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Abstract

Every day, humans are involved in social situations and interplays, with the goal of

sharing emotions and thoughts, establishing relationships with or acting on other

human beings. These interactions are possible thanks to what is called social intel-

ligence, which is the ability to express and recognize social signals produced during

the interactions. These signals aid the information exchange and are expressed

through verbal and non-verbal behavioral cues, such as facial expressions, gestures,

body pose or prosody. Recently, many works have demonstrated that social signals

can be captured and analyzed by automatic systems, giving birth to a relatively

new research area called social signal processing, which aims at replicating human

social intelligence with machines. In this thesis, we explore the use of behavioral

cues and computational methods for modeling and understanding social interac-

tions. Concretely, we focus on several behavioral cues in three specific contexts:

first, we analyze the relationship between gaze and leadership in small group inter-

actions. Second, we expand our analysis to face and head gestures in the context of

deception detection in dyadic interactions. Finally, we analyze the whole body for

group detection in mingling scenarios.
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Chapter 1

Introduction

Although humans are not the only social animals on earth, our interactions are

among the most complex, nuanced and varied in the animal kingdom. Every day we

are involved in social situations with other human beings, with the goal of sharing our

emotions and thoughts, establishing relationships with and acting (both physically

and mentally) on other human beings for different purposes. These interactions are

made possible thanks to our bodies and their ability to express and perceive what

are called as em social signals [Pantic et al., 2011, Mehu and Scherer, 2012, Brunet

and Cowie, 2012].

In recent years, social signals have been described in different ways. One of the

first working definitions [Pantic et al., 2011] defines them as “[...] communicative

or informative signals that, either directly or indirectly, provide information about

social facts, that is, about social interactions, social emotions, social evaluations,

social attitudes, or social relations”. In [Mehu and Scherer, 2012], social signals are

defined as “acts or structures that influence the behaviour or internal state of other

individuals”. In [Brunet and Cowie, 2012], they are seen as “actions whose function

is to bring about some reaction or to engage in some process”. Even though existing

definitions might appear different, they all share the common idea that social signals

consist of observable behaviors people display while interacting with each other, and

1



2 Chapter 1. Introduction

that they produce changes in individuals [Burgoon et al., 2017].

Concretely, social signals are expressed through the use of non-verbal behavioral

cues, which can be described as temporal changes in neuromuscular and physio-

logical activities, or as physical characteristics and configurations. Behavioral cues

are usually grouped in five classes [Vinciarelli et al., 2009]: physical appearance,

gesture and posture, face and eyes behavior, vocal behavior and space and environ-

ment. Physical appearance includes characteristics such as height, body shape, skin

and hair color, clothes and ornaments, encoding social signals such as attractive-

ness and personality. Body gestures and posture are known indicators of emotions

(such as happiness, sadness or fear) [Coulson, 2004], attitude towards social situa-

tions [Richmond et al., 1991, Scheflen, 1964] and social information (such as status

and dominance [McArthur and Baron, 1983]). Face and eyes behavioral cues in-

clude facial expressions and gaze. They are, perhaps, the most expressive cues when

emotions are conveyed, and several studies [Ambady and Rosenthal, 1992, Grahe

and Bernieri, 1999] show that they play an important part when involved in social

perception. Vocal nonverbal behaviors surround and influence the message that is

being actually said. They include voice quality (e.g. pitch, tempo and energy),

linguistic vocalizations (non-words such as “ehm” or “uhm”), non-linguistic vocal-

izations (e.g. laughing, crying, etc.), silence and turn taking. Finally, interpersonal

space and spacial arrangements between people (space and environment) provide

clues about mutual relationships and personalities.

Given the bidirectional nature of interactions, humans have the ability not only

to produce social signals, but also to detect and understand those coming from

other humans, exhibiting what social psychology calls social intelligence [Thorndike,

1920, Ambady and Rosenthal, 1992, Albrecht, 2006]. This ability has always been

considered exclusive to human beings, but recent technological advancements have

shown that social signals can be captured with sensors (such as cameras and micro-

phones) and analyzed using computer vision and machine learning techniques. This

technological leap led to the idea that social intelligence could be replicated with



1.1. Motivation 3

machines, giving birth to the research area called socially-aware computing [Pent-

land, 2004], or social signal processing (SSP) [Pentland, 2007]. The main problems

SSP focuses on are three: the modeling of the laws that govern the use of social

signals, the analysis of social signals and their synthesis through the use of virtual

and physical means (e.g. virtual assistants and social robots). This thesis addresses

the analysis problem and focuses on non-verbal behavior based on gaze, face and

body.

1.1 Motivation

The rate at which data about humans - and the world we interact with - is being

generated (in the form of images, text and audio) has quickly made unpractical its

manual inspection and analysis. Although we are still far away from the goal of

replicating social intelligence with machines, computers are faster than humans at

processing huge amounts of information, and able to detect patterns that we might

easily miss [Pfister et al., 2011]. In this context, SSP can be applied as a tool

that can aid, not substitute, humans in the analysis and interpretation of this huge

amount of data (as already seen in several domains, such as surveillance [Cristani

et al., 2011, Ricci et al., 2015, Setti et al., 2015] or multimedia tagging [Pantic and

Vinciarelli, 2009, Soleymani and Pantic, 2012]). Our research furthers the work done

in this area.

More specifically, the applications we tackled, i.e. emergent leadership, deception

and group detection, have all potential applications in real world scenarios. When a

job candidate is applying for a managing role, recruiters might look for a leader-type

personality. This trait is usually assessed via specific kinds of interviews and tests,

all of which are executed manually by humans. Having systems that automatically

provide additional information can support the hiring process and, ideally, reduce

human bias. The same considerations hold true for deception detection, which
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has been subject of study in social psychology for many decades [DePaulo et al.,

2003, Ekman and Friesen, 1969, Zuckerman et al., 1981]: automatic systems able to

detect patterns and cues that even a trained observer would hardly notice, might be

able to help social psychologists find correlations between specific human behaviors

and deception. Automatic group detection is another useful tool that could benefit

different activities, from surveillance, where automatic retrieval of video segments

showing groups of people could speed up the video analysis, to the design and

planning of public areas, where understanding where groups of people gather more

frequently could help exploiting the available space in a better way.

1.2 Thesis Objective

The goal of our work is to advance research aimed at understanding the relationship

between social signals, nonverbal behavioral cues and social interactions. We start

by focusing on a single important cue, gaze; then, in a ”zoom out” approach, after

shifting the focus to the cues generated by the face, we expand the analysis to the

whole body. Specifically, we focus on nonverbal behavioral cues in three different

scenarios: first, we analyze the relationship between emergent leadership and gaze

in small groups of people. Second, we analyze the relationship between deception,

face and head gestures in dyadic interactions. Finally, we exploit whole body poses

to detect groups of interacting people in crowded mingling events.

1.3 Contributions

We first devised a novel method for detecting emergent leaders in meeting environ-

ments with small groups of people. Emergent leadership detection is not a novel

problem and many existing works devised effective frameworks using multimodal

(audio/video) [Sanchez-Cortes et al., 2012b, Sanchez-Cortes et al., 2012a, Sanchez-
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Cortes, 2013] or only audio based features [Hung et al., 2011]. However, there might

be scenarios where audio information is not available and the only way to analyze

the social interaction is by using visual information. We, thus, present a novel de-

tection method using features based on gaze (modeled in terms of visual focus of

attention, VFOA). We also introduce a new dataset and present a comprehensive

comparison of several VFOA methods involving imbalanced dataset classification

methods (a problem never considered for leadership detection).

Second, we explored the use of several face-based features for deception detection.

Existing works already used nonverbal features extracted from face cues, but they

were extracted manually [Pérez-Rosas et al., 2015a] and based on handcrafted fea-

tures [Mimansa et al., 2016] (such as facial action units). Our proposed work is

the first method that automatically extracts learned features based on several deep

neural networks architectures. Additionally, for the first time in deception detec-

tion research, we employ a feature fusion technique based on multi-view learning

[Xu et al., 2013], which is more effective than simple feature concatenation used in

existing works.

Finally, we extracted features for group detection in mingling events based on 2D and

3D body poses. Given the crowded nature of these scenarios, severe body occlusions

are always present, leading to lower quality features and detection results. We

devised a novel reconstruction algorithm that, given an incomplete 2D body pose,

outputs a complete one. Results show increased detection performance.

1.4 Publications

The following papers have been published in literature:

• Beyan C., Carissimi N., Capozzi F., Vascon S., Bustreo M., Pierro A., Becchio

C., Murino V., ”Detecting emergent leader in a meeting environment using
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nonverbal visual features only”. In Proceedings of the 18th ACM International

Conference on Multimodal Interaction 2016 Oct 31 (pp. 317-324). ACM.

• Carissimi N., Beyan C., Murino V., ”A Multi-View Learning Approach to

Deception Detection”. In Automatic Face & Gesture Recognition (FG 2018),

2018 13th IEEE International Conference on 2018 May 15 (pp. 599-606).

IEEE.

• Carissimi N., Rota P., Beyan C. Murino V., Filling the Gaps: Predicting Miss-

ing Joints of Human Poses Using Denoising Autoencoders, HBUGEN Work-

shop, European Conference on Computer Vision (ECCV) 2018.

1.5 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 reviews the related work. After an introduction on SSP, we present the

related work on the specific topics of leadership detection, deception detection and

group detection.

We start our analysis by focusing on gaze in Chapter 3, where we examine its

relationship to emergent leadership in face-to-face small groups interactions. We

first introduce our dataset and then describe features and methodology, concluding

with results and discussions.

We expand to face and deception detection in Chapter 4. We first briefly describe

the multimodal dataset we used and we explore the various features extracted from

the face. We then describe the learning algorithms used in our experiments, and we

report the obtained results and our conclusions.

In Chapter 5 we broaden our analysis to the whole body, describing the pipeline from

feature extraction to the final group detection. Results and discussion conclude the

chapter.
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Finally, in Chapter 6 we summarize the contributions of this thesis, discuss about

limitations and suggest possible future work.



Chapter 2

Related Work

In this Chapter we review the related work, focusing on the chosen application

contexts of emergent leadership detection in Section 2.1, deception detection in

Section 2.2 and group detection in Section 2.3.

2.1 Leadership

In a social context, a leader is a person who has authority and power over a group of

people, and can exert dominance, influence and control over them [Sanchez-Cortes

et al., 2012b]. Similarly, an emergent leader (EL) is a person who naturally shows

these characteristics among a group [Sanchez-Cortes et al., 2012b].

Automatically detecting emergent leaders in a meeting environment is a recent prob-

lem among SSP topics. The existing studies can be grouped according to i) the

modality nonverbal features are extracted from, i.e. audio [Feese et al., 2011, Hung

et al., 2011], video (such as our work) or audio and video fusion [Sanchez-Cortes

et al., 2012b, Aran and Gatica-Perez, 2010, Jayagopi et al., 2009], ii) the type of

information extracted, e.g. head and body activity [Sanchez-Cortes et al., 2012b] or

visual focus of attention (VFOA) from head pose [Hung et al., 2008, Sanchez-Cortes,

8
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2013], iii) the leader evaluation method, i.e. detecting only the emergent leader (or

the dominant person) [Sanchez-Cortes, 2013], or detecting the most and the least

emergent leaders [Aran and Gatica-Perez, 2010, Jayagopi et al., 2009].

In [Sanchez-Cortes et al., 2012b], leadership detection in a meeting environment was

investigated using nonverbal audio and video based features. The emergent lead-

ership was measured using the concepts of dominance, influence and control. The

main assumptions of that study [Sanchez-Cortes et al., 2012b] were that a socially

dominant person receives more frequent and longer lasting glances by other people,

looks at others while speaking, uses more gestures, is more talkative and has longer

speech turns. Nonverbal audio features based on speaking turn duration and visual

features extracted from head and body activities were defined accordingly. Unlike

our study, head pose was not used. In [Feese et al., 2011] the leadership styles

“authoritarian” and “individually considerate” were estimated using nonverbal fea-

tures extracted from audio, such as average single speaking energy, total speaking

length and change in speaking turn duration. The prediction of leadership style was

performed using logistic regression using only the features obtained from leaders,

meaning that not all participants were analyzed, which can be seen as a drawback.

Another study, which only uses audio to detect the dominant person in a meeting

environment, was presented in [Hung et al., 2011]. Speaker diarization was used

and the results showed that dominance estimation is robust to diarization noise. In

[Aran and Gatica-Perez, 2010] and [Jayagopi et al., 2009], dominance in group con-

versation was investigated using short meeting segments. Different from our work,

[Aran and Gatica-Perez, 2010] used scenario meetings where a specific role was as-

signed to each participant. In both studies [Aran and Gatica-Perez, 2010, Jayagopi

et al., 2009], the most dominant and the least dominant people were identified in-

dependently using different annotator agreements, i.e. full agreement and majority

agreement (in contrast, we classified the most emergent and the least emergent

person with a common model). Body motion was used to extract nonverbal fea-

tures from visual activity. A ranking procedure based on Gaussian Mixture Model
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(GMM) using ranked Support Vector Machine (SVM) scores was applied (whereas

we utilize SVM and its variations). The results in [Aran and Gatica-Perez, 2010]

showed that in general visual features were not successful to estimate the dominance,

while their fusion with audio features usually performed better than audio only. In

[Jayagopi et al., 2009], on the contrary, audio-visual fusion did not yield any better

performance than audio-only features.

A study using head pose to obtain VFOA to find the visual attention for dominance

estimation was presented in [Hung et al., 2008]. In that study [Hung et al., 2008],

VFOA for a person was labeled manually (in contrast to our study, in which VFOA

is estimated automatically) and also detected automatically using a Bayesian for-

mulation. As nonverbal features, the total “received visual attention” and “looking

while speaking” features were used. The results, using both manually and automat-

ically extracted cues, showed that audio cues were more effective than visual cues,

but the latter could still be useful in the absence of audio sensors.

The most similar study to ours is [Sanchez-Cortes, 2013], since it aimed to detect

the emergent leaders in a meeting environment and used nonverbal video-based

features (although combined with nonverbal audio based features as well) extracted

from VFOA. In that study [Sanchez-Cortes, 2013], emergent leadership detection

performance was evaluated in terms of the variables “leadership”, “dominance”,

“competence” and “liking”, while in our evaluation we used human annotations and

social psychology questionnaires. Results showed low VFOA prediction accuracy

(42%), which might be the reason for the poor performance (except dominance) of

nonverbal visual features compared to nonverbal audio features.

