354 research outputs found

    Modeling Dominance in Group Conversations using NonVerbal Activity Cues

    Get PDF
    Dominance - a behavioral expression of power - is a fundamental mechanism of social interaction, expressed and perceived in conversations through spoken words and audio-visual nonverbal cues. The automatic modeling of dominance patterns from sensor data represents a relevant problem in social computing. In this paper, we present a systematic study on dominance modeling in group meetings from fully automatic nonverbal activity cues, in a multi-camera, multi-microphone setting. We investigate efficient audio and visual activity cues for the characterization of dominant behavior, analyzing single and joint modalities. Unsupervised and supervised approaches for dominance modeling are also investigated. Activity cues and models are objectively evaluated on a set of dominance-related classification tasks, derived from an analysis of the variability of human judgment of perceived dominance in group discussions. Our investigation highlights the power of relatively simple yet efficient approaches and the challenges of audio-visual integration. This constitutes the most detailed study on automatic dominance modeling in meetings to date

    Modeling dominance effects on nonverbal behaviors using granger causality

    Get PDF
    In this paper we modeled the effects that dominant people might induce on the nonverbal behavior (speech energy and body motion) of the other meeting participants using Granger causality technique. Our initial hypothesis that more dominant people have generalized higher influence was not validated when using the DOME-AMI corpus as data source. However, from the correlational analysis some interesting patterns emerged: contradicting our initial hypothesis dominant individuals are not accounting for the majority of the causal flow in a social interaction. Moreover, they seem to have more intense causal effects as their causal density was significantly higher. Finally dominant individuals tend to respond to the causal effects more often with complementarity than with mimicry

    Investigating Social Interactions Using Multi-Modal Nonverbal Features

    Get PDF
    Every day, humans are involved in social situations and interplays, with the goal of sharing emotions and thoughts, establishing relationships with or acting on other human beings. These interactions are possible thanks to what is called social intelligence, which is the ability to express and recognize social signals produced during the interactions. These signals aid the information exchange and are expressed through verbal and non-verbal behavioral cues, such as facial expressions, gestures, body pose or prosody. Recently, many works have demonstrated that social signals can be captured and analyzed by automatic systems, giving birth to a relatively new research area called social signal processing, which aims at replicating human social intelligence with machines. In this thesis, we explore the use of behavioral cues and computational methods for modeling and understanding social interactions. Concretely, we focus on several behavioral cues in three specic contexts: rst, we analyze the relationship between gaze and leadership in small group interactions. Second, we expand our analysis to face and head gestures in the context of deception detection in dyadic interactions. Finally, we analyze the whole body for group detection in mingling scenarios

    Exploiting observers' judgements for nonverbal group interaction analysis

    Get PDF
    Incorporating annotators' knowledge into a machine-learning framework for detecting psychological traits using multimodal data is an open issue in human communication and social computing. We present a model that is designed to exploit the subjective judgements of multiple annotators on a social trait labeling task. Our two-stage model first estimates a ground truth by modeling the annotators using both the annotations and annotators’ self-reported confidences. In the second stage, we train a classifier using the estimated ground truth as labels. We also define ways to verify the consistency of our model and validate it using annotations and nonverbal cues for a dominance estimation task in a group interaction scenario on the publicly available DOME corpus, in addition to synthetically generated data. Our models give satisfactory results, outperforming the commonly used majority voting as well as other approaches in the literature

    Identifying Emergent Leadership in Small Groups using Nonverbal Communicative Cues

    Get PDF
    This paper addresses firstly an analysis on how an emergent leader is perceived in newly formed small-groups, and secondly, explore correlations between perception of leadership and automatically extracted nonverbal communicative cues. We hypothesize that the difference in individual nonverbal features between emergent leaders and non-emergent leaders is significant and measurable using speech activity. Our results on a new interaction corpus show that such an approach is promising, identifying the emergent leader with an accuracy of up to 80

