=
64AR6(D − x)

3
[
(D − x)2 + l2 − 4R2

]2 [
(D − x)2 + l2

]2 (4.3)

as R1 = R2 = R and C2 = (D − x)2 + l2. Substituting (4.3) into Equation (4.2)

gives

Mẍ + cẋ + kpx = kp d33 NV +
64AR6(D − x)

3
[
(D − x)2 + l2 − 4R2

]2 [
(D − x)2 + l2

]2 (4.4)

Equation (4.4) is the dynamics model of the micromanipulation system with the

van der Waals force.

Figure 4.4: Van der Waals force between two spheres
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4.4 Parameters Calculation

4.4.1 Spheres Parameters

Assuming that the spheres are made of Silicon Dioxide (SiO2). The properties of

SiO2 and other parameters are

Sphere Parameter Symbol Numerical Value

Radius R 10 µm

Non-retarded Hamaker Constant ASiO2 6.5×10−20 J

Density (dry) ρSiO2 2270 kg/m3

Young’s Modulus ESiO2 73 GPa

Mass of the sphere ms 9.5086×10−12 kg

Table 4.1: Sphere parameters for simulations

4.4.2 Piezostack Parameters

There are many types of ceramic that can be used as piezoelectric material. A

common type – PZT (Lead Zirconate Titanate) is employed here. Its properties

are listed below.

PZT Property Symbol Numerical Value

Piezoelectric charge constant d33 500× 10−12 m/V

Young’s Modulus EPZT 6× 1010 Pa

Density ρPZT 7.5× 103 kg/m3

Maximum electrical field strength Bmax 2kV/mm

Table 4.2: Material properties of PZT for simulations



Chapter 4. Development of a Micromanipulation System 28

The usual operating condition of the piezostack is under an electrical field

strength of 1kV/mm to 2kV/mm and at maximum voltage of 150V (low volt-

age actuator) or 1000V (high voltage actuator). In this project, it is set that the

piezostack works under electrical field strength of 1kV/mm and at voltage between

±150V. Parameters of the piezostack can be determined as below:

Let the maximum operating voltage be Vmax = 150 V. The maximum extension of

a piezodisc at 150V can be calculated as

Max. extension = d33 × 150

= 500×10−12 × 150

= 7.5×10−8 (m)

The thickness of the piezodisc for it to be operated at B = 1kV/mm electric field

strength is

thickness =
Vmax

B
= 0.15 (mm)

It is set that there are 10 piezodiscs to make up the piezostack, so the length of

the piezostack is

L = 0.15× 10 = 1.5 (mm)

Hence, the maximum extension is 7.5 × 10−7m, i.e. max. strain = 0.05%. If the

radius of the piezostack is set as rp = 8µm = 8 × 10−6 m. The stiffness of the

piezostack can be calculated as

kp =
π r2

p ESiO2

L
≈ 8×103 (N/m)

Mass of the piezostack is

mp = π r2
p LρSiO2 = 2.2619×10−9 (kg)
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4.4.3 Microgripper Parameters

As mentioned in Section 2.1, Zhou et. al. [7] introduced a new force sensing method

using optical beam deflection (OBD) and described a microgripper with built-in

OBD force sensor. In this project, it is assumed that a similar microgripper is

used. Figure 4.5 illustrates the simple model of the microgripper. The cantilever

finger (‘a’) is used to measure the gripping force by using laser beam. Microfinger

(‘b’) should have a higher stiffness so that almost all deflection is taken up by the

cantilever finger to give a higher accuracy measurement.

Figure 4.5: Model of microgripper

Let the commonly used Silicon Nitride (Si3N4) be the material of the fingers.

The properties are

ESi3N4 Property Symbol Numerical Value

Young’s Modulus ESi3N4 304GPa

Density ρSi3N4 3400 kg/m3

Non-retarded Hamaker constant ASi3N4 1.92× 10−19 J

Table 4.3: Material properties of Si3N4 for simulations
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Table 4.4 shows the dimension and calculated mass of the two fingers. The

values are set corresponding to the size of the sphere.

Finger Dimensions Mass

Cantilever 500µm × 2µm × 30µm 1.02×10−10 kg

Microfinger 500µm × 10µm × 30µm 5.1×10−10 kg

Table 4.4: Parameter of microgripper fingers

4.4.4 System Parameters and Transfer Function

The mass of the whole system, M , includes the mass of piezostack actuator, mi-

crogripper and sphere. It is approximated as

M = sphere mass + piezostack mass + microgripper fingers mass

= 9.5086×10−12 + 2.2619×10−9 + 1.02×10−10 + 5.1×10−10

= 2.8834×10−9

≈ 3×10−9 (kg)

The system parameters in Equation (4.4) for simulations are summarized in the

Table 4.5 below, see also Figure 4.4.

Note that the distance D is set within the extension range of the piezostack

actuator depending on the desired system motion. Once the system displacement

is designed, D can be determined. l is the configuration setting.

The transfer function of the system without the van der Waals forces between

spheres, Fv, can be derived from Equation (4.4):

Mẍ + cẋ + kpx = Fp

Ms2X(s) + csX(s) + kpX(s) = kp d33NV (s)

X(s)

V (s)
=

kp d33N

Ms2 + cs + kp

(4.5)
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Parameter Value

kp 8000 N/m

d33 500×10−12 m/V

N 10

M 3×10−9 kg

c 5 Ns/m

A(ASiO2) 6.5×10−20 J

l 1.999×10−5 m

R 10 µm

Table 4.5: Parameters of the system dynamics model

4.5 System Characteristics

Substituting the parameters into Equation (4.5) gives the system transfer function

without van der Waals force

X(s)

V (s)
=

4×10−5

3×10−9s2 + 5s + 8000
(4.6)

In order to examine the system characteristics and check the validity of the system

dynamic model, simulations are run on the modelled system using MathWorks

Simulinkr in the MATLAB program. Simulink is a graphical interface to Matlab

using block diagram and connectors.