In our study (Chapter 3), we use head pose to approximate gaze and predict the

VFOA. The nonverbal visual features are defined using VFOA, which is estimated

automatically with a supervised method. The most and the least emergent leaders

in short meeting segments are estimated using SVM and its variants. Leadership

annotations of human observers (based on full and majority agreement) are used to
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learn and evaluate the leadership model. The efficiency of proposed nonverbal visual

features are evaluated based on human annotations and furthermore validated by

the social psychology questionnaires.

2.2 Deception

Deception and its detection is an ongoing research subject, based on the belief that

there exist specific cues that liars exhibit and cannot hide. As Freud wrote in one

of his works, “He who has eyes to see and ears to hear can convince himself that

no mortal can keep a secret. If his lips are silent, he chatters with his fingertips;

betrayal oozes out from every pore.” [Freud, 1959].

Two main types of cues are explored for the detection process: behavioral and

physiological cues. One of the most common devices used to capture physiological

cues from a person is the polygraph, which measures respiration, skin conductance,

blood volume and pulse rate. The oldest test used to assess deception through

physiological responses (even though its unreliableness was shown in many studies,

like [Lykken, 1985]) is the relevant-irrelevant test [Larson et al., 1932], in which

the polygrapher asks a series of relevant (regarding the deception) and irrelevant

questions to the suspect and his/her physiological responses to the different kinds of

questions are compared. More sophisticated devices, like the electroencephalogram,

were also used to measure brain activity during specific tests that should solicit

specific memory activity [Gamer, 2014].

Recently, several studies focused on automated deception detection based on behav-

ioral cues. One of the first works on multimodal deception detection is [Jensen et al.,

2010], where the analyzed dataset consisted of audio and video recordings of face

to face interviews in which people were instructed to lie about a fake crime (mock

theft). Gesture and posture behavioral cues (e.g. head and hands pose, body pos-

ture) were extracted from video, vocal behavioral cues (e.g. voice pitch and energy,
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turn takings, speech time) were extracted from audio and verbal behavioral cues

(e.g. pleasantness, emotiveness, etc.) were extracted from analysis of interviews

transcription. The detected verbal and non-verbal cues were then used in two tests:

in the first one, behavioral cues were used to predict meta-communicative meanings

(i.e. involvement, dominance, tenseness and arousal), which were, in turn, used

to infer the level of deception/truthfulness (these relationships were modelled by

applying a modified Brunswikian lens model [Scherer, 1982]). In the second test,

the behavioral cues were used to directly predict deception. The second test led

to the most significant results. All the features, both verbal and nonverbal, were

concatenated in a unique vector and used to build a model through discriminant

analysis.

Recently, [Pérez-Rosas et al., 2015b] and [Pérez-Rosas et al., 2015a] presented a

novel dataset containing video clips showing real life trial hearings and interviews

collected from the web, where deception was, for the first time, not the result of an

imposed role play, but, instead, a spontaneous act in a context with high stakes.

Similarly to the work of [Jensen et al., 2010], they used verbal and nonverbal cues

to detect deception. Verbal cues consisted in uni-grams and bi-grams obtained from

the bag-of-words representation of the recordings transcriptions, psycholinguistic

features based on the Linguistic Word Count (LIWC) lexicon [Pennebaker et al.,

2001], and syntactic complexity features [Lu, 2010]. Nonverbal cues included facial

displays and hand gestures manually annotated using the MUMIN coding scheme

[Allwood et al., 2007]. Features were concatenated and used to build classifiers

with decision trees and random forests. After executing feature ablation studies,

they obtained the highest classification accuracy by using only facial displays and

random forest classifiers.

Another form of deception that gained growing attention is the written deception.

It recently became subject of study thanks to the increasing use of internet and the

web as interaction and self-expression tools, and the consequent availability of huge

amount of data that can be easily accessed and analyzed. Deception can be used in
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clickbait news, which are sensational and often false news with the only purpose of

drawing more visitors to increase revenue from advertisements [Chen et al., 2015].

Another example are false reviews that can help promoting a hotel or damage a

competitors restaurant [Ott et al., 2011]. It became ever so important to discern

truthful from deceptive content. Even though data is unimodal (text), different

kinds of linguistic features are used for learning and classifying.

In [Pérez-Rosas and Mihalcea, 2015], Perez-Rosas and Mihalcea focused on detection

of deception in open domain, i.e. not related to any specific topic. They collected

statements from volunteers, consisting of a balanced number of lies and truths,

without enforcing any specific topic. After extracting numerous linguistic features

(uni-grams, syntax, semantic, readability and syntactic complexity), they combined

different sets by concatenating them in a unique vector and built a Support Vec-

tor Machine (SVM) classifier. The highest accuracy was achieved with syntactic

features.

Perez-Rosas and Mihalcea in [Pérez-Rosas and Mihalcea, 2014] also explored decep-

tion in different cultures and languages. As in [Pérez-Rosas and Mihalcea, 2015],

different statements were collected from volunteers, but this time they were selected

from three specific different countries (USA, India and Mexico). Statements were

written in English and Spanish, and specific topics were enforced. Only uni-grams

and semantic features were extracted and used to build SVM, and several tests were

executed, comparing classifiers accuracy within-culture and cross-culture.

In [Ott et al., 2011], deceptive opinion spam is analyzed. Specifically, truthful posi-

tive reviews for popular hotels were collected from a famous website, and deceptive

positive reviews for the same hotels were created and gathered using Amazon Me-

chanical Turk. With a linear SVM and different combinations of n-grams, syntactic

and psycholinguistic features, they obtained a classification accuracy of almost 90%.

Generally, all papers in literature employed handcrafted features. To the best of our

knowledge, this is the first work that focuses on learned face-based features, showing
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improved classification performance. Additionally, papers in literature concatenated

features extracted from different modalities into one single vector which was used to

train models (e.g. SVM, random forests). However, this concatenation is not always

statistically meaningful, because each group can have different properties [Kincaid

et al., 1975]. We exploit this heterogeneity to build better models by employing

multi-view learning, where each feature group corresponds to a view, each view is

modelled by a function and all the functions are jointly optimized. We show that,

by employing multi-view learning, we can improve the classification accuracy while

getting also insights about the importance of the features.

2.3 Groups

Social gatherings are a common human activity which consist of individuals inter-

acting with each other in a shared space. The phenomenon has received growing

attention from the computer vision community in the last years, and its analysis

has numerous potential applications in surveillance, human-robot interaction and

video interpretation and retrieval. An example of social gathering are free standing

conversational groups (FCGs), shown in Figure 2.1. FCGs happen in an uncon-

strained way and, contrary to other types of meetings (e.g. round-table ones), they

are dynamic by nature, increasing and decreasing in size, moving and splitting.

This makes them inherently difficult to analyze. One approach to detect FCGs is

to use f-formations [Kendon, 1990], a concept coming from social psychology and

based on proxemics, which provides FCGs with geometrical properties. Formally,

f-formations are defined as socio-spatial organizations of people in what is called

p-space, surrounding a shared convex area called o-pace, which everyone is oriented

and has equal access to (Figure 2.2, top). Any other person staying outside the

p-space (in the area called r-space) does not belong to the f-formation. Typical

spacial arrangements of people are shown in Figure 2.2 (bottom).
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Figure 2.1: An example of free standing conversational groups. [Cristani et al.,
2011].

Many works tried to tackle the problem of detecting f-formations, some of them

focusing on feature extraction (i.e. distance, location and head/body orientation)

and others focusing on the actual grouping of people. One of the pioneering works,

[Cristani et al., 2011] proposed an unsupervised method which takes as input loca-

tions and head orientations and detects f-formations by employing a voting strategy

based on a generalized Hough transform. [Setti et al., 2013b] extended [Cristani

et al., 2011] by devising a multi-scale Hough transform, with a different voting

strategy for different group sizes, modeling small and large aggregations. [Hung and

Kröse, 2011] proposed a dominant set approach based on a learned affinity matrix

which encodes relationships among persons. [Vascon et al., 2014] used game theory

and probability distributions. Affinity between pairs of people is expressed as a

distance between distributions over the most plausible oriented region of attention,

while clustering is executed multi-payoff evolutionary game theory. [Setti et al.,

2015] proposed an approach which iteratively assigns individuals to F-formations

using a graph-cut based optimization, and updates the centres of the f-formations,

pruning unsupported groups. [Ramı́rez et al., 2016] devised two algorithms based

on a learn and forget strategy (Ebbinghaus forgetting curve [Ebbinghaus, 2013]).

Group detection was performed by clustering graph’s nodes representing people,

where edges encoded relative distance, velocity, the learn/forget function value and

the persons’ field of view (FoV). An additional thresholding step based on inter-
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Figure 2.2: Top: example of circular f-formation with relative o-, p- and r-spaces.
Bottom: other examples of f-formations configurations; vis-a-vis (left), l-shaped
(center) and side-by-side (right).

personal synchrony was performed for the final group computation. All the param-

eters were empirically set, with no learning involved. Finally, [Zhang and Hung,

2016, Zhang and Hung, 2018] presented the first attempt to detect different levels

of involvement in f-formations by using the concept of associate, defined by psy-

chologists as a person who is attached to an f-formation, but is not a full member

(i.e. he/she can be in either the p- or the r-space). Additionally, [Zhang and Hung,

2016, Zhang and Hung, 2018] learned the frustrum of attention that accounts for

spatial context.

All the previous works used precomputed features (locations and orientations). An-

other family of methods focuses on feature extraction or joint feature extraction and

group detection. [Subramanian et al., 2015] devised a semi-supervised method for

jointly learning head and body pose regressors and f-formations centers and member-

ships, by using labelled and unlabelled training data. [Alameda-Pineda et al., 2015]

dealt with the problem of estimating head and body pose in a scenario with several
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body occlusions in a robust way, by using a matrix completion approach on multi-

modal features (extracted from RGB cameras and wearable sensors). F-formations

were found using existing state-of-the-art techniques [Setti et al., 2013b, Cristani

et al., 2011, Setti et al., 2015]. [Alameda-Pineda et al., 2015] introduced also the

novel task of finding social attractors (i.e. people inside groups who attract more

attention) by counting how many times each person was looked at by the other

group members. Similarly to [Subramanian et al., 2015], [Ricci et al., 2015] pro-

posed another method for jointly learning head and body position and f-formations,

by minimizing an error function which includes ground truth orientation and dis-

tance between the centers of the f-formations voted by each subject; groups were

detected by finding f-formations implicitly, clustering voted o-space centers via an

existing clustering algorithm.

Our work focuses on feature extraction, specifically body pose and orientation. “In

the wild” free standing conversational groups scenarios present several complexities,

such as body appearance variability, difficult lighting conditions and occlusions.

Given these challenges, pose and orientation estimation tasks have always been

simplified to a classification problem, where only “orientation classes”, not real-

valued angles, are predicted. We propose a method for extracting fully articulated

3D body poses and fine grained orientations in degrees, not classes. Specifically,

we devise a novel algorithm based on autoencoders for reconstructing incomplete

2D poses caused by partial body occlusions, improving the final 2D and 3D pose

estimation.



Chapter 3

Emergent Leadership Detection by

Analyzing Gaze and Visual Focus

of Attention

Eyes are a fundamental component of human interaction. They are the primary

mean for sensing nonverbal behaviors (with the only exception of vocal cues). They

provide informative cues about our current focus of attention, whether it is a place,

an object or a person [Subramanian et al., 2010]. They can also be used to control

communication: [Jovanovic et al., 2006] showed that when a speaker is addressing

someone, he/she gazes at that person the majority of time.

In this Chapter, we analyze gaze behavior in face-to-face small groups interactions.

Specifically, we focus on the relationship between gaze and leadership and how

it can be used to predict emergent leaders using their visual focus of attention

(VFOA), which is defined as “what” or “where” a person is looking at at any specific

moment. Given the relative difficulty of accurate gaze estimation in scenarios where

the camera is not close to the face, we use the more reliable head orientation as

a proxy. We start by presenting our dataset and the data collection method we

performed, in Section 3.1. In Section 3.2 we describe how we model VFOA and the

18
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features based on it. Finally, results and conclusions are presented in Sections 3.3

and 3.4 respectively.

3.1 The Leadership Corpus

Figure 3.1: Example frames (top); seats and cameras setting (bottom).

The leadership dataset consists of 16 meeting sessions, where the longest meeting

session lasts 30 minutes and the shortest lasts 12 minutes (for a total of 393 minutes).

The sessions are composed of same gender, unacquainted four-person (in total 44

females and 20 males) with average age of 21.6 (2.24 standard deviation). The

participants are seated as given in Figure 3.1. Videos were recorded using four

frontal cameras with a resolution of 1280x1024 pixels and frame rate of 20 frame

per second and a handy-cam which was located on a side of the room to capture

the whole scene. Audio was recorded with four wireless lapel microphones, each one
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connected to person’s corresponding frontal camera (audio sample rate=16 kHz).

The participants performed one “survival task”, randomly chosen between two tasks:

“winter survival” and “desert survival” [Johnson and Johnson, 1991] which are most

common tasks about small group decision making, dominance and leadership. In a

typical survival task, participants are presented with a dramatic survival situation

in a given geographical layout (e.g., a plane crash in the desert), with some details

provided about the general conditions of the context (e.g., time of the day, nearest

town distance, etc.). Participants are then given a list of objects that are left

after the accident, and their task is to rank each of these items in the order of

importance for the survival (from the most important to the least important). A

single decision has to be taken by the group and follows a group discussion. In this

study, instructions were given verbally, the use of pen and paper was not allowed,

and the items to be ordered were 12.

3.1.1 Questionnaires

The SYstematic method for the Multiple Level Observation of Groups (SYMLOG)

[Bales, 1980, Koenigs, 1999] is a comprehensive tool designed to evaluate indi-

vidual dispositions along three bipolar dimensions: dominance versus submissive-

ness, acceptance versus non-acceptance of task orientation of established authority,

and friendliness versus unfriendliness. The SYMLOG can be used both as a self-

assessment instrument and as an instrument for external observation of a group

interaction. Before the group task, volunteer participants were asked to complete

the SYMLOG questionnaires and it was used to select the designated leaders of

the task [Hare et al., 1998]. Specifically, subjects with scores of dominance and of

task-orientation higher than the median of the sample were selected as designated

leaders. The analysis regarding the designated leader is beyond the scope of this

paper but it is worth to state that a designated leader may appear as an emergent

leader.
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Immediately after the group task, each participant was asked to rate the General

Leader Impression Scale (GLIS) [Lord et al., 1984] questionnaire. The GLIS is an

instrument designed to evaluate the leadership attitude that each member displays

during a group interaction. It is a 5 item scale which asks participants to rate the

other members of the group on their contribution to the group’s overall effectiveness

on the activity. GLIS were calculated for each individual by averaging the ratings

given by the other group members.

