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Abstract— Incorporating annotators’ knowledge into a
machine-learning framework for detecting psychological traits
using multimodal data is an open issue in human communica-
tion and social computing. We present a model that is designed
to exploit the subjective judgements of multiple annotators on
a social trait labeling task. Our two-stage model first estimates
a ground truth by modeling the annotators using both the
annotations and annotators’ self-reported confidences. In the
second stage, we train a classifier using the estimated ground
truth as labels. We also define ways to verify the consistency
of our model and validate it using annotations and nonverbal
cues for a dominance estimation task in a group interaction
scenario on the publicly available DOME corpus, in addition
to synthetically generated data. Our models give satisfactory
results, outperforming the commonly used majority voting as
well as other approaches in the literature.

I. INTRODUCTION

In many studies conducted in the areas of affective and
social behavior, researchers are interested in finding psy-
chological traits. Traits are defined as habitual patterns of
behavior, thought, and emotion [9] that are often identifiable
in group interactions [11]. Whether a subject has a trait or
not is identified using human judgements from either external
observers or from the subjects themselves. In the former case,
the trait is known to be “perceived by others” and in the latter,
to be “self-perceived”. In the recent past, there have been
many studies on automated methods for detecting important
traits in face-to-face group interactions such as dominance
[14], [1], [8], leadership styles [7], and other traits related to
personality [12]. In the studies that involve the detection of
traits perceived by others, multiple annotators are often asked
to label the presence (or absence) of these traits using either
direct questions or standard psychology questionnaires. The
availability of online annotation resources (e.g. Mechanical
Turk) opens up the possibility of obtaining multiple human
judgements for each data point. These judgements have to be
handled with care [3]. In the standard psychology literature,
the quality of these annotations is determined via inter-rater
agreements, often measured using metrics such as Cohen’s
Kappa values [4]. If the inter-rater agreement is sufficiently
high, a common approach is to use the majority agreement
of annotators as the ground truth labels for further analysis
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(e.g. for classification tasks). However, the removal of no-
agreement cases leads to the shrinkage of data sets that are,
more often than not, moderately sized due to the existing
technological means used to record group interactions with
cameras and microphones. Furthermore, relying on majority
agreement has its disadvantages. This scheme weights each
annotator equally, whereas in reality some annotators might
do better than others or may express more confidence than
others, due to their experience with the task, interest, or even
their personality. Therefore, the main challenge in estimating
the “true” label from these annotations is that the expertise
of the annotators is not readily quantifiable. Moreover, given
that they are all human judgements, the “perfect” ground
truth might not be available for even a subset of the data,
making validation of the estimated labels impossible.

In this paper, we introduce models that circumvent these
problems and have the potential of being applied to many
instances of affective and social interaction analysis. We use
the knowledge provided by the annotators, the annotations
and their confidences in the form of weights, to estimate final
class labels and then use these to train classifiers. These an-
notation weights can be easily procured through an additional
question to the annotator. For experimental verification, we
apply it to the case of identifying dominant people in small
group (i.e. groups of size 3 to 6) conversations [8] from
nonverbal cues extracted from audio and video. To show the
importance of using annotator weights (in addition to their
decisions) in modeling annotators, we benchmark our model
in the presence and absence of this information on a recent,
publicly available corpus of group interactions (DOME) [2].
Finally, we compare it to the single-step model introduced
by Raykar et. al [13]. Although we discuss the results with
dominance data, the models can be used in other domains
requiring ground truth estimation from multiple annotators.

The paper is organized as follows. Section II presents
the related work. The objective of our work is given in
Section III. Section IV describes the proposed two stage
model along with two other models that are used to show
the motivations behind our model. We describe the audio and
visual nonverbal cues used to computationally characterize
dominance in group interactions in Section V. Results on
synthetic data and the DOME corpus are presented in Section
VI. Lastly, we conclude with ideas for future work in
Section VII.
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II. RELATED WORK

Rienks and Heylen [14] were among the first to study dom-
inance in group conversations using computational means.
More recently, Jayagopi et al. introduced a set of audio-visual
nonverbal features that could be used for detecting the most
dominant person in meetings [8] on a subset of the popular
Augmented Multi-Party Interaction (AMI) multimodal cor-
pus [5], for which multiple observers provided dominance
judgements. This study had several shortcomings. Firstly,
only meetings with majority and full agreement annotations
were used. This reduced the original data set to a smaller
size. Secondly, no analysis was done to detect whether there
were more than one dominant person in the meeting or
to define ways to detect them. Furthermore, the classifiers
used were not able to show complex relationships that could
have existed between different audio-visual features. As an
extension to this work, Aran and Gatica-Perez [1] presented
results on 10 hours of data using the same annotation pro-
cedure, but their method had similar limitations mentioned
above. They presented the use of rank and score based fusion
for multimodal fusion of audio-visual features to infer the
most dominant and least dominant person in the meeting.
While this method gives an improved performance, it does
not directly take into account all the knowledge provided by
the annotators and again, no analysis was done to determine
the number of dominant participants in a meeting.