Figure 4.6: Simulation model for the open loop system with 150V input
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Figure 4.7: System response with 150V input

The first simulation is to input a voltage of 150V to the open loop system.

Figure 4.6 shows the Simulink model for the simulation. The time for simulation

is set to be 0.005sec. The simulation result is shown in Figure 4.7 which plots the

displacement of the system x (also the extension of the piezostack). The steady

state value is 7.5×10−7m which is the same as the calculated maximum extension

value (see Section 4.4.2). The next simulation is a step response of the open loop

system. The result is shown in Figure 4.8. The settling time is 0.00245 sec and no

overshoot is observed. The steady state value is 5×10−9m which is the extension

of piezostack at 1V input voltage. Recall that the piezoelectric charge constant

d33, defined as the extension of piezoelectric material per volt, is 5×10−10m. Since

the piezostack is made of 10 piezodisc, 1V applied to the piezostack will provide

an extension of 5×10−9m (= 5×10−10 × 10). It matches the steady state value of

the model step response.
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Both simulation results show that the extensions of the piezostack of the model

agree with the calculated values. Hence, the system dynamics model developed is

valid. This dynamic model is used as the micromanipulation system for examining

the influence of van der Waals force. The fast response and zero overshoot indicate

that the system is capable to perform well.
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Figure 4.8: Step response of system

4.6 Trajectory for Simulation

For all the simulations in this project, a trajectory is used as reference input

instead of solely using step input. This is better in showing the effect of van der
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Waals force. The trajectory is the motion of the sphere A. Referring to Figure 4.4,

at the beginning, sphere A is held at initial height D. The initial velocity is zero.

The sphere A is set to be moved downwards for 10nm to touch the sphere B and

C which means that the final distance between the surfaces of spheres A and B, C

is 0.165nm. At that distance, the two spheres are considered in contact [34]. The

sphere is then held at the final position for the rest of the simulation time. The

time to move the sphere from the initial position to the final position is 0.005sec.

Let xf = 10nm be the final position and Cf be the final distance between two

spheres centers. Referring to Fig. 4.4, D is obtained as

Cf = 2R + 0.165×10−9

= 2× 10×10−6 + 0.165×10−9

= 2.0000165×10−5

D − xf =
√

C2
f − l2

D =
√

C2
f − l2 + xf

=
√

(2.0000165×10−5)2 − (1.999×10−5)2 + 10×10−9

= 6.4757355×10−7

We use as desired trajectory a fifth order polynomial with boundary conditions:

At starting time t0 = 0 sec, x0 = 0 m, ẋ0 = 0 m/s, ẍ0 = 0 m/s2;

At finishing time tf = 0.005 sec, xf = 10×10−9 m, ẋf = 0 m/s, ẍf = 0 m/s2.

The resulting trajectory is

x(t) = 0.8t3 − 240t4 + 19200t5 (4.7)

Figure 4.9 shows the trajectory of x from 0 sec to 0.005 sec. After 0.005 sec, the

position x is held at the final position xf = 10×10−9m.
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Figure 4.9: Desired trajectory used for feedback loop simulation

4.7 Effect of van der Waals Force

4.7.1 Closed-loop Step Response

To examine the effect of van der Waals force on the system, simulations are

run of the closed-loop feedback system with the trajectory input. The feedback

system requires a gain for position tracking. The system response should have an

overshoot smaller than 1% and low position error. The low overshoot is needed to

prevent collision of the spheres since the motion of sphere is designed to move and

touch the other sphere. Step reference input is used to determined the gain. Then

the gain is used for the system simulations with trajectory input.

The steady state error of the closed-loop step response of the system can be

derived analytically. Referring to Figure 4.10, ignoring the van der Waals force
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influence, position error E can be derived as

E = R− Y

= R− TR

= (1− T )R

=

(
1− KG

1 + KG

)
R

=

(
1

1 + KG

)
R (4.8)

where

R = reference input,

Y = output,

T = closed-loop system transfer function,

K = feedback gain,

G = plant transfer function Eq. (4.5).

K G YR +
-

E

Figure 4.10: Illustration of closed-loop system

For a step reference input, R = 1/s, steady state error is obtained by using

Final Value Theorem.
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Ess = lim
s→0

s

(
1

1 + KG

)(
1

s

)

= lim
s→0

1

1 + K

(
kp d33N

Ms2 + cs + kp

)

= lim
s→0

Ms2 + cs + kp

Ms2 + cs + kp + kp d33NK

=
kp

kp + kp d33NK

=
1

1 + d33NK
(4.9)

Equation (4.9) shows that larger gain used gives smaller steady state error.

However, the error is never eliminated. To have zero error, a more sophisticated

controller must be employed.

A gain is chosen to give a small error and zero overshoot for the simulations in

this section. The gain obtained is 1×1013. Figure 4.11 shows the system response

obtained from simulation. The settling time is 4.71×10−8 sec and overshoot is

zero. The steady state error is 2×10−5 m. With this result, the feedback gain

should be able to provide low error and zero overshoot response for the system

with trajectory input.