Additionally, two independent judges observed the meetings of each group interac-

tions and rated for each participant of each session both the GLIS (called as GLIS-

Observers in this paper) (InterClassCorrelation(ICC) = 0.771; p < 0.001) and

the SYMLOG (called as SYMLOG-Observers in this paper) (dominance ICC =

0.866, task-orientation ICC = 0.569, friendliness ICC = 0.722; p < 0.001). For

SYMLOG-Observers only the dominance sub-scale of it, was used since the leader-

ship impression obtained by GLIS-Observers and dominance tend to correlate with

each other. The final scores for each participant were calculated as the average

between their ratings.

3.1.2 Data Annotation

16 meeting sessions were divided into small segments, each lasting 4, 5 or 6 minutes,

for ground truth annotation. In total, 75 meeting segments were used to analyze

the proposed EL detection algorithm rather than using the original full meetings.

The main reason for segmenting was to be able to have more data for training

and testing, in a similar way to [Jayagopi et al., 2009]. This also resulted in more

accurate ground truth annotations since people are more precise and more focused

on annotation of videos when they were shorter, as mentioned in [Ambady et al.,

2000].

Given that, psychology literature found that human observers can identify the emer-

gent leaders [Sanchez-Cortes et al., 2012b], in total 50 human observers were used to
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Emergent
Leader

Agreement
Type

Average
Agreement

Total # of
Meetings/
Out of

Most Full
Majority

1
0.73

26/75
49/75

Least Full
Majority

1
0.70

13/75
62/75

Table 3.1: Analysis of Leadership Annotations.

annotate each video segment. Each human observer annotated either 12 or 13 video

segments. Each annotator judged no more than one segment per meeting session.

During the annotation process, audio was not used in order to overcome any possible

problem that might occur due to the level of understanding of the spoken language

(similar to a recent study [Kindiroglu et al., 2014]). Annotators were requested to

judge the four participants by ranking them from 1 to 4, where 1 corresponded to

the person who exhibited the most leader behavior and 4 corresponded to the person

who exhibited the least leader behaviour. In this paper, we used the annotations

regarding the most EL and the least EL. The analysis about the annotations is

given in Table 1. As can be seen from Table 3.1.2, annotating the least EL was

more challenging than annotating the most emergent one.

3.2 Methodology

The proposed method (Figure 3.2) is divided into four parts. First, facial landmark

detection and head pose estimation are applied. Then, visual focus of attention

(VFOA) is modeled and estimated. Later, nonverbal visual features are extracted.

As a result of facial landmark detection and head pose estimation, the pan, tilt and

roll angles of a person for each video frames are obtained. Using the labeled VFOA

of a person and a supervised learning algorithm, the entire VFOA of that person

which gives the looking direction of the person is found. Finally, the nonverbal

features are extracted from VFOA and they are used to detect the most and the

least emergent leaders.
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3.2.1 Facial Landmark Detection and Head Pose Estimation

Facial landmark detection and tracking are based on the Constrained Local Model

(CLM) [Cristinacce and T.F.Cootes, 2006]. This method can be briefly summarized

as follows: first, a model of faces is built from a training set by using shape (facial

landmarks) and texture (patches around landmarks) information; then, the model

is fit to a test image through an iterative algorithm, in which, at each iteration,

the result of the correlation between the model’s patches and the patches (called

templates) sampled from the test image feature points is maximized and new feature

points are chosen accordingly for the next iteration. When the algorithm converges,

the resulting facial landmarks in 2D coordinates are converted to 3D coordinates

and used to detect the head pose (pan, tilt, roll) and position in camera space

[Baltrušaitis et al., 2013].

3.2.2 Modeling the Visual Focus of Attention

A person’s VFOA can be defined as a person, object or, more generally, any position

in the space the person is looking at [Stiefelhagen et al., 2002]. One way of inferring

the VFOA is to use the person’s eye gaze which is found by detecting and tracking the

eyes. Current eye gaze tracking techniques are still constraining [Ba and Odobez,

2006] and challenging. For instance, they require the person to be close to the

camera to track the eyes accurately [Hansen and Ji, 2010]. On the other hand, in

many studies such as [Ba and Odobez, 2006, Stiefelhagen et al., 2002, Marin-Jimenez

et al., 2011], it has been shown that the eye gaze can be estimated using the head

pose representation.

In this study, we also use the head pose representation to find the VFOA. The

pan and tilt angles are used to define the head pose which is in contrast to studies

[Stiefelhagen et al., 2002, Carletta et al., 2005] that utilized only head pan angle

while the roll angle is not used (similar to [Ba and Odobez, 2006]) since there is
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no effect of it to head direction. The VFOA of a person contains the other three

persons who are on his/her right, left or front (shown as R, L and F, respectively,

in Figure 2) and also no-one (shown as N in Figure 2) which refers to the time that

the person is not looking to any participants but somewhere else such as ceiling,

floor, door, etc. of the meeting room. It is important to highlight here that, in this

VFOA definition, all the physical locations different than any other participant are

considered as the same class.

In the literature, there are many supervised and unsupervised methods to estimate

the VFOA in a meeting environment from head pose representation [Ba and Odobez,

2006, Stiefelhagen et al., 2002]. In this paper, SVM was used to learn and predict

VFOA since it was significantly the best performing method among the compared

state of the art methods (see Section 5 for details). Before applying SVM to find the

VFOAs, we first interpolate the head pose representations using spline interpolation

which is necessary since there are frame drops in different videos belonging to same

meeting and the videos should be synchronized to be able to extract nonverbal

features.

To train the SVM classifiers (one for each of 64 frontal videos) and also to evaluate

its performance, the VFOA for a total of 25600 randomly selected frames (400

frames for each video which was determined by the confidence level=90% and margin

error=4%) were annotated by two annotators. In total 23000 frames (in average

359.4 per video with standard deviation of 46.54) were used for evaluation which were

obtained after removing differently labeled VFOAs. The VFOA annotation results

show that we have highly imbalance VFOA classes when the least represented class

is no-one which is 16% of the data. The labeled VFOA data were randomly divided

into two folds (while having totally different but the same amount of instances

from each classes) as training and validation sets and this process was repeated

for 100 times to learn the individual SVM models. As SVM model, the radial basis

kernel function (RBF) with varying kernel parameter was selected while hyper-planes

were separated by sequential minimal optimization (SMO). As stated in [Beyan and
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Fisher, 2015], SVM tended to be biased towards to well-presented class (majority

class). To handle this class imbalance problem, the cost function [Fumera and Roli,

2002] (SVM-cost), the random under sampling [Yap et al., 2014] (SVM-RUS) and

the SMOTE [Chawla et al., 2002] (SVM-SMOTE) methods were combined with

SVM. To evaluate the performance of SVMs, the geometric mean of detection rates

(see [Beyan and Fisher, 2015] for definition) were used. For each video, the method

(SVM, SVM-cost, SVM-RUS or SVM-SMOTE), performing the highest geometric

mean of the detection rates with corresponding parameters was selected to classify

the whole unlabeled head pose. This results in VFOA per person for the entire

video.

3.2.3 Nonverbal Visual Features Extraction

A fixation happens when a participant looks at another participant for a minimum

amount of time. The number of frames that can be considered to start a fixation

is called hysteresis. In our analysis, hysterisis was taken as 5 frames and all the

VFOAs were smoothed with it as a post-processing step to denoise the VFOAs

before extracting the visual non-verbal features. From the obtained VFOAs for

each person the following nonverbal features are extracted:

• totWatcher: the total number of frames that a person is being watched by

the other persons in the meeting

• totME: the total number of frames that a person is mutually looking at any

other persons in the meeting (also called mutual engagement (ME))

• totWatcherNoME: the total number of frames that a person is being watched

by any other persons in the meeting while there is no mutual engagement

• totNoLook: the total number of frames that are labeled as no-one in the

VFOA vector meaning that a person is not looking at any other persons in

the meeting
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• lookSomeOne: the total number of frames that a person looked at other

persons in the meeting

• totInitiatorME: the total number of frames to initiate the mutual engage-

ments with any other persons in the meeting

• stdInitiatorME: the standard deviation of the total number of frames to

initiate the mutual engagements with any other persons in the meeting

• totInterCurrME: the total number of frames intercurrent between the initi-

ation of mutual engagement with any other persons in the meeting

• stdtInterCurrME: the standard deviation of the total number of frames in-

tercurrent between the initiation of mutual engagement with any other persons

in the meeting

• totWatchNoME: the total number of frames that a person is looking at any

other persons in the meeting while there is no mutual engagement

• maxTwoWatcherWME: the maximum number of frames that a person is

looked at by any other two persons while that person can have a mutual

engagement with any of two persons

• minTwoWatcherWME: the minimum number of frames that a person is

looked at by any other two persons while that person can have a mutual

engagement with any of two persons

• maxTwoWatcherNoME: the maximum number of frames that a person is

looked at by any other two persons while that person can have no mutual

engagement with any of two persons

• minTwoWatcherNoME: the minimum number of frames that a person is

looked at by any other two persons while that person can have no mutual

engagement with any of two persons
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• ratioWatcherLookSOne: the ratio between the totWatcher and lookSome-

One.

In total 15 features were extracted. All features (except ratioWatcherLookSOne)

were divided by the total number of frames in a given meeting since the total number

of frames per meeting is variable. The features totWatcher, LookSomeOne and

ratioWatcherLookSOne were already used in [Sanchez-Cortes, 2013] by combining

with nonverbal audio features for EL detection in a meeting environment and also

in [Hung et al., 2008] to detect the dominant person in a meeting. To the best of our

knowledge the rest of the features were never used in a SSP study, although they

have been discussed in social psychology works related to dominance, leadership and

nonverbal behavior. In addition to these features, the total number of frames that

a person is looked by all other three persons in the meeting with/without a mutual

engagement can also be extracted. However, for our dataset, we observed that, such

a feature is not useful since there were no such a frame.

The motivation and the justification of the extracted features can be summarized

as follows [Carney et al., 2005, Hall et al., 2005]: how many times and how long i)

the EL is looked at by each person while there is no mutual engagement (ME) is

a measure of the individual coordination to the leader, ii) the EL is looked at by

the two or three members simultaneously when there is no ME is a measure of the

group coordination of the leader, and it is expected that higher values of this index

reflects the centrality of the leader, in other words, a person is looked at by another

two or three persons simultaneously without ME reflect the group behavior towards

an individual person and higher values of this feature could reflect the EL. iii) a

peer is looked at by the leader without ME reflect’s the leader’s directiveness and

correlate with the perceived efficacy of the leadership at the group level. iv) ME is a

measure of the reciprocal engagement among the participants, higher values of this

feature should reflect better leader-to-peer coordination. v) Being initiator of a ME

can be seen as a measure of the ability to attract the attention of a person and it
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is expected that having high values of being initiator reflects the emergent leader’s

directive activity.

Using the extracted nonverbal visual features, the most and the least EL for each

meeting segment were modeled and detected by the methods given in Section 3.3.

3.3 Results

In this section, we present i) the results corresponding to different VFOA detection

algorithms, ii) emergent leader (EL) detection results by different algorithms and

iii) the correlation analysis that was performed between each nonverbal feature and

the questionnaires that were given in Section 3.1.1.

3.3.1 Results of VFOA Estimation

Different than SVM and its variations (SVM-cost [Fumera and Roli, 2002], SVM-

RUS [Yap et al., 2014] and SVM-SMOTE [Chawla et al., 2002]), we applied methods

based on OTSU [Otsu, 1979], k-means and Gaussian Mixture Model (GMM) [Stiefel-

hagen et al., 2002] to model and to estimate the VFOA. These methods are briefly

summarized as follows:

OTSU [Otsu, 1979] based method. Pan and tilt angles per a frontal video

(in other words per person) were first smoothed assuming that they can vary from

−90 to 90 degrees. Then OTSU thresholding was applied to smoothed pan and tilt

angles independently. This resulted in four thresholds (two for pan angles and two

for tilt angles).

K-means based method. The median and standard deviation of the tilt angles

per frontal video were used to define the two thresholds which were obtained as

median of tilt angles ± standard deviation of tilt angles. The pan angles per frontal
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video were clustered using k-means where the number of clusters was three. This

resulted in three centers and the two thresholds were found by finding the middle

point of the two consecutive cluster centers.

GMM [Stiefelhagen et al., 2002] based method. The thresholds from tilt

angles per frontal video were obtained as given in k-means based method. Pan angles

per frontal video were modeled using GMM with three components (representing

left, right and front). The mean and covariance of components were initialized using

k-means (having three clusters) where priors were set to uniform.

For all methods, VFOAs (right, left, front and no-one) from head poses per frame

were classified as follows: A tilt value (which were obtained using the tilt angles

from a frontal video) was classified as no-one if the tilt value was out of the thresh-

olds. For OTSU and k-means, if the tilt value was between the thresholds, then

the corresponding pan value was compared with the thresholds obtained using pan

angles. If the pan value was smaller than the smallest pan threshold, the VFOA was

classified as left; if the pan value was greater than the biggest pan threshold then

the VFOA was classified as right; and finally if the pan value was between the pan

thresholds then the VFOA was classified as front. For GMM, the maximum class

probability was used to estimate the VFOA.

These methods were also combined with some pre-processing steps: 5% outlier re-

moval and smoothing (by moving average filter) which were applied before calculat-

ing the thresholds that were obtained from pan and tilt angles (applying the outlier

removal and smoothing always improved the results). All the results (average of

right, left, front and no-one detection rates) regarding VFOA estimation are given

in Table 3.3.1. As seen, SVM and its variations performed better than other meth-

ods especially to detect right, left and front. The detection rate of no-one by SVM

and its variations was also better than the rest except OTSU which on the other

hand performed very poorly to estimate the right, left and front. k-means and GMM

were also performed almost as good as SVM and its variations (for detecting right,
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Method
Detection Rate

Right Left Front No-
One

OTSU 0.44 0.53 0.55 0.60
k-means 0.75 0.87 0.79 0.10
GMM 0.73 0.77 0.62 0.10
SVM 0.88 0.86 0.67 0.39
SVM-cost 0.85 0.85 0.72 0.52
SVM-RUS 0.83 0.82 0.70 0.56
SVM-SMOTE 0.87 0.86 0.70 0.51

Table 3.2: VFOA Estimation Results.

left, and front) however their no-one detection rate was very low. On the light of

those results, as mentioned in Section 3.2.2, SVM and its variations were used to

model and estimate the VFOAs.