    Computational Modeling of Face-to-Face Social Interaction Using Nonverbal Behavioral Cues

    Get PDF
    The computational modeling of face-to-face interactions using nonverbal behavioral cues is an emerging and relevant problem in social computing. Studying face-to-face interactions in small groups helps in understanding the basic processes of individual and group behavior; and improving team productivity and satisfaction in the modern workplace. Apart from the verbal channel, nonverbal behavioral cues form a rich communication channel through which people infer – often automatically and unconsciously – emotions, relationships, and traits of fellowmembers. There exists a solid body of knowledge about small groups and the multimodal nature of the nonverbal phenomenon in social psychology and nonverbal communication. However, the problem has only recently begun to be studied in the multimodal processing community. A recent trend is to analyze these interactions in the context of face-to-face group conversations, using multiple sensors and make inferences automatically without the need of a human expert. These problems can be formulated in a machine learning framework involving the extraction of relevant audio, video features and the design of supervised or unsupervised learning models. While attempting to bridge social psychology, perception, and machine learning, certain factors have to be considered. Firstly, various group conversation patterns emerge at different time-scales. For example, turn-taking patterns evolve over shorter time scales, whereas dominance or group-interest trends get established over larger time scales. Secondly, a set of audio and visual cues that are not only relevant but also robustly computable need to be chosen. Thirdly, unlike typical machine learning problems where ground truth is well defined, interaction modeling involves data annotation that needs to factor in inter-annotator variability. Finally, principled ways of integrating the multimodal cues have to be investigated. In the thesis, we have investigated individual social constructs in small groups like dominance and status (two facets of the so-called vertical dimension of social relations). In the first part of this work, we have investigated how dominance perceived by external observers can be estimated by different nonverbal audio and video cues, and affected by annotator variability, the estimationmethod, and the exact task involved. In the second part, we jointly study perceived dominance and role-based status to understand whether dominant people are the ones with high status and whether dominance and status in small-group conversations be automatically explained by the same nonverbal cues. We employ speaking activity, visual activity, and visual attention cues for both the works. In the second part of the thesis, we have investigated group social constructs using both supervised and unsupervised approaches. We first propose a novel framework to characterize groups. The two-layer framework consists of a individual layer and the group layer. At the individual layer, the floor-occupation patterns of the individuals are captured. At the group layer, the identity information of the individuals is not used. We define group cues by aggregating individual cues over time and person, and use them to classify group conversational contexts – cooperative vs competitive and brainstorming vs decision-making. We then propose a framework to discover group interaction patterns using probabilistic topicmodels. An objective evaluation of ourmethodology involving human judgment and multiple annotators, showed that the learned topics indeed are meaningful, and also that the discovered patterns resemble prototypical leadership styles – autocratic, participative, and free-rein – proposed in social psychology

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Modeling Group Dynamics for Personalized Robot-Mediated Interactions

    Full text link
    The field of human-human-robot interaction (HHRI) uses social robots to positively influence how humans interact with each other. This objective requires models of human understanding that consider multiple humans in an interaction as a collective entity and represent the group dynamics that exist within it. Understanding group dynamics is important because these can influence the behaviors, attitudes, and opinions of each individual within the group, as well as the group as a whole. Such an understanding is also useful when personalizing an interaction between a robot and the humans in its environment, where a group-level model can facilitate the design of robot behaviors that are tailored to a given group, the dynamics that exist within it, and the specific needs and preferences of the individual interactants. In this paper, we highlight the need for group-level models of human understanding in human-human-robot interaction research and how these can be useful in developing personalization techniques. We survey existing models of group dynamics and categorize them into models of social dominance, affect, social cohesion, and conflict resolution. We highlight the important features these models utilize, evaluate their potential to capture interpersonal aspects of a social interaction, and highlight their value for personalization techniques. Finally, we identify directions for future work, and make a case for models of relational affect as an approach that can better capture group-level understanding of human-human interactions and be useful in personalizing human-human-robot interactions
    • …
    corecore