4.7.2 System Response to Trajectory Input

To observe how the system evolves when the van der Waals force is not modelled,

the feedback system is simulated with trajectory as reference input and without

van der Waals force interruption. It is to see that if the van der Waals force is

not modelled in the system, how it actually acts in the system. Figure 4.12 shows

the simulink model of the system. The simulation time range of 0.01 sec and the

solver ode15s are used. The system response, position x, is shown in Figure 4.13.

There is no overshoot in the response. The position x is used to calculate the van
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Figure 4.11: Closed-loop step response of system

Figure 4.12: Simulation model of feedback system with trajectory input

der Waals force with the Equation (4.3). Then the displacement of the sphere A

caused by the van der Waals force can be obtained by inputting the van der Waals
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force into the plant transfer function (Eq. (4.6)). Figure 4.14 shows the position

tracking error. Notice that the steady state error is a constant. It is expected

since only feedback gain is used (refer to the steady state error derived above).

Figure 4.15 shows the van der Waals force, Fv, and the distance, δ, between

surfaces of spheres A and B or C. In the process, the δ starts from about 0.4863nm

and reduces to 0.165nm, which is the contact distance. The van der Waals force

increases as the two spheres come closer to each other. When the spheres are in

contact, the van der Waals force reaches its maximum value. During the motion,

the van der Waals force attracts the sphere A and tries to pull it downwards. Figure

4.16 shows the displacement of sphere A due to the van der Waals force. Let this

displacement be xv. From the collected data, the ratio of xv to x can be calculated.

At steady state, the percentage of the ratio of xv to x is 0.1585%. This error caused

by the van der Waals force can affect the system performance since high accuracy

is required in micromanipulation. We conclude that more sophisticated control

law is to be applied to reduce van der Waals force effect and obtain lower position

tracking error. Further van der Waals force model may be considered as the part

of control law design so that the control law is more effective in reducing the van

der Waals force effect.
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Figure 4.13: Position x for the negative feedback system without van der Waals

force
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Figure 4.14: Position tracking error
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Figure 4.15: Plot of van der Waals force and δ
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Figure 4.16: Displacement of piezostack due to van der Waals force



Chapter 5
PID and Lead-Lag Compensator

In Chapter 4, it has been shown that a simple feedback control gain can not give

zero steady state error and good position tracking. Further, the van der Waals

force increases the position error. Other control methods are required to get a

better result. In this chapter, commonly used linear control laws are designed to

control the system.

PID controller and lead-lag compensator are two widely used classical con-

trollers. They are well-known due to their simple implementation. Their basic

principles are similar and, sometimes, one of them is referred to the other. Never-

theless, the implementations are different and the result could be discrepant. For a

linear system, like the second order system (without van der Waals force) described

in Chapter 4, these two control methods are usually able to give satisfactory result.

This chapter presents the design of both PID and lead-lag compensators for the

system derived in Chapter 4. In the following two sections, the principles and de-

sign algorithms of the PID and lead-lag control are briefly described. Simulations

are run on the controlled systems and results are discussed.

42
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5.1 PID Control

5.1.1 Introduction

Proportional controller has the effect of reducing the rise time and the steady-state

error but does not eliminate it. High proportional gain may destabilize the

system. Integral control has the effect of eliminating the steady-state error but

it may worsen the transient response. Derivative control increases the stability

of the system, reduces the overshoot, and improves the transient response. The

combination of corresponding terms in a Proportional-Integral-Derivative (PID)

controller is able to provide an acceptable error reduction and satisfactory stability.

In continuous time domain, the ideal PID controller output equation is

C(t) = KP e(t) + KI

∫ t

0

e(t∗)dt∗ + KD
de(t)

dt
(5.1)

where KP , KI , KD are the gains for proportional, integral and derivative controls

respectively. Increasing KP and KI can reduce system errors but may not be able

to produce sufficient stability whereas increasing KD will help to improve stability.

The Laplace transform function of Equation (5.1) is

C(s) = KP +
KI

s
+ KDs (5.2)

Equation (5.2) is the general form for PID control. To design a particular control

loop, one has to tune the gains in order to achieve the acceptable performance.

There are numerous well-developed tuning methods. Some examples are Ziegler-

Nichols, Internal Model Control (IMC) and Cohen-Coon. Different methods are

used depending on the characteristic of the systems.
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5.1.2 Design of the PID Control

There are several forms to express the PID control principle. Sometimes, one form

is easier to use than another for a particular design or tuning method. Here, the

frequency design method is used to design the PID control. The form preferred is

C(s) =
K

s
(TDs + 1)

(
s +

1

TI

)

=
KTD

s

(
s +

1

TD

)(
s +

1

TI

)
(5.3)

1
TD

is the zero of the derivative part of the controller. It is chosen to be placed at

the region near the faster pole of the plant. On the other hand, 1
TI

is the zero of

the integral part. It is usually much smaller than the derivative zero but larger

than the slower pole of the plant. With this two zeros and the integral pole, Bode

diagram of the open-loop system can be drawn. The last parameter KTD is then

determined so that the phase margin is around 90◦. According to the system

configuration and motion planning in Chapter 4, the sphere A is moved to ‘touch’

the other spheres. Thus, overshoot should be prevented as it will cause the spheres

to collide so deformation may occur. A phase margin of 90◦ will ensure very low

overshoot.