3.3.2 Results of Emergent Leader Estimation

The variations of SVM (all with RBF with varying kernel parameters while hyper-

planes were separated by SMO) using leave-one-out, leave-one-meeting-out and

leave-one-meeting-segment-out approaches and rank-level fusion approach (RLFA)

[Sanchez-Cortes, 2013, Aran and Gatica-Perez, 2010] using different feature groups

were used to detect the most and the least emergent leaders using the proposed

nonverbal visual features.

In Table 3.3.2, the best results for SVM (which is selected by the highest score of the

geometric mean of the detection rates) and its variations and RLFA with different

features were compared when the three classes (the most EL, the least EL and

the other persons) were considered. As variations of SVM, SVM-cost [Fumera and

Roli, 2002], SVM using the features after principal component analysis (PCA) was

applied (SVM-afterPCA), SVM-cost [Fumera and Roli, 2002] using the PCA applied

features (SVM-afterPCA-cost) and SVM which was applied using the features that

were found correlated with the questionnaires (SVM-with-CorrFea, see Section 3.3.3

for more information) were used. For SVM, only the results with leave-one-meeting-

out approach is given since all the results were similar to each other and also due
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Method
Detection Rate

Most
EL

Least
EL

Rest

SVM 0.71 0.59 0.75
SVM-cost 0.80 0.58 0.70
SVM-afterPCA 0.72 0.63 0.71
SVM-afterPCA-cost 0.79 0.63 0.64
SVM-with-CorrFea 0.67 0.62 0.72
RLFA 0.71 0.71 0.69
RLFA-with-CorrFea 0.72 0.67 0.68

Table 3.3: Emergent leader (EL) detection performances using nonverbal visual
features.

to the space limitations. Assuming that the proposed nonverbal features can be

correlated with each other which might affect the performance of SVM negatively,

PCA was applied to the features as a dimensionality reduction technique. To obtain

a useful set of components the smallest number of components that represent 90%

of the sum of all eigenvectors was used. This left five features from the defined

15 features. On the other hand, the RLFA was applied using the whole nonverbal

features and only with the features correlated with the questionnaires (RLFA-with-

CorrFea).

As can be seen in Table 3.3.2, the best performing method for the most EL detection

was SVM-cost while its least EL detection rate was the worst. Using PCA improved

the detection rate of the least EL. Applying the cost function which penalize the

misdetection of the most and the least emergent leaders more than the rest improved

the detection rate of the most EL. The best performing method to detect the least EL

was RLFA which in general performed as good as SVM and its variations although

it is an unsupervised learning algorithm (similar to the results given in [Sanchez-

Cortes et al., 2012b, Sanchez-Cortes, 2013, Jayagopi et al., 2009]). Overall, the best

performing method can be considered as the method which performs well to detect

the most EL while not performing poor in detecting the least EL and the rest as

well. With such an assumption all methods performed almost the same with ±0.02

deviation.

Different from the results given here, SVM and its variations were also applied
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Nonverbal Visual RLFA SVM-
cost

Features most least most least

totWatcher 0.71 0.68 0.74 0.55
totME 0.74 0.68 0.75 0.54
totWatcherNoME 0.68 0.68 0.76 0.54
totNoLook 0.24 0.15 0.38 0.26
lookSomeOne 0.26 0.23 0.38 0.26
totInitiatorME 0.46 0.46 0.50 0.20
stdInitiatorME 0.27 0.22 0.27 0.14
totInterCurrME 0.16 0.29 0.34 0.30
stdtInterCurrME 0.35 0.31 0.36 0.14
totWatchNoME 0.04 0.06 0.75 0.55
maxTwoWatcherWME 0.66 0.67 0.70 0.55
minTwoWatcherWME 0.60 0.60 0.59 0.50
maxTwoWatcherNoME 0.63 0.66 0.67 0.55
minTwoWatcherNoME 0.62 0.50 0.60 0.39
ratioWatcherLookSOne 0.72 0.67 0.72 0.57
Fea-[Sanchez-Cortes, 2013] 0.71 0.67 0.52 0.57

Table 3.4: Individual performance of nonverbal visual features for the most and the
least emergent leaders

using binary classes as: i) the most EL versus the rest and ii) the least EL versus

the rest. For the detection rate of the most and the least emergent leaders, the

results were very similar to the results given in Table 3.3.2 while the detection rate

of the rest were highly increased (in average 15%) no matter which cross validation

approach (leave-one-out, leave-one-meeting-out and leave-one-meeting-segment-out)

was applied.

To better investigate the performance of each nonverbal visual features for the most

and the least emergent leaders detections, SVM and SVM-cost were applied us-

ing leave-one-meeting-out when the three classes were considered. Additionally,

the features (totWatcher, sum of totWatchNoME and totME per frontal video,

ratioWatcherLookSOne) used in [Sanchez-Cortes, 2013] (shown as Fea-[Sanchez-

Cortes, 2013]) were also evaluated. The results are given in Table 3.3.2.

The results in Table 3.3.2 are the best results according to geometric mean of detec-

tion rates. These results show that the best features to detect the most EL accurately
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are: totWatcher, totME, totWatcherNoME, totWatchNoME, maxTwoWatcherWME,

maxTwoWatcherNoME, and ratioWatcherLookSOne. The best features to detect the

least EL more accurately are totWatcher, totME, totWatcherNoME, maxTwoWatcher-

WME and ratioWatcherLookSOne. Furthermore, using all features together (see Ta-

ble 3.3.2) performed better for both classes in general. On the other hand, when the

performance of the proposed features and the features presented in [Sanchez-Cortes,

2013] were compared, it has seen that the most EL detection performance of the

proposed features was better no matter which classifier was applied while the least

EL detection rates were similar.

3.3.3 Correlation Analysis

In Table 3.3.3, the correlation between variables derived from questionnaires and

visual features are given when the meeting videos were evaluated as whole, rather

than segmented, as defined in Section 3.1. As seen from Table 3.3.3, except tot-

NoLook, lookSomeOne, stdInitiatorME all others nonverbal features found correlated

(eight of them had high correlation, two of them had medium correlation and two

of them had low correlation) with the results of SYMLOG-Observers. Similarly,

except totNoLook, lookSomeOne, stdInitiatorME and totInterCurrME all other non-

verbal features were correlated (seven of them had high correlation, three of them

had medium correlation and one of them had low correlation) with the results of

GLIS-Observer.

3.4 Conclusions

In this chapter we presented novel nonverbal visual features which are extracted

from VFOA to detect the emergent leaders in a meeting environment. Different than

many emergent leadership studies in the literature, we only used video cues although

it was shown that audio cues were generally more effective. The proposed nonverbal
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Nonverbal Visual Features SYMLOG-
Observers

GLIS-
Observers

totWatcher 0.69 0.68
totME 0.61 0.59
totWatcherNoME 0.67 0.66
totNoLook 0.06 -0.08
lookSomeOne -0.06 0.08
totInitiatorME 0.31 0.42
stdInitiatorME 0.005 0.08
totInterCurrME -0.20 -0,06
stdtInterCurrME 0.23 -0.14
totWatchNoME -0.61 -0.49
maxTwoWatcherWME 0.65 0.60
minTwoWatcherWME 0.51 0.52
maxTwoWatcherNoME 0.52 0.50
minTwoWatcherNoME 0.44 0.48
ratioWatcherLookSOne 0.65 0.59

Table 3.5: Correlation Coefficient Values Between Questionnaires and Nonverbal
Visual Features

features performed well for detection of the most and the least emergent leaders (70%

of detection rate in average) when the majority of the defined nonverbal features

were highly correlated with the results of the social psychology questionnaires. The

human annotations using the video segments showed very high overlap (94% overlap

with SYMLOG-Observers for the most and the least leaders, and 88% overlap with

GLIS-Observers for the most and the least leaders when the highest/lowest values

of the questionnaires were used for EL inference) with the results of questionnaires

which were filled by observers using the whole videos. In the 58 out of 75 video

segments, the most EL annotated by the 50 human observers was also the designated

leader. Similarly, in 12 out of 16 whole videos, the most EL inferred by GLIS-

Observers was also the designated leaders. The applied supervised and unsupervised

methods to detect the most and the least emergent leaders performed well, which

can be a result of the accurate detection of VFOAs (72% detection rate in average)

and the effectiveness of the used features.

Although gaze is an important nonverbal behavioral cue, conveying information

about focus of attention and personal traits, its expressive power is limited. In the
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next Chapter, we extend our analysis to face-based behavioral cues.

Publication:

Beyan C., Carissimi N., Capozzi F., Vascon S., Bustreo M., Pierro A., Becchio C.,

Murino V., ”Detecting emergent leader in a meeting environment using nonverbal

visual features only”. In Proceedings of the 18th ACM International Conference on

Multimodal Interaction 2016 Oct 31 (pp. 317-324). ACM.
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Figure 3.2: Overview of the proposed emergent leadership detection pipeline.



Chapter 4

Face-Based Behavioral Cues and

Deception Detection

The human face contains most of the apparatuses for sensing social signals, i.e. eyes,

ears, mouth and nose. It also contains apparatuses for producing social signals, such

as (again) eyes (gaze), mouth (vocal behavior) and facial muscles (face expressions).

Among nonverbal behavioral cues, the ones related to face have been shown to play a

major role in social interactions [Grahe and Bernieri, 1999, Ambady and Rosenthal,

1992]. It’s no surprise, then, that the human face is the most essential part of our

body for interpersonal interaction.

In this Chapter we examine the behavior of face in dyadic interactions. Specif-

ically, we try to understand the relationship between cues expressed involuntarily

(or “leaked”) and the act of deception during conversations. In Section 4.1 we briefly

introduce the dataset used in our analysis, while in Sections 4.2 and 4.3 we detail the

extracted features. In Section 4.4 we discuss about feature fusion and the learning

algorithm. Results and conclusions follow in Sections 4.6 and 4.7.

37
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4.1 Real-Life Deception Dataset

To the best of our knowledge, the only public real-life (no role-play) dataset is

[Pérez-Rosas et al., 2015a], which is a multi-modal dataset depicting deception in

real-life court trials and TV interviews. It collects audio-video recordings from pub-

lic multimedia sources, showing witnesses and defendants while testifying or being

interviewed (Figure 4.1). A total of 121 recordings (61 deceptive and 60 truthful

samples) are included, with an average length of 28 seconds. Text transcriptions

and manually annotated nonverbal cues (based on the MUMIN coding scheme, Sec-

tion 4.2.3) are also provided. Similarly to [Mimansa et al., 2016], three videos

were discarded, since the face tracking algorithm (i.e. OpenFace [Baltrušaitis et al.,

2016, Baltrušaitis et al., 2015]) was not able to detect the face because of severe

occlusions or extreme face orientations (Fig. 4.2).

Figure 4.1: Example frames from the real-life deception dataset [Pérez-Rosas et al.,
2015a].

4.2 Face-Based Features

In this section, we introduce all verbal and nonverbal features used in our analysis.

The proposed face-based deep features are described in Section 4.2.1, while the
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Figure 4.2: Example of discarded frames from the real-life deception dataset [Pérez-
Rosas et al., 2015a]: faces partially occluded (top), extreme face orientation (bot-
tom).

manually annotated nonverbal features based on the MUMIN coding scheme, as

used in [Pérez-Rosas et al., 2015a], are described in Section 4.2.3. Finally, Section

4.2.2 introduces features based on facial Action Units [Mimansa et al., 2016].

4.2.1 Deep Neural Network Features

Deep learning based features (named as deep face features in this study) are ex-

tracted frame-wise, using several pre-trained DNNs (and applying fine-tuning in

one case). We first use the OpenFace tool [Baltrušaitis et al., 2016, Baltrušaitis

et al., 2015] to detect and crop faces from each frame, setting to zero the pixels

corresponding to the background. We, then, apply the pre-trained DNNs on the

resulting images and use the activation values of the layers before the final ones

as feature vectors. Specifically, we use VGG-Face [Parkhi et al., 2015] with values

from layers fc6 and fc7, AlexNet [Krizhevsky et al., 2012] with values from layer

fc7, GoogLeNet [Szegedy et al., 2015] with values from layer pool5, and ResNet50

[He et al., 2016] with values from layer avgpool.
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The length of the feature vectors varies between 2048 and 4096.

Since AlexNet-based features lead to the lowest classification accuracy when used

with MVL (see Table 4.6), we try to improve the results by fine-tuning the network

on our dataset. The process is described in Section 4.6.

4.2.2 Facial Action Units

Facial Action Units (AUs) are defined as a contraction or relaxation of one or more

facial muscles. They are a part of the Facial Action Coding System (FACS) [Ekman

and Friesen, 1978, Ekman and Friesen, 1976], which is a taxonomy of human facial

movements. AUs can be described by their presence (0 or 1, if AU is not visible or

visible, respectively) or by their intensity (how intense is the AU, on a 0 to 5 point

scale).

The OpenFace tool [Baltrušaitis et al., 2016, Baltrušaitis et al., 2015] is used to ex-

tract AUs. As in [Mimansa et al., 2016], nine different AUs {AU1, AU2, AU4, AU45,

AU7, AU23, AU25, AU26 and AU28} are used for the analysis. The extraction of

AUs is frame-wise, therefore they are combined into a single vector to represent the

whole video using a threshold presence for each AU. Following [Mimansa et al., 2016],

3 is used as the threshold value. As a result of this feature extraction, each video

clip is represented with an 18 dimensional feature vector (nine AUs with presence

and intensity values for each of them).

4.2.3 MUMIN Based Face Features

The MUMIN coding scheme [Allwood et al., 2007] is a multi-modal annotation

scheme intended as a tool for studying hand gestures and facial displays in inter-

personal interactions. As in [Pérez-Rosas et al., 2015a], six MUMIN groups, which

contains 21 gestures, are considered. These gestures are listed as follows:
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• General Face: Laughter, Scowl, Smile, Other.

• Eyebrows: Other, Raising, Frown.

• Eyes: Exaggerated Opening, Other, Closing Repeated, Closing Both.

• Gaze: Up, Side, Interlocutor, Down.

• Mouth: Open Mouth, Close Mouth.

• Lips: Retracted, Protruded, Corners Up, Corners Down.

Features are values that represent the presence (1) or absence (0) of a specific gesture

in a video clip, which results in a 21 elements binary vector for each given recording.

4.3 Non Face-Based Features

We show the importance of face features compared to two other types of features:

nonverbal features extracted from head and hands movements and verbal features

based on n-grams [Pérez-Rosas et al., 2015a, Mimansa et al., 2016].

4.3.1 MUMIN Based Head and Hands Features

The MUMIN coding scheme [Allwood et al., 2007] includes three other groups of

gestures related to head and hands movements, for a total of 17 gestures. These

gestures are listed as follows:

• Head Movements: Waggle, Shake, Side Turn, Repeated Tilts, Side Tilt,

Other, Move Forward, Repeated Nods, Down.

• Hands: Single Hand, Other, Both Hands.

• Hand Trajectory: Up, Sideways, Other, Down, Complex.
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As described in Section 4.2.3, features are values that represent the presence (1) or

absence (0) of a specific gesture in a video clip, which results in a 17 elements binary

vector for each given recording.

4.3.2 N-Grams

N-grams are contiguous sequences of n elements (e.g. letters, syllables, words) in a

given text. The most common n-grams used in natural language processing and text

analysis are uni-grams (n = 1), bi-grams (n = 2) and tri-grams (n = 3), and they use

words as elements. The verbal features are extracted by generating a bag-of-n-grams

based on words from a text corpus obtained by aggregating all the transcriptions of

the dataset, and computing vectors of n-grams frequencies for each text sample. As

in [Pérez-Rosas et al., 2015a, Mimansa et al., 2016], we use uni-grams and bi-grams,

which result in a feature vector with 1609 dimensions (124 for uni-grams and 1485

for bi-grams) for each video clip.

4.4 Combining Features

In this section, we describe the approach used for classification, which is based

on multi-view learning (MVL) [Xu et al., 2013], a learning paradigm that gained

popularity in the recent years.

It is very common, nowadays, to have ”heterogeneous” feature sets, i.e. sets con-

taining features extracted from different modalities (e.g. audio, video) or features

representing different properties of the data (e.g. color, texture data). Conventional

machine learning algorithms, such as SVMs, discriminant analysis or spectral clus-

tering, concatenate all the features into one single vector, or ”view”, which is then

used to build a model. However, this concatenation does not take into account the

specific statistical properties of the different feature types, and it can also lead to
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overfitting in case of small size training sets. In contrast, multi-view learning con-

siders each feature type as a single view. Each view is modeled by a single function

and all the functions are jointly optimized to improve the learning performance and

obtain a better model.

MVL algorithms can be classified into three main groups: co-training [Blum and

Mitchell, 1998], multiple kernel learning [Lanckriet et al., 2004] and subspace learning

[Akaho, 2006, Chaudhuri et al., 2009]. Interested readers can refer to [Kincaid et al.,

1975] for a detailed explanation, while the applied method falls under the co-training

and multiple kernel learning techniques.

Although many MVL techniques exist, all of them use one of two principles to

combine the different views, namely, the consensus principle and the complementary

principle [Kincaid et al., 1975]. The goal of the consensus principle is to maximize

the agreement of the output of different views. As demonstrated by [Dasgupta et al.,

2002], by minimizing the disagreement of two views, the error rate of the output of

the two views is minimized as well. The complementary principle states that each

view may contain knowledge of the data that other views do not have, and that, by

using multiple views, data can be described accurately and comprehensively.

In this work, we adopt the implementation of a MVL algorithm cast as a special case

of a general vector-valued Reproducing Kernel Hilbert Spaces (RKHS) framework

[Minh et al., 2013, Minh et al., 2016] which unifies manifold regularization and

co-regularized MVL. The advantages of this method compared to other existing

methods, such as [Sun, 2011, Luo et al., 2013], are i) the ability to specify an

arbitrary number of views, and ii) the presence of powerful regularization terms

that satisfy the consensus and complementary principles.

Manifold regularization tries to learn the geometry of the input space, assuming

that data lie on a space with lower dimension than the input space, by using both

labeled and unlabeled data.
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In co-regularized MVL, the aim is to construct target functions based on different

hypothesis spaces corresponding to different views of the input data. Output values

from the different views are enforced to be consistent by using a regularization

term and are combined in a principled way to give a final output. Co-regularized

learning falls in the co-training family of MVL techniques and the regularization

term implements the consensus principle.

The following equation shows the general minimization problem for the multi-view

manifold regularization

fz,γ = argminf∈HK
1

l

l∑
i=1

V (yi, Cf(xi)) + ΓA + ΓI (4.1)

where, given X as the input space and Y as the output space, z = {(xi, yi)}li=1 is

a random training sample of l labeled examples, W is a separable Hilbert space,

K is a positive definite kernel and HK is its Reproducing Kernel Hilbert Space of

W-valued functions, f is a function belonging to HK , C : W → Y is a bounded

linear operator, and ΓA and ΓI are regularization terms.

The first term in Eq. (4.1) measures the error between the final output Cf(xi) for

given xi and relative output yi. In our case, we chose the least squares loss function

for V , thus

V (yi, Cf(xi)) = ‖yi − Cf(xi)‖2Y . (4.2)

Cf(x) is a linear combination of the output of all the views and has the form

Cf(x) =
m∑
i=1

cif
i(x) ∈ Y (4.3)

where ci ∈ R and f i(x) ∈ Y is the output of a single view.

The second term, ΓA, is the RKHS regularization term (the ambient regularizer)

ΓA = γA‖f‖2HK . (4.4)
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The third and final term, ΓI , is the multi-view manifold regularization term

ΓI = γI〈f ,M f〉Wu+l (4.5)

where M : W l → W l is a symmetric positive operator. If there is only one view,

it simply consists of standard manifold regularization (the intrinsic regularizer);

otherwise, if there are more views, it consists of manifold regularization for each

view.

Eq. (4.5) is divided into two subterms

γI〈f ,M f〉Wl = γB〈f ,MBf〉Wl + γW 〈f ,MW f〉Wl (4.6)

where γB, γW ≥ 0 and MB, MW :W l →W l are symmetric, positive operators.

The first term, γB〈f,MBf〉Wl , is called the between-view regularization term, which

enforces consistency between the output of the different views f i(x) and, given

W = Ym, has the form

γB〈f ,MBf〉Yml = γB

l∑
i=1

m∑
j,k=1,j<k

‖f j(xi)− fk(xi)‖2Y . (4.7)

The second term, γW 〈f,MWf〉Wl , is called the within-view regularization term,

which enforces smoothness of the output for each view and has the form

γW 〈f ,MW f〉Yml = γW

m∑
i=1

l∑
j,k=1,j<k

W i
jk‖f i(xj)− f i(xk)‖2Y . (4.8)

The parameter C, represented by the vector c ∈ Rm, is optimized together with fz,γ.

Let Sm−1α = x ∈ Rm : ‖x‖ = α be the sphere at the origin in Rm with radius α > 0.

Thus Eq. (4.1) becomes

fz,γ = argminf∈HK ,c∈Sm−1
α

1

l

l∑
i=1

V (yi, Cf(xi)) + ΓA + ΓI . (4.9)
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Eq. (4.9) is not convex and can be optimized via alternate minimization: first,

c ∈ Sm−1α is fixed and the problem is solved for the optimal fz,γ ∈ HK . Then, f is

fixed and Eq. (4.9) becomes equivalent to

min
c∈Sm−1

α

1

l

l∑
i=1

‖yi − Cf(xi)‖2Y . (4.10)

The combination parameter C represents the importance of the views: the larger is

the absolute value of ci, the greater is the importance of view f i, and vice versa.

4.5 Baseline Methods

The performance of MVL is compared with single kernel SVM (the state of the art

classifier when automatically extracted features were used for deception detection

in [Mimansa et al., 2016]) and a popular multiple kernel learning (MKL) algorithm,

Localized Multiple Kernel Learning (LMKL) [Gonen and Alpaydin, 2008, Gonen

and Alpaydin, 2011] (which showed significantly better classification performance

as compared to other MKL methods for analysis of different social interactions in

[Beyan et al., 2016, Beyan et al., 2017]).

4.5.1 Support Vector Machines

SVM is applied using the proposed deep face features only, and also using a combi-

nation of deep face features and other state of the art nonverbal and verbal features.

Radial basis function (RBF) and linear kernels are used. We perform a grid search

on parameters, with kernel parameter set as 2i, i = −1, 1, 3...31 and radial basis

function’s (RBF) γ set as 2j, j = −11,−9,−7...11.



4.6. Experimental Analysis 47

4.5.2 Localized Multiple Kernel Learning

Multiple Kernel Learning (MKL) methods use set of kernels in linear and non-linear

way such that they find the optimal kernel combination for different features com-

ing from multiple sources. For a comprehensive survey on different MKL methods

and performance comparisons (particularly among LMKL and many other MKL

methods), interested readers can refer to [Gonen and Alpaydin, 2011].

LMKL utilizes nonlinear combinations of kernel weights. Different kernel weights

are assigned to different regions of the feature subsets. It includes two components:

i) gating model and ii) locally combined kernel matrix. These two components are

optimized jointly: first, the gating model selects the locally optimal kernel function

by assigning kernel weights to a subset of data, while the optimization is performed

using a fixed gating model. Later, the gating model is updated using the gradients

calculated by the current solution (for more details see [Gonen and Alpaydin, 2008,

Gonen and Alpaydin, 2011]). One advantage of LMKL, in addition to its better

performance as compared to many MKL methods, is its ability to set the same type

of kernel (e.g. linear) for different subsets of data.

In this study, we combine LMKL with SVM to perform fair comparisons with the

state of the art [Mimansa et al., 2016] and also with the proposed method, i.e. MVL

(Section 4.4). Several combinations of different numbers of linear kernels (from two

to five) and gating models (sigmoid or softmax) are tried. Grid search is used to find

the best kernel parameter (the trade-off between model simplicity and classification

error), with values set as 2i, i = −1, 1, 3...31.

4.6 Experimental Analysis

In this section, we discuss our experimental analysis and report the results we obtain

by employing MVL and deep face features. We follow the same evaluation protocol
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of [Pérez-Rosas et al., 2015a, Mimansa et al., 2016], where accuracy was used as

the evaluation metric (the dataset is class-balanced) and leave-one-out was used

as the cross validation approach. Table 4.6 shows a comparison between state of

the art and our results. ”Face-Manual” refers to the manually annotated MUMIN-

based face features (Section 4.2.3 [Pérez-Rosas et al., 2015a]), ”Face-AU” refers to

the automatically detected face action units (Section 4.2.2 [Mimansa et al., 2016])

and ”Others” refers to the rest of the features, i.e. the MUMIN-based nonverbal

features (i.e. gaze, head movement, hand gestures) and the verbal features based on

uni-grams and bi-grams (Sections 4.3.1 and 4.3.2, respectively).

As mentioned before, in this study we focus on deception detection particularly

using face-based nonverbal features; therefore the experimental analysis is applied

accordingly. In detail, deep face features are compared with Face-Manual and Face-

AU when fused with other nonverbal features and verbal features. Comparisons

are made using three classifiers: SVM, LMKL and MVL, with the claims: i) MVL

performs better than the other classifiers, ii) deep face features perform better than

the other nonverbal features, which can be shown by investigating the contribution

of each feature group using the multi-view regularization parameter and/or by using

deep face features alone (without fusing with another feature). To analyze the effec-

tiveness of the deep face features (particularly, the ones extracted from VGGFace

[14], as they perform the best when they are combined with other features), we also

use them alone when SVM is applied.

For MVL training, we perform a grid search over the following sets of regularization

parameters γA = γB = γW = {2−19, 2−18, 2−16, 2−12, 2−8, 2−4, 20, 24} and two types

of kernels, i.e. linear and RBF.

Several different combinations of views are tested, but we find that the best results

are generated by the following four: a) face view (MUMIN-based, facial action units-

based or deep face features), b) MUMIN-based gaze and head movements view, c)

MUMIN-based hands and hands trajectory view and d) bi-grams and uni-grams
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Features Method Accuracy

Face-Manual & Others SVM 0.67
Face-Manual & Others LMKL 0.76
Face-Manual & Others MVL 0.79
Face-AU & Others SVM 0.63
Face-AU & Others LMKL 0.67
Face-AU & Others MVL 0.75
Face-VGGFace & Others SVM 0.73
Face-VGGFace & Others LMKL 0.76
Face-VGGFace & Others MVL 0.89
Face-AlexNet & Others SVM 0.80
Face-AlexNet & Others LMKL 0.80
Face-AlexNet & Others MVL 0.74
Face-ResNet & Others SVM 0.71
Face-ResNet & Others LMKL 0.73
Face-ResNet & Others MVL 0.79
Face-GoogLeNet & Others SVM 0.73
Face-GoogLeNet & Others LMKL 0.74
Face-GoogLeNet & Others MVL 0.78
Face-AlexNet-FT & Others SVM 0.99
Face-AlexNet-FT & Others LMKL 0.99
Face-AlexNet-FT & Others MVL 0.98
Face-VGGFace SVM 0.79
Face-AlexNet-FT SVM 0.99

Table 4.1: The best results of each method with the features utilized. The best
results are emphasized in bold-face. FT stands for fine-tuning.

view.

After applying the DNNs, we obtain a feature vector for each frame. We combine

them in order to have a single vector for each video using two methods, i.e. by

taking the average and the maximum of their values. The average leads to the best

results for all cases.

In Table 4.6 we report the classification accuracy results. As can be seen, MVL

outperforms LMKL and SVM in all cases, except when AlexNet features are used

(Face-AlexNet). Additionally, the fusion of deep face and other features outperforms

the state of the art features combinations (i.e. Face-Manual & Others and Face-

AU & Others), especially when MVL is applied. Interestingly, SVM trained only

on VGG-Face-based features performs as good as Face-Manual & Others and Face-
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Face C-Face C-Gaze-Head C-Hand C-N-grams

VGGFace 0.050 0.007 0.004 0.016
AlexNet 0.062 4.542e-06 2.414e-05 0.018
ResNet 0.004 0.009 0.032 0.034
GoogLeNet 0.059 0.023 0.006 0.002
AlexNet-FT 0.048 4.123e-05 4.894e-05 0.032

Table 4.2: Importance (according to the values of C) of each feature group.

ResNet & Others with MVL, and better than all the other combinations (sometimes

significantly, with p-value <0.05) expect for Face-VGGFace & Others with MVL,

Face-AlexNet & Others with SVM and LMKL. This shows that the extracted deep

face features are good enough to be used alone, particularly compared to the state

of the art features.

Given the general better performance of the deep face features, we decide to apply

fine-tuning only on the deep architecture that performs the worst when combined

with MVL, namely AlexNet. We substitute the last classification layers with new

ones for the classification of deceptive and truthful frames. Then we set a high

learning rate for the new layers and a low one for the layers we keep from the pre-

trained network. Finally, we train the network using stochastic gradient descent,

cross validation (70/30 training-validation data split) and a low number of epochs

(10). We refer to the resulting fine-tuned DNN as AlexNet-FT. The results shown

in Table 4.6 suggest that, indeed, fine tuning is helpful.