By using this design method, a PID controller is designed for the system in

Chapter 4. The controller parameters obtained are: 1
TD

= −5.87×107, 1
TI

= −1.59×
103 and KTD = 750. Equating Equations (5.2) and (5.3) gives the gains for the P, I,

D terms in Eq (5.2) as KP = 4.4×1010, KI = 7×1013 and KD = 750. However, both

Equations (5.2) and (5.3) are hard to implement since the unbound high-frequency

gain of the derivative part can lead to a problem. Hence a pole is usually added to

the derivative path to limit the gain. Here, a pole ωpd = −1 × 104 is added. The

controller equation becomes

C(s) = Kp +
KI

s
+

KDs

1 + s/ωpd

(5.4)
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This controller is used for the simulations.

5.1.3 Simulation Results

The PID controller above is employed in the feedback loop of the system. Two

inputs are used in the simulations: a step input and the trajectory in Section 4.6.

The Simulink model set up for the controlled system with trajectory input is shown

in Figure 5.1. Notice that the output x is used to calculate the van der Waals force

and then fed back to the plant transfer function. It is to simulate the influence of

the van der Waals force on the system. To simulate the step response, the reference

input in the model is replaced by the step input and the rest remains the same.

The settings of the simulations are

Simulation Parameter Value

simulation time 0.015 sec

solver option ode15s

maximum step size 1×10−6 sec

relative tolerance 1×10−12

Table 5.1: Simulation parameters for PID controlled system

The step response of the controlled system is plotted in Figure 5.2. It shows

no overshoot and the settling time is fast, around 1.4×10−5sec. Zero overshoot

fulfills the design criteria. For the trajectory input, the position tracking error of

the system is shown in Figure 5.3. The collected data shows that the steady state

error is about 5.6074×10−19m.
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Figure 5.1: Simulation model for system with PID control
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Figure 5.2: Step response of system with PID control
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Figure 5.3: Position tracking error of PID controlled system with trajectory input

5.2 Lead-Lag Compensator

5.2.1 Introduction

Lead-lag compensation is a conventional control method which has a similar char-

acteristic as PID control. It consists of two parts, lead and lag compensations.

Transfer function (5.5) represents both the lead and lag compensations.

C(s) = K
(s + z)

(s + p)
(5.5)

It is phase lead when |z| < |p| and phase lag when |z| > |p|. K is the control gain.

The design of the lead and lag compensations is to select the positions of pole and

zero to achieve the specification of the system performance.

The basic principle of the lead compensation is that it adds phase lead near
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the crossover frequency to yield desired roots for the closed-loop system. This will

increase the system bandwidth and the gain at higher frequencies. If the gain on

the low frequency is unchanged, lead compensation will increase the crossover fre-

quency and speed of system response. This characteristic is similar to PD control.

Another control which resembles the PI control is the phase lag compensation.

The positions of pole and zero are usually at low frequencies that will increase

the frequency-response magnitude at low frequency, thus reducing the steady state

errors. Lag compensation can be used to obtain the required phase margin by

decreasing the frequency-response magnitude at high frequencies. It also has the

effect on suppressing high-frequency noise. The combination of the two yields the

lead-lag compensation. The overall transfer function is

C(s) = K
(s + z1)(s + z2)

(s + p1)(s + p2)
(5.6)

It possesses the properties of lead and lag compensation. With the right combi-

nation of poles and zeros, it is able to improve the system response and lower the

steady state error.

5.2.2 Design of Lead-Lag Compensator

There are a few methods to design the lead-lag compensator such as the

root locus and frequency design. The frequency design algorithm is briefly

described here. Gain K is obtained first, without the compensation, to meet

the criteria of phase margin. With the help of the Bode diagram of the open-

loop uncompensated system, the crossover frequency is determined and lead

compensation is added near the crossover frequency to obtain the required

speed of response. Lag compensation is then added to improve the steady state

error and response. Finally, gain K is adjusted to improve the overall performance.



Chapter 5. PID and Lead-Lag Compensator 49

Using the design algorithm, the lead-lag compensator transfer function is ob-

tained for the system in Chapter 4 as

C(s) =
1×1013(s + 2×108)(s + 1.5×103)

(s + 1×109)(s + 1)
(5.7)

5.2.3 Simulation Results

Simulations were run on the lead-lag compensated system. The Simulink models

used are similar to the one used for PID control simulation. The only difference

is the block of controller, which is replaced by the zero-pole transfer function rep-

resenting the lead-lag compensator. Figure 5.4 shows the Simulink model for the

system simulation with trajectory input. The settings for the simulations are the

same as those in the PID simulation above. Simulation results are given below.

Figure 5.5 plots the step response of the controlled system. The settling time of

2.55×10−7sec is faster than the one by PID control. No overshoot is observed and

the DC gain is 1. For the trajectory input, Figure 5.6 shows the position tracking

error of the system. Comparing to Figure 5.3, the transient response is better, with

lower error. However, the steady state error is larger, at about 6.66×10−16m.

Figure 5.4: Simulation model for system with lead-lag control
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Figure 5.5: Step response of system with lead-lag control
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Figure 5.6: Position tracking error of lead-lag controlled system with trajectory

input
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5.3 Discussion

In order to examine the ability of the controllers in attenuating the effect of

van der Waals force, two simulation modes are used. One is the controlled

systems with van der Waals force input and another is without van der Waals

force input. The model with van der Waals force input corresponds to Equation

(4.4). The model without van der Waals force also represent the Equation

(4.4) but without the van der Waals force formula which is the second term

at the right hand side of the equation. Using the two simulation modes, the

difference between the system responses with and without van der Waals force

under the control of the designed controller can be examined. Taking the PID

controlled system for example, Figure 5.1 is the simulation mode with van der

Waals force whereas Figure 5.7 shows the simulation mode without van der Waals

force. Similarly, lead-lag controlled system is also simulated using these two modes.

Figure 5.7: Simulation model for PID controlled system without van der Waals

force input

To see the control effect, the difference of the position tracking errors of the

controlled systems with and without van der Waals force inputs are computed.

The value of the difference indicates the ability of the controller in attenuating

the influence of van der Waals force. The concept is that since the magnitude of



Chapter 5. PID and Lead-Lag Compensator 52

van der Waals force during the motion is very hard to predict especially when

the system becomes complicated, a controller which can give low position error

of a system does not mean that it can attenuate influence of van der Waals force

well. Hence, if we only look at the position tracking error in this system, we may

not know if the controllers used can also perform well in other system in terms

of reducing the van der Waals force influence. Thus for a general result, we do

not solely look at how good the controllers track the position but we compare the

position tracking error of the two modes. If the difference is smaller, this means

that the position tracking of two simulation modes is similar. The system with

van der Waals force model has closer performance to the system without van der

Waals force model. In other words, the influence of van der Waals force is less to

the controlled system. The smaller the difference value, the better the controller

ability to attenuate the influence of van der Waals force. As a result, we know that

which and how the controller should be used in micro-system where van der Waals

force interacts so that the controller will reduce the influence of van der Waals force.

Figure 5.8 shows difference in position tracking errors for PID and Lead-lag

controlled systems. Lead-lag compensation is more efficient in the transient

response as the error difference is lower than the PID controlled systems at the

first half of the simulation time. However, at steady state, the error difference in

PID controlled system is smaller than in the lead-lag compensated system. This

indicates that PID control is better attenuating the van der Waals force at the

later part of response.

The stability is not properly proven analytically in these two controlled system.

It can not be ensured by just observing the simulation results. A theoretical proof

is essential. Furthermore, the two linear controls lack robustness in dealing with
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Figure 5.8: Difference in position tracking error (PID and Lead-lag controlled

system)

the varying van der Waals force. This results in the suboptimal position tracking

at transient response. A more complex and robust control method is needed. In

next chapter, nonlinear control is investigated to control the system.



Chapter 6
Inverse Dynamics Robust Control

The result in Chapter 5 has shown that linear control, PID and lead-lag control,

can not achieve satisfactory result in transient and steady state at the same time.

Besides, the robustness and stability issues need to be considered. Since the micro-

manipulation system with the van der Waals force is a nonlinear system, a nonlinear

control law may be used. In this chapter, the inverse dynamics technique is used

to control the system. In addition, a robust control method is incorporated in the

control law. This will help attenuate the effect of van der Waals force and en-

sure the stability of the system. The following sections introduce and describe the

principles of inverse dynamics robust control. The control law is derived according

to the micromanipulation system developed in Chapter 4. In the subsequent sec-

tion, the parameters of the control law are determined for simulations. Simulation

results are presented and discussed at the end.

6.1 Introduction

In robotics, the inverse dynamics control technique is widely used to control

plants with nonlinear dynamics. The robot’s dynamics becomes decoupled and

linear. So, efficient techniques from linear control can be used. However, the

implementation of this control law requires precise knowledge of the parameters in

54
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the dynamic model of the system. Modelling error and uncertainty in the system

may affect the control result. A robust control method is developed to eliminate

this problem.

This robust control method assumes the existence of the worst case bound

of the modelling error and uncertainty of the system. The bound values are

estimated and used in the computation of the control signal. Lyapunov equation is

also included as a part of the computation. This will guarantee the stability of the

uncertain system. The control signal is nonlinear and could suffer from chattering,

which is a characteristic of the discontinuous control law. The principle of the

method is described in the next section.

The computed control signal is a modified control signal value which consists

of the main control signal for the system model without uncertainty and an addi-

tional control signal for the uncertainty. This additional value corrects the system

response corresponding to the modelling error and uncertainty. Considering a sys-

tem with disturbance, if the disturbance is treated as a part of the modelling error

or uncertainty of the system, the disturbance should be rejected by using the robust

control method. This concept is applied to our micromanipulation system with van

der Waals force. If the bound of the van der Waals force can be estimated, the

control method is able to attenuate the inaccuracy in the van der Waals force

model.
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6.2 Inverse Dynamics Robust Control Algorithm

6.2.1 Compensation of the Inverse Dynamics

Controlling compensations for the nonlinear plant dynamics are well-known in

robotic, and are described in most books about robot control. The principle is

briefly described here. Consider an n-link robot described by the dynamic equa-

tion

M(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u (6.1)

where q: vector of joint variables

u: control torque vector

M(q): inertia matrix

C(q, q̇)q̇: coriolis and centrifugal force vector

F q̇: frictional force in system

g(q): gravitational force vector

Setting H(q, q̇) = C(q, q̇)q̇ + F q̇ + g(q), Equation (6.1) becomes

M(q)q̈ + H(q, q̇) = u (6.2)

To linearize these dynamics we can use a control law

u = f(q, q̇) = M(q)v + H(q, q̇) (6.3)

Substituting (6.3) into (6.2) yields

q̈ = v (6.4)

since M(q) is invertible. Equation (6.4) is known as the double integrator sys-

tem, and is linear and decoupled. It means that the robot links can be controlled

independently. Commonly, v is chosen as

v = r−K1q−K2q̇ (6.5)
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where K1, K2 are diagonal matrices with diagonal elements consisting of position

and velocity gains. They can be chosen as

K1 = diag{ω2
1, . . . , ω

2
n} (6.6)

K2 = diag{2ω1, . . . , 2ωn}

where ω is the natural frequency. For a given desired trajectory qd(t), q̇d(t), r can

be chosen as

r(t) = q̈d(t) + K2q̇
d(t) + K1q

d(t) (6.7)

Substituting (6.7) into (6.5) and defining the tracking error as e = q− qd gives

v = q̈d −K1e−K2ė (6.8)

(6.8) is the feedback input to the control law (6.3).