Finally, in Table 4.6 we report the values of the optimized C parameter, which

indicate the contribution of each view to the final classification results obtained

with MVL. As can be seen, except for ResNet, the most important views are the

ones corresponding to deep face features; this observation is also validated by the

results obtained when these features are used alone to train the single-view classifier

(SVM).
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4.7 Conclusions

In this chapter we extracted and compared various features based on face, head and

hands movements. As shown in previous studies, features extracted from face were

the most important nonverbal features. This result was obtained when a) manually

annotated face-based nonverbal features were used and when b) facial action-units

based features representing the same manually annotated face-based nonverbal fea-

tures were utilized. Motivated by the success of face-based nonverbal features for

automatic deception detection, instead of using hand-crafted features, we utilized

deep features obtained by applying various pre-trained Deep Neural Networks as

feature extractors, with and without fine-tuning. Using deep face features resulted

in improved deception detection accuracy.

We also showed improved accuracy by employing better learning techniques in the

form of multi-view learning (MVL), leveraging the different statistical properties of

each modality and each feature type. Additionally, the optimized values of the views

combination parameter of MVL comfirmed the importance of face cues, showing that

the feature group which contributed the most to the final classification result was

the one based on deep face features (with the only exception of features extracted

using ResNet).

Sometimes, faces cannot be captured with a high level of detail. Most social gather-

ings, for example, take place in wide areas, where the scene must be captured as a

whole and zooming on single persons is not possible. Privacy is another constraint

that could prevent faces to be captured in detail. In these scenarios, it might be

useful to focus on whole-body based behavioral cues. In the next chapter we extend

our analysis to body posture and orientation.

Publication:

Carissimi N., Beyan C., Murino V., ”A Multi-View Learning Approach to Deception

Detection”. In Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE
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International Conference on 2018 May 15 (pp. 599-606). IEEE.



Chapter 5

Body Pose and Group Detection

Many studies showed that the majority of gestures produced consciously (and un-

consciously) by the body are associated with speech. They represent social signals

such as illustrators or regulators [McNeill, 1992] and, in general, they are used to

regulate interactions [Morris, 2002]. Nonetheless, other works have studied other

social signals communicated by the body, analyzing how posture and limbs move-

ments express basic emotions, like happiness, surprise or anger [Coulson, 2004, Gross

et al., 2007, Pollick et al., 2001]. Postures are also reliable cues about the attitude

toward a social situation [Richmond et al., 1991]. Existing literature classifies them

following three main criteria [Scheflen, 1964]: inclusive and non inclusive postures,

accounting for how much someone takes into consideration the presence of someone

else; face-to-face and parallel postures, accounting for the level of engagement in

a conversation; congruent and incongruent postures, accounting for psychological

involvement.

In this Chapter we analyze body posture and its relationship with free standing

conversational groups and f-formations, focusing on fully articulated body pose esti-

mation in highly complex social scenarios. In Section 5.1 a brief overview of the used

pose estimation algorithms is given. In Section 5.2 our proposed approach for pose

reconstruction in presence of occlusions is detailed and in Section 5.3 qualitative

53
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and quantitative results are presented. Finally, Section 5.4 evaluates the estimated

orientation for the task of group detection and conclusions are presented in Section

5.5

5.1 Body Pose Estimation

Body pose estimation is a popular task in the computer vision community. Two

main approaches to the problem exist. The first one deals with a complete and

fully articulated estimation of the location of body parts and joints, and pose can

be predicted in 2D [Toshev and Szegedy, 2014, Newell et al., 2016, Pishchulin et al.,

2016, Insafutdinov et al., 2016, Cao et al., 2017] or 3D [Akhter and Black, 2015, Zhao

et al., 2017, Tome et al., 2017, Rogez et al., 2017]. The second approach estimates

only the average direction of a single body part, such as the head or upper body,

expressed as the yaw angle [Chen and Odobez, 2012, Chamveha et al., 2013, Yan

et al., 2016, Ricci et al., 2015, Alameda-Pineda et al., 2015, Subramanian et al.,

2015, Tan and Hung, 2018]. Moreover, the estimation is cast as a classification

problem, where a “directional class” (a quantized value of the angle) is predicted.

Examples of both approaches can be seen in Figure 5.1.

Even though existing methods produce high precision results, the problem of human

pose estimation still remains challenging. For instance, real world images present

several complexities, such as body appearance variability due to different clothing

and lighting, uncommon body poses and crowded scenarios, which introduce oc-

clusion problems. Specifically, when parts of the body are severely occluded, the

resulting missing visual information might lead to the prediction of incomplete or

wrong body poses (see examples in Figure 5.2). For this reason, prediction of the av-

erage direction has usually been favoured in challenging scenarios. However, this can

lead to a less accurate orientation prediction and, in general, to less rich extracted

information. We then propose an algorithm for the reconstruction of missing data
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Figure 5.1: Example of body pose estimation.

that can aid the pose estimation process. Concretely, we propose a method for

reconstructing complete articulated 2D poses from incomplete ones. The resulting

poses can then be fed to a 3D pose estimation algorithm that generates full 3D

human body representations even in the presence of occlusions. 3D poses are then,

used, for detecting groups of people in RGB images.

5.1.1 3D Body Pose Estimation

We start by describing the algorithm used for 3D body pose estimation. We chose

[Tome et al., 2017] for its robustness and computational speed. [Tome et al., 2017]

performs a bottom-up estimation, where 2D poses are first estimated from the input

image and then 3D poses are sampled from a learned model and fitted on the 2D

joints. The process is iterative and, at each iteration, the resulting 3D pose is used to
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Figure 5.2: Example of wrong 2D (top) and 3D (bottom) body pose estimation.

Figure 5.3: 3D pose estimation architecture [Tome et al., 2017].

refine the previous 2D prediction. Each stage (except the first one) receives as input

a combination of outputs generated at previous stages, i.e. 2D and 3D heatmaps.

The combination is a weighted sum, where the weights are learned during the end-

to-end training. Figure 5.3 shows the architecture of the whole system.

5.1.2 2D Body Pose Estimation

We substituted the 2D pose estimator of [Tome et al., 2017] with the real-time

multi-person pose estimator OpenPose [Cao et al., 2017, Wei et al., 2016]. Although

OpenPose is not the best performing algorithm on pose estimation datasets, we
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found it to be the more robust when tested on real-life scenarios not strictly related

to pose estimation (e.g. surveillance ones).

Figure 5.4: 2D pose estimation architecture [Cao et al., 2017].

Figure 5.5: Example output of the network [Cao et al., 2017]: input image (left),
left elbow heatmap (center), left upper arm affinity fields (right).

Figure 5.4 shows the overall architecture: a finetuned VGG network [Simonyan and

Zisserman, 2014] extracts preliminary features from the input image. The extracted

features are then fed to two branches of a multistage convolutional neural network

(CNN); the upper branch (Branch 1) predicts body parts S in the form of confidence

maps, one for each body part type; the lower branch (Branch 2) predicts part-to-

part affinity fields (PAFs), one for each limb type. PAFs are 2D vector fields, where

each pixel encodes location and orientation information across the region of support

of each limb. As for [Tome et al., 2017], each stage receives as input a combination

of outputs computed in previous stages, i.e. a concatenation of heatmaps, PAFs

and features extracted by the VGG network. Examples of output confidence maps

and affinity fields are shown in Figure 5.5. Discrete joints locations are obtained by

performing non-maximum suppression on the heatmaps, while part association is
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computed by solving a bipartite matching problem on graphs where nodes are joints

candidates and edges encode pair-wise association scores computed by summing the

part affinity values along the line connecting the two joints (Figure 5.6).

Figure 5.6: Body parts association. Left: joint locations for the joints right hip,
right knee and right ankle. Right: the resulting graphs for the bipartite matching
problem.

5.2 Pose Reconstruction

As previously mentioned, we propose a method for 2D pose reconstruction and not

2D pose prediction. We cast the task as a denoising problem, where the corrupted

signal is represented by the partial human pose, and the resulting uncorrupted signal

is the full reconstructed pose.

The choice of our model is motivated by two main reasons. In the first place, the

model should be able to predict missing information and, second, has to deal with low

dimensional data. Occlusions and degraded visual data might cause a pose detector

to miss some types and number of joints in an unpredictable way. The resulting

partial human pose can, thus, be seen as a noisy, stochastically corrupted version of

the original data which is the complete human pose in our case. The model must,

then, be able to learn a robust representation of the data even when parts of the data
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are missing. Unlike RGB images, which are composed by hundreds, or thousands of

pixels, our domain data are small vectors of a few concatenated 2D coordinates (see

Section 5.2.2), therefore we choose a model which is simple, yet powerful enough to

learn a robust representation of this low dimensional domain data. Auto-encoders,

as seen in previous works [Rumelhart et al., 1986, Vincent et al., 2008], are a powerful

tool for learning representations of complex data distributions, and their denoising

variant [Vincent et al., 2008] is specifically designed to deal with incomplete input

data.

The next Section provides a short review of the theory behind auto-encoders, denois-

ing auto-encoders and one of their most recent variants, variational auto-encoders.

5.2.1 Auto-Encoders

Auto-encoders have been introduced several years ago in [Rumelhart et al., 1986],

they consist in an unsupervised learning model and have been used for different

purposes such as dimensionality reduction, feature extraction [Vincent et al., 2008],

pre-training of deep nets [Bengio et al., 2007, Vincent et al., 2010], data generation

and reconstruction [Hou et al., 2017]. Concretely, an auto-encoder is a type of multi-

layer neural network trained to map the input to a different representation of it, so

that the input can be reconstructed from that representation. The simplest form of

an auto-encoder has a single hidden layer which maps (encodes) an input x to its

new representation y

y = s(Wx + b) (5.1)

where s is a (usually non-linear) activation function, while W and b are, respectively,

the weights and bias of the layer. The encoded input y is, then, mapped back

(decoded) to a reconstruction xr of the input

xr = s(W′y + b′). (5.2)
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Training is performed by minimizing a loss function

L(x,xr) (5.3)

which, in our case, is the mean squared error MSE, calculated between the recon-

structed input xr and the target output, which is the input x itself. If the dimension

of y is smaller than the dimension of x, the auto-encoder is called undercomplete; on

the other end, if the dimension of y is larger, the auto-encoder is called overcomplete.

If the dimension of the hidden units is larger than the original input, the auto-

encoder might learn the identity function; however, there are different techniques

to avoid this occurrence. One of these techniques introduces randomness during

training: the network is fed with a stochastically corrupted version of the input xc,

while the target output remains the original uncorrupted input x. This training

approach has been introduced by Vincent et al. in [Vincent et al., 2008] and the

resulting models are called denoising auto-encoders. Their original purpose was to

make the learned representation more robust to partial corruption of the input, but

they present an additional useful property, i.e. the ability to reconstruct missing

data from the input, which is well suited for our problem of missing joints prediction.

One downside of standard auto-encoders is that they tend to map similar input sam-

ples to latent vectors which might be very close to each other, resulting in almost

identical reconstructions. This behavior is acceptable when input data represents

classes (e.g. images of numbers or letters). On the contrary, preserving small input

differences in the reconstruction is very important when dealing with human poses,

which do not form a clustered space, but a continuous, smooth domain. Variational

auto-encoders [Kingma and Welling, 2013] can learn such a continuous represen-

tation by design, making them more suited for our problem. Similarly to classic

auto-encoders, they have the same encoder/decoder structure (where the encoder

maps the input to a latent representation, and the decoder reconstructs the input

from such representation). The main difference is that the latent variables are not
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a ”compressed representation” of the domain data itself, but they encode the pa-

rameters (i.e. the mean µ and standard deviation σ) of a distribution (typically an

n-dimensional Gaussian one) modeling the input data. In order to force this, another

term is added to the loss (see Eq. 5.3), i.e. the Kullback-Leibler divergence (DKL)

[Akaike, 1998], which measures the divergence between two probability distributions

and has the form

DKL(P‖Q) = −
∑
i

Pilog(Qi/Pi) (5.4)

where P is the encoded n-dimensional Gaussian distribution N (µ, σ2) and Q is the

target standard normal distribution.

5.2.2 Modeling the Human Pose

Since the chosen reconstruction loss needs a complete human pose as the target

output, we need to select full human poses from the dataset as training data. Each

pose is represented by a set of n 2D locations, where n is the number of joints

(see Sections 5.3.1 and 5.3.2). The concatenation of these joints produces a vector

of n ∗ 2 elements (the x and y coordinates) which is the input of the network.

Since the coordinates of the annotated joints are labeled in the image space, poses

which are very similar to each other might appear in different parts of the image,

resulting in input vectors with very different values. We, thus, normalize them using

the following procedure: first we find the center of the torso (CT ) by averaging

the coordinates of the neck and at least one of the shoulders and hip joints; the

pose is then translated to the obtained 2D point and finally scaled by the distance

between the neck and CT . At testing time, this normalization technique requires

an incomplete pose to have all the aforementioned joints, negatively affecting the

number of poses that is processed by the network (see Section 5.3.4). Given that we

are using a denoising auto-encoder, the training data must also be corrupted. We do

this by adding noise to the previously normalized poses, randomly masking a small

number of joints.
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Figure 5.7: The pipeline of our method. Given an RGB image, a human pose
prediction algorithm is used to generate one or more poses. The incomplete ones
are, then, normalized and fed to the auto-encoder, which outputs the corresponding
full human poses.

Fig. 5.7 shows the overall architecture: since the input vector is small compared

to the space of the data we want to reconstruct, we choose to implement an over-

complete auto-encoder. The encoder and decoder are composed by 2 hidden layers,

each one gradually encoding (and decoding) more robust features. Layers µ and σ

represent, respectively, the mean and standard deviation of the distribution we want

to learn, while the final layer of the encoder represents a sample of it.

5.3 Pose Reconstruction Experiments

In this section, we report quantitative and qualitative results of our method, eval-

uated on two datasets, MPII Human Pose [Andriluka et al., 2014] and Microsoft’s

COCO Keypoint Detection [Lin et al., 2014], which are the most famous and widely

datasets for multi-person pose estimation.

5.3.1 MPII Human Pose Dataset

The MPII Human Pose dataset [Andriluka et al., 2014] consists of around 25000

images and a total of 40000 annotated human poses. The training set is composed

of 28000 of these poses, while the test set is composed of 11000 poses. Images contain

people engaged in numerous activities and a variety of contexts, with a high variable

of articulated poses and camera perspectives. People can be fully visible, severely
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occluded or partially out of the camera field of view. A full pose is composed of 16

landmarks, each one corresponding to the location, in image coordinates, of a body

joint (head, neck, thorax and left and right shoulders, elbows, wrists, hips, knees

and ankles).