6.2.2 Robust Control

The control algorithm above assumes that the parameters M and H of the system

are perfectly modelled. However, modelling error and uncertainty may be present.

Hence, instead of (6.3), suppose that the nonlinear control law is actually

u = M̂(q)v + Ĥ(q, q̇) (6.9)

where M̂, Ĥ are the incorrectly-modelled functions. The uncertainty or modelling

error is

∆M = M̂(q)−M(q) (6.10)

∆H = Ĥ(q, q̇)−H(q, q̇)

Equating (6.9) and (6.3) gives

M q̈ + H = M̂v + Ĥ (6.11)
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The arguments are dropped for simplicity. After rearranging the equation, the q̈

can be expressed as

q̈ = M−1M̂v + M−1∆H

= v + (M−1M̂ − I)v + M−1∆H

= v + η (v,q, q̇) (6.12)

where η = E(q)v + M−1∆H with E = M−1M̂ − I.

Comparing (6.12) and (6.4), η is the additional input due to the uncertainty

or the modelling error of the system. η is unknown but may be estimated. The

concept of robust control design is to estimate the ‘worst case’ bounds on the

effects of η on the tracking performance of the system. Then, the control law or

input v is designed to guarantee the stability of the system response and cancel

the effect of η as well as possible.

To estimate the worst case bound on η, the following assumptions are made:

(i). sup
t≥0

‖q̈d‖ < Q̄ < ∞

(ii). ‖E‖ = ‖M−1M̂ − I‖ ≤ α < 1 for some α, for all q ∈ Rn

(iii). ‖∆H‖ ≤ φ(e, t) for a known function φ, bounded in t.

The control law of the robust control is slightly different from (6.8). It is

v = q̈d −K1e−K2ė + ∆v (6.13)

The ∆v is the additional feedback term to overcome the effect of uncertainty, η.

To compute the control input, the following algorithm is used. Recall that the

tracking error is defined as

e = q− qd (6.14)

∴ ė = q̇− q̇d (6.15)
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Then, to form a state space equation,

ė1 = e2 (6.16)

ė2 = q̈− q̈d

= q̈− v −K1e−K2ė + ∆v

= η −K1e1 −K2e2 + ∆v (6.17)

Thus,



ė1

ė2


 =




0 I

0 0







e1

e2


 +




0

I





−

[
K1 K2

]



e1

e2


 + ∆v + η


 (6.18)

With K = [K1 K2] and e = [e1, e2], and let

A =




0 I

0 0


 B =




0

I




The equation becomes

ė = A e + B(−Ke + ∆v + η)

= (A−BK)e + B(∆v + η)

= Ā e + B(∆v + η) (6.19)

where Ā = (A−BK). With the control input v as given in (6.13), we have,

η = E(q)v + M−1∆H

= E(q̈−Ke + ∆v) + M−1∆H

= E∆v + E(q̈−Ke) + M−1∆H (6.20)

For the system (6.19), suppose that there exists a continuous function ρ(e, t) which

is bounded in time t and satisfies the inequalities

‖∆v‖ < ρ(e, t) (6.21)

‖η‖ < ρ(e, t) (6.22)



Chapter 6. Inverse Dynamics Robust Control 60

Using the assumptions 1-3 above and (6.21) and (6.22), the function ρ can be

determined as follows.

‖η‖ ≤ ‖E∆v + E(q̈d −Ke) + M−1∆H‖ (6.23)

≤ αρ(e, t) + α(Q̄ + ‖K‖ · ‖e‖) + Mφ(e, t)

= ρ(e, t)

where M is the upper bound of ‖M−1‖. From this, ρ can be solved as

ρ(e, t) =
1

1− α

(
αQ̄ + α‖K‖ · ‖e‖+ Mφ(e, t)

)
(6.24)

To ensure stability, choose a symmetric, positive definite matrix Q and let P be

the unique positive definite symmetric solution to the Lyapunov equation

ĀT P + PĀ + Q = 0 (6.25)

Finally, the additional feedback input can be calculated as

∆v =




−ρ(e, t)

BT Pe

‖BT Pe‖ if ‖BT Pe‖ 6= 0

0 if ‖BT Pe‖ = 0

(6.26)

To summarize, the robust control law for the system (6.2) is

u = M(q)(v + ∆v) + H(q, q̇) (6.27)

where v is the feedback input as (6.8) in the inverse dynamics control, which is

the major control input for the system. ∆v is the additional feedback input (6.26)

derived from robust control that eliminates the effect of uncertainty or modelling

error. More details of the robust control can be found in [37].

6.3 Derivation of Control Law for the

Micromanipulation System

The inverse dynamics robust control method above is also suitable for the

micromanipulation system developed in Chapter 4. The following describes the
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derivation of the robust control law.

From (4.4), with the control signal u = kp d33 NV , we obtain the dynamic model

of the system with van der Waals force as

Mẍ + cẋ + kpx = u +
64AR6(D − x)

3
[
(D − x)2 + l2 − 4R2

]2 [
(D − x)2 + l2

]2 (6.28)

Let Fv(x) be the van der Waals force formula. Moving this to the left hand side,

the equation becomes

Mẍ + cẋ + kpx− Fv(x) = u (6.29)

This is the actual dynamic equation of the system. However, if the van der Waals

force formula is not known, the model of the dynamic equation becomes incorrect

and the problem of modelling error or uncertainty occurs. Hence, the robust control

law must be included. For the system, the control law is chosen to be

u = M(v + ∆v) + cẋ + kpx (6.30)

The tracking errors are defined as

e1 = x− xd (6.31)

e2 = ẋ− ẋd (6.32)

where xd is the desired position. Then,

ė1 = e2 (6.33)

ė2 = ẍ− ẍd

=
u

M
+

Fv(x)

M
− c

M
ẋ− kp

M
x− ẍd

=
M(v + ∆v) + cẋ + kpx

M
+

Fv(x)

M
− c

M
ẋ− kp

M
x− ẍd

= (v + ∆v) +
Fv(x)

M
− ẍd (6.34)

Choose v = ẍd −K1e1 −K2e2, then

ė2 = −K1e1 −K2e2 + ∆v +
Fv(x)

M
(6.35)
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The state space equation can be written as



ė1

ė2


 =




0 1

−K1 −K2







e1

e2


 +




0

1


 (∆v + η) (6.36)

ė = Ae + B(∆v + η) (6.37)

where

A =




0 1

0 0


 B =




0

1


 η =

Fv(x)

M
(6.38)

In the derivation, it is assumed that the only uncertainty is the van der Waals

force. Since M is a constant and Fv(x) is a bounded value,

‖η‖ ≤ ‖Fv(x)‖max

M
= ρ (6.39)

where ‖Fv(x)‖max is the ‘worst case’ bound of Fv(x). The Lyapunov equation is

then solved for P , by letting Q = I,

AT P + PA + I = 0

After that, ∆v is obtained as

∆v =




−ρ(e, t)

BT Pe

‖BT Pe‖ if ‖BT Pe‖ 6= 0

0 if ‖BT Pe‖ = 0

(6.40)

6.4 Simulations

6.4.1 Control Parameters

Having derived the control law for the micromanipulation system, the parameters

are determined as follows.

Designed gains: K1 = 1×1018, K2 = 1×106.

A =




0 1

−1×1018 −1×106


 B =




0

1


 (6.41)
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Solving the Lyapunov equation gives

P =




5×1011 −1.25×10−19

−1.25×10−19 5×10−7


 (6.42)

Then,

BT Pe = −1.25×10−19e1 + 5×10−7e2 (6.43)

‖BT Pe‖ =
√

(−1.25×10−19e1)2 + (5×10−7e2)2 (6.44)

The ‘worst case’ bound of van der Waals force is calculated using Eq. (4.3). Sub-

stituting the parameters from Table 4.5, D = 6.47573557×10−7m from Section 4.6

and x = 1×10−8m, the final position which will give the maximum value for the

van der Waals force, we get ‖Fv(x)‖max = 1.2685×10−7N. So,

‖Fv(x)‖max

M
= 42.2833 = ρ (6.45)

Thus, the additional feedback is obtained as

∆v =




−42.2833

BT Pe

‖BT Pe‖ if ‖BT Pe‖ 6= 0

0 if ‖BT Pe‖ = 0

(6.46)

Recall that the desired trajectory is xd = 0.0012t2 − 0.16t3 which gives

ẋd = 0.0024t− 0.48t2, desired velocity (6.47)

ẍd = 0.0024− 0.96t, desired acceleration (6.48)

With the definitions of (6.31) and (6.32), and the system parameters obtained in

Section 4.4, the control law for the micromanipulation system is

u = 3×109(v + ∆v) + 5ẋd + 8000xd (6.49)

where v = ẍd − 1×1018e1 − 1×106e2 and ∆v as in (6.46).
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6.4.2 Results

Figure 6.1 shows the Simulink model used for inverse dynamics robust control of

the system. Notice that there are two subsystem models in the figure, namely the

controller and the plant which are shown in Figures 6.2 and 6.3 respectively. The

‘S-Function’ block is the calculating function for ∆v (Eq. 6.46). The settings of

the simulations are

Simulation Parameter Value

simulation time 0.015 sec

solver option ode23tb

maximum step size 2×10−6 sec

relative tolerance auto

Table 6.1: Simulation parameters for inverse dynamics robust control system

Due to the complexity of the calculation, the solver option employed is ode23tb.

This is a stiff problem solver suitable for this problem.

Simulation results of the system with the robust control law are shown in Figure

6.4. The position tracking error is smaller than the order of 10−16m throughout

the motion. The transient response is better than the PID and Lead-lag controlled

system. The steady state error is very low, about 1.3483×10−21m. It is smaller

than the result by the PID and Lead-lag controls, which means that the position

tracking ability of this robust control is very well. The control signal required

is shown in Figure 6.5. The effort (voltage) needed is small and easy to obtain.

Figure 6.6 shows the magnitude of the difference in position tracking error. The

overall values are smaller than those in systems with PID and Lead-lag controls.

At steady state, the values are of the order 10−21m. The small values indicate that

the inverse dynamics robust controller is effective at reducing the effect of van der
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Waals force on the system. Thanks to the nonlinear control term ∆v, it provides

the ability to eliminate the van der Waals force effect. With the term, the position

tracking is improved.

6.5 Discussion

Robustness is an important capability of this control algorithm. It is not only

shown by the low position tracking error, but also can be seen from the transient

response where the tracking error is very small. Compared to the result of PID

and Lead-lag control, it can deal better with the varying van der Waals force

throughout the motion. In this robust control method, stability is ensured by the

Lyapunov equation. Since the Lyapunov stability test is included as a part of the

design procedure, if a control law is derived successfully, the result is guaranteed

to be stable. This is not given in either the PID or Lead-lag control.