5.3.2 COCO Keypoint Detection Dataset

The Microsoft’s COCO Keypoint Detection dataset [Lin et al., 2014] is a subset

of the whole COCO dataset, focused on the localization of person keypoints. The

training and validation sets contain, respectively, around 260000 and 11000 anno-

tated human poses. Unlike MPII, a full pose is composed of 17 joints, corresponding

to nose and left and right shoulders, elbows, wrists, hips, knees, ankles, eyes and

ears.

5.3.3 Experimental Settings

Our model takes a pose as the input and generates its reconstruction. If the pose

is incomplete, i.e. with one or more missing joints, the output is a prediction of

the corresponding full pose. As described in Section 5.2.2, the loss function needs a

fully annotated pose; thus, we need to select a subset of the training data containing

only complete poses. For the MPII dataset, this results in a total of, approximately,

20000 samples; we, then, use our own split (85%/15%) on the obtained data for

training and validation purposes, and augment the remaining training data following

a standard procedure for single pose estimation algorithms [Newell et al., 2016,

Chen et al., 2017], obtaining a total of approximately 500000 training samples. In

particular, we perform data augmentation by flipping and rotating the original poses

(+/-30 degrees). We then normalize each pose, mask a random number of joints

(from 0 up to 5, which roughly corresponds to 35% of the total number of joints)

and feed the obtained data to the network.
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The COCO dataset, on the contrary, has only a few thousands of complete poses,

which, even after data augmentation, would not be enough for training purposes.

Therefore, we decide to use the dataset only for testing. Since COCO and MPII have

different annotated joint types, we feed the network (trained on MPII) with only

the joints that are common between the two datasets (i.e. left and right shoulders,

elbows, wrist, hips, knees and ankles) and set to zero the missing ones (head, neck

and thorax).

The encoder is composed of two fully connected hidden layers, with 64 and 128

hidden units. Symmetrically, the decoder is composed of two hidden layers, with

128 and 64 hidden units, and an output layer with the same dimension as the

input one. As in [Kingma and Welling, 2013, Feng et al., 2017], we use 20 latent

dimensions. Every fully connected layer has ReLu non-linearities. The loss function

is the sum of MSE (between the uncorrupted input and the reconstructed pose)

and the DKL (Section 5.2.1). The network is implemented using TensorFlow [Abadi

et al., 2016] and trained with the Adam optimizer [Kingma and Ba, 2014] with a

learning rate of 1e-3.

5.3.4 Quantitative Analysis

In this section we show quantitative results of the proposed pipeline on the datasets

described in Sections 5.3.1 and 5.3.2. For the generation of the input poses, we use

the bottom-up multi-person pose estimator OpenPose [Cao et al., 2017, Wei et al.,

2016] and its matlab CB: Matlab implementation, without modifying its preset

parameters. Although OpenPose is not the best performing method on MPII and

COCO anymore, and it’s less precise in predicting complete human poses compared

to other top-down approaches, we found it to be the more robust when tested on real-

life datasets not strictly related to pose estimation and on which it wasn’t trained

on (such as Salsa [Alameda-Pineda et al., 2016]). Fig. 5.8 shows a comparison

between poses generated by OpenPose and those generated by the state of the art
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Figure 5.8: Comparison between OpenPose and Regional Multi-Person Pose Es-
timation (RMPE) [Fang et al., 2017]. a) and b) left show OpenPose predictions,
while a) right and b) center, right show RMPE predictions. Orange joints have a
confidence score below 0.2.

top-down approach called Regional Multi-Person Pose Estimation (RMPE) [Fang

et al., 2017]. In a), OpenPose (left) produces a complete and better estimation

of the pose, compared to RMPE (right). In b), OpenPose (left) cannot predict

the head, the wrists and the right ankle, while RMPE (center, right) predicts all

joints; however, RMPE generates two poses for the same person, due to redundant

detections, and their quality is worse than the OpenPose one. Clearly, the underlying

person detector is an important factor in the final performance of a top-down pose

estimation algorithm. Also, top-down approaches learn not just local information

(i.e. joints appearance) but also global information (i.e. joints relative location and

appearance) and this information might be harder to generalize to unseen data.

We compare OpenPose’s results with the results generated by our method using two

metrics, the Miss Rate (MR) and the Percentage of Correct Keypoints (PCKh). MR

is computed as

#jointsmissed/#jointsgt (5.5)

where #jointsmissed is the number of missed (annotated) joints and #jointsgt is

the number of all (annotated) joints. PCKh is a standard metric in pose estimation

introduced in [Andriluka et al., 2014] for evaluation on the MPII dataset, where a

keypoint is considered as correctly predicted if its distance from the ground truth
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Method Ankle Knee Hip Wrist Elbow Shoulder Neck Head Average
(All Joints) MR

OpenPose [Cao et al., 2017] 0.072 0.040 0.021 0.066 0.037 0.019 0.011 0.019 0.039
Our Method 0.020 0.015 0.016 0.012 0.011 0.010 0.011 0.011 0.014

Table 5.1: Joints Missing Rate on the MPII dataset.

is less than a fixed threshold (specified as a fraction of the person’s head size). The

corresponding ground truth is assigned to each pose according to the highest PCKh.

While MR quantifies how many joints are failed to be predicted, PCKh quantifies

the actual ”quality” of the predictions.

We do not perform a comparison using the standard mean Average Precision (mAP)

metric, which is commonly used in MPII for multi-person pose estimation, because

it penalizes joints with no ground truth correspondence as false positives.

Table 5.3.4 shows that our method outperforms OpenPose in terms of number of

missing joints. As can be seen, the highest missing rate differences correspond to

joints which are body extremes (i.e. wrists and ankles) and thus more prone to

be occluded. Even though our method is supposed to predict all missing joints, the

missing rate is not 0 because it relies on the detection of the subjects by the baseline

human pose estimator.

The quality of the predictions generated by our method can be seen in Table 5.3.4,

where its PCKh is better than the OpenPose one, especially (as for the missing rate)

for those joints which are frequently occluded. The highest difference in PCKh can

be seen when computed over joints labeled as ”occluded” only. Results on head and

neck are omitted because they are never occluded.

One advantage of our method is that, by using 2D coordinates as input domain, it

can be easily applied to different datasets it has not been trained on: Tables 5.3.4

and 5.3.4 show, respectively, the Missing Rate and the PCKh computed on COCO.

Finally, we report the computational time for training and testing. The analysis is

performed on a laptop with 16GB of RAM and an NVIDIA GeForce GTX 960M with
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Method Ankle Knee Hip Wrist Elbow Shoulder Neck Head Average
(All Joints) PCKh
OpenPose [Cao et al., 2017] 79.87 87.17 93.0 79.15 89.03 95.97 97.71 96.11 88.73
Our Method 80.93 87.44 93.06 80.38 89.92 96.41 97.75 96.53 89.33

Method Ankle Knee Hip Wrist Elbow Shoulder Average
(Occluded Joints) PCKh
OpenPose [Cao et al., 2017] 59.07 73.26 87.71 57.06 76.71 91.23 74.47
Our Method 61.18 73.83 87.80 60.78 78.70 92.32 75.77

Table 5.2: PCKh@0.5 on the MPII dataset, computed on all joints and only on
joints labeled as occluded.

Method Shoulder Elbow Wrist Hip Knee Ankle Average
(All Joints) MR

OpenPose [Cao et al., 2017] 0.0021 0.0104 0.0214 0.0371 0.0752 0.0539 0.0333
Our Method 0.0021 0.0032 0.0068 0.0150 0.0093 0.0052 0.0069

Table 5.3: Joints Missing Rate on the COCO dataset.

4GB of RAM. Training requires only 3 hours, while reconstruction of a single pose

requires, on average, 0.88 ms. This shows that our method can be easily combined

with any existing pose estimation architecture without significantly affecting the

overall computational time.

5.3.5 Qualitative Analysis

In this section we show qualitative results of our predictions. In Fig. 5.9 (images

taken from MPII), the top row shows (in blue), predictions obtained from OpenPose,

while the bottom row shows the corresponding complete poses generated by our

model (the predicted missing joints are in magenta). In column a) and b) ankles are

missing from sitting poses and our model is able to predict a plausible locations of

them. In column c) a man is standing but both ankles are completely occluded by a

Method Shoulder Elbow Wrist Hip Knee Ankle Average
(All Joints) PCKh

OpenPose [Cao et al., 2017] 80.22 54.91 63.71 39.48 35.74 23.60 49.61
Our Method 80.07 56.25 65.44 41.25 41.40 28.43 52.14

Table 5.4: PCKh@0.5 trained on MPII and tested on COCO, computed on all joints.
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foreground object and missing from the pose generated by OpenPose; however, our

model is able to predict their position and produce a plausible complete standing

pose. In column c) the right arm (elbow and wrist) is missing; our model generates

the missing joints in a spatial configuration which is similar to the joints of the visible

left arm. The last column shows an extreme case where the number of missing joints

is very high, thus providing little context for the final prediction: a man is standing,

with raised arms and head occluded by a foreground object. Although our model

generates arms which are completely lowered, the resulting pose is still a plausible

human pose.

Fig. 5.10 shows more examples of predictions obtained from OpenPose (top row)

and the corresponding complete poses generated by our method (bottom row). In

column a), not just an ankle but the entire left leg (knee and ankle) is missing; the

predicted complete pose closely resembles the sitting person pictured in the image.

In column b), the right wrist is not detected and both arms are raised, but our

prediction is very close to the real wrist. Ankles (columns b), c) and d)), are outside

the camera field of view; however our model is able to predict a full pose even when

RGB information is missing.

Finally, Fig. 5.11 shows predictions on frames from Salsa (another dataset our model

was not trained on), where it can be seen that our method can generate plausible

human poses even when half of the body is missing (see columns c) and d), with

completely occluded legs and arms).

5.4 F-formation Detection

As already described in Section 2.3, free standing conversational groups can be

formally described using the concept of f-formation, which is a socio-spatial orga-

nization of people around multiple concentric spaces (o-, p- and r-space, Figure 2.2

top). More specifically, f-formations are defined by the location and orientation of
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Figure 5.9: Examples of predictions obtained from OpenPose (top row, in blue)
and the corresponding complete poses generated by our method (bottom row, in
magenta) on MPII.

Figure 5.10: More examples of predictions obtained from OpenPose (top row, in
blue) and the missing joints predicted by our method (bottom row, magenta) on
MPII. As can be seen, the model is also capable of predicting joints which are
outside of the camera field-of-view.
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Figure 5.11: Examples of predictions on Salsa. Top row: OpenPose results (in blue).
Bottom row: missing joints predicted by our method (in magenta).

people. We now describe the f-formation detection algorithms used in our experi-

ments and the results obtained by using our method for the reconstruction of partial

poses. We selected all methods with pubiclily available code.

5.4.1 F-formation Detection Algorithms

Single Scale Hough Voting [Cristani et al., 2011]. The algorithm in [Cristani

et al., 2011] proposes a voting approach for the f-formations centers. For each indi-

vidual i ∈ L characterized by location (xi, yi) and orientation θi, a set of N votes

{si,n}, n = 1...N , is generated by sampling from a uniform distribution N (µi,Σ),

where µi = (xi, yi, θi) and Σ is a diagonal matrix with variances σ2
x, σ

2
y, σ

2
θ . Each

sample votes for the center of an o-space with radius R along the subject’s orien-

tation and with a weight wi,n ∝ N (si,n;µi,Σ). An accumulation space is defined

by

ÃI(x, y) = card(x, y) · AI(x, y),∀(x, y) ∈ AI(x, y) (5.6)

where (x, y) is a voted center location, card(·, ·) is a function that returns the number

of subjects voting for (x, y), and AI(x, y) accumulates the sum of weighted votes for
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center (x, y). The final f-formations centers are selected by evaluating in descending

order the values of ÃI and checking if there are subjects inside the o-space. Radius

R, variances σ2
x, σ

2
y, σ

2
θ and number of samples N are free parameters, set according

to sociological and empirical observations.

Multi-Scale Hough Voting [Setti et al., 2013b]. [Setti et al., 2013b] proposes

an extension of [Cristani et al., 2011], where voting is performed several times, one

for each f-formation cardinality value. Here, the radius is proportional to cardinality

k and is set as Rk ' s
2 sin π

k
, where s is an empirically set interpersonal space distance.

The new equation for the accumulation space is

ÃI(x, y) = card(x, y) · Ẽ(x, y),∀(x, y) ∈ AI(x, y) (5.7)

where Ẽ(x, y) is the weighted entropy

Ẽ(x, y) =
∑
i∈L

hi(x, y) · pi(x, y)log2pi(x, y), (5.8)

with hi(x, y) as the normalized count of how many times subject i voted for center

(x, y) and pi(x, y) as the sum of all weights wi,n. An accumulation space ÃI(x, y)(k)

is built for each cardinality k and relative f-formations are obtained by following

the same selection procedure from [Cristani et al., 2011]. The final multi-scale f-

formations are obtained by merging f-formation results from the single cardinalities.

Game Theoretic Approach [Vascon et al., 2014]. [Vascon et al., 2014] devel-

ops a game-theoretic clustering approach which also models the uncertainty about

location and orientation. First, for each person a socio-attentional view frustum is

generated, modeled by a 2D histogram which represents a 2D gaussian distribution

generated using the person location, orientation and a fixed view angle. Second, an

affinity matrix for all the persons in a frame is computed, using the 2D histograms

and an affinity measure based on the Kullback-Leibler or the Jensen-Shannon diver-

gence. Finally, clusters of people are found using a non-cooperative clustering game
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[Bulò and Pelillo, 2009].

Graph Cuts [Setti et al., 2015]. In [Setti et al., 2015], graph cuts are used to

minimize a function based on people location and o-space center candidates. For

each individual, a transactional segment TS is the area in front of the body that is

easy to reach and where hearing and sight are most effective (which corresponds to

the o-space); it is defined as TS ∼ N(µi,Σi), where µi = [xµi , yµi ] is the center of

the area, defined by the location and orientation of person i and Σi = σ · I. Given

OG as the set of candidate o-space centers and [uGi , vGi ] the o-space center of an

f-formation containing subject i, a cost function is defined as

J(OG|TS) =
∑
i∈[1,n]

(uGi , xµi)
2 + (vGi , yµi)

2 + σ−2|OG|, (5.9)

where the last term is a minimum description length prior preventing f-formations

with one single person. Starting from a set of candidate o-space centers, the al-

gorithm iteratively minimizes Equation 5.9 with the graph cut based optimization

[Ladickỳ et al., 2013] and updates the o-centers with the mean of the centers voted

by the members of the current f-formations.