One difference between the inverse dynamics robust control and the linear

control methods is the van der Waals force involved in the design. In linear control,

the system is assumed to be without van der Waals force so that the system is

linear and the control procedure can be carried out. After getting the control

gains, the van der Waals force is added in the system for analysis. However, in the

nonlinear control approach, the van der Waals force is treated as a part of control

law. Although the van der Waals force formula is not used explicitly, it is modelled

as an uncertainty term in the control law. The estimated upper bound helps the

derivation of the extra control term which is used to cancel the van der Waals

force. The result shows that this method does improve the position tracking error

and reduces the influence of van der Waals force. There is no chattering problem

occurring in the control. It is probably because of the simple structure of the model.
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In short, compared to the linear controls, the inverse dynamics robust control

gives better system response and low position tracking error. It is also effective at

reducing the van der Waals force effect on the system. Nevertheless, this method

may be harder to implement due to the existence of the nonlinear ∆v. The non-

linear equation may cause discontinuity in the control signal that can result in

application problems. This problem should be taken care of when it is applied to

the hardware.
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Figure 6.1: Simulation model of inverse dynamics robust control system
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Figure 6.2: Simulation model of control subsystem

Figure 6.3: Simulation model of plant subsystem
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Figure 6.4: Position tracking error of inverse dynamics robust controlled system

with trajectory input
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Chapter 7
Conclusions

This thesis has investigated various control approaches on a micromanipulation

system under the influence of van der Waals force. It also examined the ability

of the control laws in attenuating the effect of van der Waals force on the

system. A micromanipulation system which exhibits the significant effect of

van der Waals force has been modelled for simulation. Results of simulations

using three distinct control laws – PID control, lead-lag compensator and inverse

dynamics robust control were examined. The task of the system was to move

an object from an initial distance to ‘touch’ another object. With a planned

trajectory, the simulation has shown that van der Waals force changes with the

system motion, and the position tracking error becomes significant due to this force.

7.1 Control Issue

PID and lead-lag compensator are designed to control the system. Two simulation

modes, with van der Waals force input and without van der Waals force input,

are run to investigate the controller performance. The difference between the

position tracking errors shows the effectiveness of the controller in attenuating the

van der Waals force effect. The result shows that the PID controller is better in

71



Chapter 7. Conclusions 72

attenuating the force effect in steady state whereas the lead-lag compensator is

good at the transient response.

Since the dynamics of the manipulation system with van der Waals force is

nonlinear, a nonlinear control is considered. The system is treated as a single

degree freedom robotic system. The inverse dynamics robust control law is derived

which takes into account the van der Waals force and consider realistic parameter

values. The simulation results show that the position tracking error is very low.

The difference of the position tracking errors between the two simulation modes

is smaller than the value by lead-lag compensator. When compared to PID, it is

lower in transient response but larger in steady state. Nevertheless, the values

are kept at a very low amount, at the order of 10−21 which is acceptable. In

general, this nonlinear control law is effective in attenuating the effect of van

der Waals force and it is able to give very low tracking error. Furthermore, the

Lyapunov equation in the robust control is able to ensure the stability of the

system response. Another advantage is the robustness of the control law which

gives the ability to cope with the varying van der Waals force. In designing the

robust control, van der Waals force is modelled as an uncertainty which is used

to derived the additional control signal. With this extra control, the results show

that the control is better in dealing with the van der Waals force.

Although the result of the inverse dynamics robust control is better in overall

compared to the PID and lead-lag control, one problem remained is the real-time

computation of the control signal. The control signal of the robust control law may

be chattering and discontinuous since it consists of a nonlinear equation for ∆v

(Eq 6.26). This makes its implementation harder than PID and lead-lag control.

Hence, to obtain a good practical result, removing the chattering of control signal
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should be the next step and this could be a future research subject.

7.2 Contributions

This thesis helps to lay out the foundation for understanding the influence of van

der Waals force on micromanipulation system and control effect on the system

with the interference of the van der Waals force. It pointed out that the existence

of the van der Waals force can disturb the position tracking of the system. It also

shows that if the van der Waals force is considered in the control law, the control

law has a better ability in attenuating the effect of van der Waals force on the

system. This has been shown in the inverse dynamics robust control. The control

also help in improving the accuracy of position tracking in micromanipulation

system.

The simulation of the long range effect of microscopic force on micromanip-

ulation system can be a reference for future design. It can be used for other

micro-system such as system with different task and multiple degree of freedom.

The control law derived in the Chapter 6 provides a new aspect in controlling

the micromanipulation system. Continuing from the control law, more advanced

control method may be developed.

7.3 Future Research Possibilities

(i). Considering other microscopic force. This project only considers the

van der Waals force and assuming other microscopic forces are insignificant.

However, when the working environment condition is not perfect, such as if

the humidity is not zero, other force like surface tension and electrostatic

forces may present and involve in the system. Further investigation may be
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carried out on the effect of other microscopic forces on the micromanipulation

system.

(ii). Experimental work. The work in the thesis may be put into practical

experiments. The experimental results can then be compared with the sim-

ulation results. Thus, the validity of the simulation results can be checked.

Also, further possible problem of the work in the thesis and micromanipula-

tion may be observed.

(iii). Considering other system setting. In this thesis, a simple one degree of

freedom system is used. Multiple degree of freedom may be developed for

investigation. Besides, other task of system other than transferring objects

may be considered such as retreating objects from a pile, pushing an object

passing others, etc.
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