5.4.2 F-formation Detection Experiments

CoffeeBreak Dataset [Cristani et al., 2011]. The CoffeeBreak dataset [Cristani

et al., 2011] depicts a social scenario where people gather in an open space, forming

free standing conversational groups. It is a surveillance-like setting, where the cam-

era is placed above heads and is not in close range (Figure 5.12). People are free to

move and bodies are often occluded. The dataset presents two sequences (seq1 and

seq2) of consecutive frames, for a total of 120 frames. Each frame is annotated with

location, head orientation and an id for each tracked person, and f-formations (lists

of person ids).
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Figure 5.12: Example frame from [Cristani et al., 2011].

Figure 5.13: 3D poses and their corresponding orientation vectors (in green).

F-formation Detection Pipeline. Figure 5.14 shows the pipeline for the f-

formation detection. First, 2D poses are extracted from each frame (Section 5.1.2).

The incomplete ones are then reconstructed (Section 5.2) and all the poses are fed to

the 3D pose lifting algorithm (Section 5.1.1). Finally, each pose orientation and ids

are computed and used as input for the f-formation detection algorithms (Section

5.4.1). The (3D) orientation of the body is computed by calculating the average

of two cross products, one between hips and neck and one between shoulders and

pelvis joints. Examples of the resulting vector can be seen in Figure 5.13. 2D

pose tracking is performed by combining the multi-object tracker [Pirsiavash et al.,
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2011] with a graph matching problem: first, each joint is singularly tracked using

[Pirsiavash et al., 2011]. Then, for each pair of consecutive frames a bipartite graph

is created, where each subset of nodes correspond to poses predicted in one of the

two frames, while the edges encode the number of common joints ids (assigned in

the previous step by [Pirsiavash et al., 2011]) between poses. Solving the bipartite

matching problem generates a correspondence between poses of consecutive frames.

By chaining the obtained matches from the first to the last frame, we obtain the

tracking of the poses.

Ids are, then, matched to the labelled ones and location is obtained from ground

truth.

Figure 5.14: F-formation detection pipeline.

Results. Table 5.4.2 shows the comparison between the aforementioned methods

for f-formation detection with and without our computed orientation, reporting

precision, recall and F1 score. We also report the results of [Ricci et al., 2015] (last

row), which jointly learns head/body orientation and f-formation detection. As can

be seen, the orientation provided by our algorithm achieves results on par with the

state-of-the-art, which uses annotated orientations (except for [Ricci et al., 2015]).

Although our method is purely geometric, it is able to produce robust results and

has the advantage of not being tied to the test dataset.
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Method Precision Recall F1 Score

HVFF lin [Cristani et al., 2011] 0.73 0.86 0.79
HVFF lin w 3D orientation 0.74 0.84 0.79
HVFF ent [Setti et al., 2013a] 0.81 0.78 0.79
HVFF ent w 3D orientation 0.75 0.84 0.79
HVFF ms [Setti et al., 2013b] 0.76 0.86 0.81
HVFF ms w 3D orientation 0.76 0.86 0.81
GTCG [Vascon et al., 2014] 0.83 0.89 0.86
GTCG w 3D orientation 0.84 0.88 0.86
GCFF [Setti et al., 2015] 0.85 0.91 0.88
GCFF w 3D orientation 0.83 0.94 0.88
Joint HBFF [Ricci et al., 2015] 0.84 0.88 0.86

Table 5.5: Comparison of state-of-the-art algorithms with and without body orien-
tation computed with our method.

5.5 Conclusions

In this Chapter we focused on the body and used it for the analysis of free standing

conversational groups.

Past works predicted “coarse” head and body orientation classes. However, we

wanted to be able to predict and exploit full 3d articulated human poses. Although

state of the art 2D and 3D pose estimators are able to cope with different challenges

in in-the-wild social scenarios, occlusions are still a problem and might negatively

affect the performance of predictions. In order to cope with this problem, we devised

a method for the reconstruction of 2D poses that can be used in bottom-up 3D pose

estimation. We approached the task as a denoising problem and showed that a

simple model based on autoencoders leads to a satisfactory boost in performance.

We reported quantitative and qualitative results on several pose estimation datasets

and showed increased prediction performance over a well-known multi-person pose

estimation algorithm and the ability to predict joints locations even when entire

limbs are occluded.

We then estimated fine grained (real valued) body orientation from the obtained 3D

poses and used it as a feature for f-formation detection. Analysis on a famous social

interaction dataset showed group detection results on par with several state-of-the-
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art methods. Some of these methods use orientations which are either annotated

([Cristani et al., 2011, Setti et al., 2013b, Setti et al., 2015, Vascon et al., 2014])

or jointly learned from the dataset with f-formations ([Ricci et al., 2015]); some of

them use temporal smoothing and information from the scene ([Ricci et al., 2015]).

Our method is able to compute robust orientations which are not tied to the scene

or the test dataset, making it more generalizable; additionally, it does not use any

temporal information.

Publication:

Carissimi N., Rota P., Beyan C. Murino V., Filling the Gaps: Predicting Miss-

ing Joints of Human Poses Using Denoising Autoencoders, HBUGEN Workshop,

European Conference on Computer Vision (ECCV) 2018.



Chapter 6

Conclusion

The goal of this thesis was to deepen the understanding of how nonverbal behavioral

cues and social signals correlate to specific roles and behaviors, and how they can

shape social structures. We pursued this goal by focusing on different parts of the

body involved in the generation and perception of social signals, starting from the

eyes and expanding to face and body. The resulting algorithms enrich the existing

set of existing social signal processing tools for understanding human behavior.

6.1 Emergent Leadership Detection by Analyzing

Gaze and Visual Focus of Attention

Eyes and gaze are fundamental tools for sensing our surroundings and the social

signals coming from other beings. Gaze is also an informative cue about our focus

of attention, revealing what or who we are currently interested in. In Chapter 3 we

investigated the use of gaze as an indicator of emergent leaders in small groups. We

approximated it by using head orientation and modelled each participant’s visual

focus of attention (VFOA). Different features based on VFOA were devised and then

used to train a supervised classification model. Results showed that head orientation

77
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is an effective proxy for estimating gaze direction and the relatively high classification

accuracy obtained for the most emergent leader class proved that VFOA is indeed a

reliable indicator for this role. Intuitively, this can be explained by the fact that, as

previously mentioned, leadership is about exerting dominance and control over other

people. In face-to-face interactions, this translates into addressing and looking at

someone. Symmetrically, the people addressed to by the leader have to look back, in

order to give some sort of feedback. Our VFOA-based features model exactly these

interactions.

Limitations and Future Work. The lack of direct gaze estimation is a limitation,

since the actual VFOA does not always correspond to the head orientation of a

person. At that time, gaze estimation algorithms were not able to produce reliable

results on our dataset. Additionally, cameras could not be placed closer to the

subjects, as it would have interfered with their interpersonal interactions and the

VFOA. Current state-of-the-art algorithms could be evaluated in future work and

using “real” gaze might further improve leadership classification accuracy.

Future work might also expand the dataset: participants were all young subjects,

with an average age of 21.6 years (2.24 standard deviation) and all having the same

occupation (i.e. psychology students). It would be interesting to see if the same

VFOA dynamics hold true in sessions involving different age groups, mixed genders

and different cultures.

6.2 Face-Based Behavioral Cues and Deception

Detection

After the gaze, following the previously mentioned “zoom out” approach, we shifted

our attention to face in Chapter 4. As the face is one of the most important parts of

the body for interpersonal interactions and a mirror of our emotions and feelings, we
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decided to analyze its relationship with a complex human behavior: deception. In or-

der to do that, we chose the only publicly available audio/video dataset [Pérez-Rosas

et al., 2015a] depicting persons expressing “truthful” and “deceptive” statements in

a high-stakes scenario (i.e. a courtroom), and compared several features based on

face, head, hands and verbal content (i.e. n-grams). Specifically, for the face we used

the manually annotated features (provided by the dataset) based on coarse facial

movements (MUMIN coding scheme), automatically extracted handcrafted features

based on fine facial movements (facial action units) and automatically extracted

learned features based on deep neural networks encodings. For head and hands we

used the provided manually annotated features (MUMIN coding scheme), while for

verbal content we used n-grams. Different from the standard practice in deception

detection of feature concatenation, we also employed a learning technique (multi-

view learning) which combines together different types of features in a more effective

way. Multi-view learning led to higher classification accuracy than state-of-the-art,

proving that the method was able to better exploit the statistical characteristics of

the different types of features. Most importantly, the computed features weights

showed that, indeed, face-based features (especially the learned ones) were the most

contributing to the final classification results, followed by n-grams. Together with

other studies, this confirms the importance of face in detecting deception.

Limitations and Future Work. This importance, however, is relative to the

chosen dataset. Even though its authors [Pérez-Rosas et al., 2015a] did a lengthy and

laborious job, manually collecting, validating and annotating many video clips from

the web, the dataset presents some drawbacks. The first one is the number of samples

and subjects: there are only 121 videos in total, the number of different subjects

is limited and not everyone expresses both a truthful and a deceptive statement,

making it not statistically significant and unbalanced. Second, the quality and

resolution of the images is often very low, limiting the visual information available

and the features that can be extracted. The reason we chose this dataset is because,

to the best of our knowledge, it was (and currently is) the only publicly available
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collection of spontaneous (not faked) deceptive statements recorded in a high stakes,

non controlled scenario. Other datasets exist, but either they are not public [Radlak

et al., 2015] or they present “acted” deceptive behavior in controlled environments,

such as mock theft interviews [Derrick et al., 2010]. Future work could focus on

creating a bigger and more diverse dataset, but the task might be difficult or even

not feasible, if deception has to be real and not acted; privacy issues might also be

a concern. With better video and audio recordings, audio analysis could also be

performed.

From a methodological perspective, the most important limitation is the lack of

behavior analysis using time. Classification is made on whole video clips, using

features that encode and aggregate information from all frames, not single ones:

MUMIN-based features encode the presence or absence of gestures in the entire

video; action-units-based features are computed in a similar way and features based

on deep neural networks encodings are an aggregation of features computed on

all frames. This makes difficult to find correlations between deception, truth and

specific features/behaviors. Additionally, in many single videos there are multiple

statements and answers to different questions, which might contain both truths and

lies; aggregating frame-wise features might, thus, lead to a wrong encoding of the

information.

From an implementation point of view, searching for the best parameters is a time

consuming process. The multi-view learning algorithm we chose becomes slow when

dealing with big training sets and many features; thus, a single iteration of the grid

search for the four major parameters (the kernel type and the three weights for

the regularization terms) takes several hours to be completed. Future work could

include an analysis of scalable (and novel) multi-view learning algorithms.
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6.3 Body Pose and Group Detection

Finally, in Chapter 5 we moved to the whole body. We devised a method to extract

the fully articulated body pose of a person immersed in a real-life social scenario, and

used it to detect groups of people. Challenges included low-mid resolution images,

difficult lighting conditions and body occlusions. We started by combining a robust

multi-person 2D pose estimator [Cao et al., 2017] with a state-of-the-art “3D lifting”

method [Tome et al., 2017]. The 2D pose estimator would produce incomplete poses

due to the aforementioned challenges, leading to wrong 3D predictions. Thus, we

devised a reconstruction algorithm (based on denoising autoencoders) that takes in-

complete (or noisy) 2D poses (generated by [Cao et al., 2017]) as input and outputs

reconstructed ones, showing improved estimation results. We then used the pre-

dicted 3D poses to compute the body orientation, which was then fed to f-formation

detection algorithms, leading to results on par with the state-of-the-art. Contrary

to existing algorithms which tackle the problem as a directional bin classification,

our method is able to regress a real valued, fine grained orientation, which improves

groups detection results. The pose reconstruction model is trained on the ground

truth data of pose estimation datasets and takes as input only 2D joints locations,

no RGB information. This makes it robust to domain changes and easy to stack on

any newer and more robust 2D pose estimator.

Limitations and Future Work. The lack of visual data, however, represents also

a drawback, especially in those cases where poses are severely incomplete. Although

the autoencoder is able to output complete poses with a plausible (from a kinematic

point of view) configuration, the reconstructed limbs might be in a very different

position than the real one. Figure 6.1 shows an example: on the left, the actual pose

has a raised left arm; the same arm is missing/occluded in the pose in the center;

the pose on the right is the result of the reconstruction and has the left arm lowered.

The predicted joints have a plausible configuration w.r.t. the rest of the body, but

their position is far from the real one.
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Figure 6.1: Example of reconstruction ambiguity. Left: actual pose with arm raised
(in red). Center: pose with arm occluded/missing. Right: reconstructed pose with
lowered arm (in red).

Poses with multiple missing limbs are very common in crowded environments and

“wrong” predictions (such as the one in Figure 6.1) can lead to errors when classi-

fying movements like gestures.

Having additional visual and contextual information might help the final reconstruc-

tion. Future work could include RGB data into the model. Richer input data would

also aid the use of more complex architectures, e.g. CNNs, which might improve the

final prediction over the simple fully connected autoencoders we used. The use of

time (in the form of pose information coming from past frames) to strengthen the

reconstruction results is another direction worth exploring.

Regarding the f-formation detection, results show that the fine grained predicted

body orientation was effective. The 3D pose estimation algorithm proved to be

able to generate plausible 3D poses with correct spatial orientation. In some cases,

though, this orientation was wrong, with 3D poses facing opposite directions w.r.t.

the people’s ones. This is explained by how the algorithm works: the best trans-

formation (scaling, rotation, translation, etc.) of a candidate 3D pose is found by

minimizing the distance between its projection on the image plane and the input

2D pose; obviously, one 2D pose can correspond to the projections of multiple 3D

poses, but if the 2D pose is asymmetrical, the 3D candidates are generally close to

each other in terms of orientation and joints configuration. On the contrary, if the

2D pose is symmetrical (e.g. a person standing, facing the same direction of the
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camera), then 3D poses with different body orientations might generate the same

projection. This problem is hard to solve, since it is intrinsic to bottom-up 3D pose

estimation algorithms.

Finally, spatial location and orientation encode only geometrical properties of the

group; this might not be enough for defining a group of interacting people in crowded

and dynamic scenarios, where the r-, p- and o-spaces of the f-formation might be

compressed, they might disappear or intersect with spaces belonging to other f-

formations. Future work could enrich the current definitions of groups and model

actual interactions between people as well as members roles, using features based

on body movements and gestures.
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[Baltrušaitis et al., 2016] Baltrušaitis, T., Robinson, P., and Morency, L.-P. (2016).

Openface: an open source facial behavior analysis toolkit. In Applications of

Computer Vision (WACV), 2016 IEEE Winter Conference on, pages 1–10. IEEE.
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