While researchers working on computational tasks with
subjective annotations have mainly used the Kappa statistic
as a measure of annotation reliability [4], and estimated the
class labels via majority voting, some studies have attempted
to model multiple human judgements to estimate the under-
lying ”true” label. Smyth et al. [15] proposed an EM based
model to estimate the reliability of the annotators on an
image labeling task. Raykar et. al. [13] recently introduced
a method for modeling annotators to obtain estimates of the
true class label while jointly modeling a classifier. Their
method jointly modeled a classifier using the features and the
annotations. The method was validated against several data
sets, with a main focus on datasets involving the detection of
tumors. Whitehill et al. proposed another EM-based approach
for modeling multiple annotators on an image labeling task,
to jointly infer the image label, the expertise of each anno-
tator, and the difficulty of the image [16].

To our knowledge, no such methods have been applied
to modeling annotations for social interaction data. Addi-
tionally, the single-step approach of jointly modeling the
classifier and the annotations [13] does not incorporate the
confidence expressed by the annotators. In the area of human
interaction analysis, one of the objectives is to find new
features that can be used for further analysis (e.g. detecting
dominance, personality traits, etc). This means that the intro-
duction of a new feature requires re-modeling the annotators,
since there is a close coupling between the input features and
the annotator knowledge in this model. Although there are
other works in the literature that attempt to first estimate
the labels and then learn a classifier [15], their approach

to estimate the ground truth does not take the annotator
confidences into account. Therefore, our proposed two-step
system poses several advantages. Firstly, it allows to include
annotation weights into the framework to explicitly model
the dependency of the annotations on the “difficulty” of the
task, as defined by the annotation weights. Secondly, it allows
to train classifiers that use audio-visual features in a separate
step, enabling us to compare the results of classifier with a
“derived ground truth”. Moreover, the separate classification
step gives the flexibility of using any classification method,
without a need to directly connect it to the annotator model.

III. THE TASK

Our objective in this work is to estimate binary domi-
nance level labels of participants in small group conver-
sations using nonverbal audio and visual cues, while at
the same time incorporating annotators knowledge into the
estimation framework. We use the publicly available DOME
corpus 1 [2], which includes dominance annotations on five-
minute meeting segments selected from the AMI corpus [5].
Each meeting has four participants, and is recorded with
multiple cameras and microphones. We define our dominance
estimation task as a binary classification task: Whether a
participant in a meeting is dominant or not. However, the
models we present in this paper are not limited to a specific
group size or to the task of dominance estimation.

The DOME corpus contains 125 meeting segments, each
annotated by three annotators. Each annotator filled a ques-
tionnaire and ranked the participants between 1 and 4,
according to their level of perceived dominance (1 be-
ing the most dominant). Besides the dominance ranks, the
annotators were also asked to give a dominance weight
to each participant. They distributed 10 points among the
participants reflecting their impression of relative dominance
displayed during the meeting, with more units signifying
higher dominance in this setting. Two or more people may
have the same weight.

IV. THE MODEL

We first introduce the two stage model (Model I) that
we propose for use with social interaction data. Next, we
describe a model that does not use annotation weights to
estimate the label values (Model II), to study the importance
of having additional information from the annotators. Finally,
we also present the model introduced by Raykar et al. [13]
(Model III) for validating our experiments.

A. Model for Dominance Detection using Annotators’
Knowledge (Model I)

For our task, we use a two-stage model. The flowchart
of the model is given in Fig. 1. The first stage involves the
modeling of annotators (hereafter called the A-model). The
A-model is used to obtain the class label estimates, that can
be used as ground truth for further analysis. We consider
two kinds of information in the annotations: (i) The label

1http://www.idiap.ch/scientific_research/
resources/dome
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Fig. 1: The proposed two-stage model.

indicating the choice of the annotator for the most dominant
person (i.e. the person having rank 1), with other participants
(having lower ranks) in the meeting being labeled as not
dominant; and (ii) the relative weight for the participants
in the meeting. For example, we could have the following
annotation by three annotators:

A =
[

1 0 0 0 0 1 0 0 1 0 0 0
]
, (1)

W =
[

5 3 1 1 4 3 2 1 4 4 1 1
]
, (2)

where A, W are the binary valued annotation ranks and
the annotation (dominance) weights, respectively, and the
vertical lines partition the annotations by the three annotators.

The A-model provides the estimates of labels, which is
then used in the second stage of our model, in order to train a
classifier in a supervised manner, using audio-visual features
(the F-model).

1) A-Model: Consider R annotators and N data points.
Let y be the “true” label and yj be the label assigned by
the j-th annotator. The A-Model is defined in terms of the
sensitivity αj and specificity βj , defined as:

αj = Pr[yj = 1|y = 1], βj = Pr[yj = 0|y = 0]. (3)

Further, we can model the influence of the annotation
weights on the output label as a logistic sigmoid as:

Pr[y = 1|x,w] = σ(wT x), (4)

where x ∈ RR×1 is the set of dominance weights obtained
from all the R annotators and w is the set of weights for
the logistic regression model. The logistic sigmoid function
is defined as σ(z) = 1/(1 + e−z).

We can also set a beta prior on αj and βj , and a Gaussian
prior on w to get:

Pr[αj |aj1, a
j
2] = Beta[αj |aj1a

j
2], (5)

Pr[βj |bj1, b
j
2] = Beta[βj |bj1b

j
2], (6)

Pr[w] = N (w|0,Γ−1), (7)

where aj1, a
j
2, b

j
1, b

j
2, and Γ are the hyperparameters for α, β,

and w respectively. For our work, we choose the hyperpa-
rameters of α and β to be 1, since we have no reason to favor
one annotator over the others. Γ was chosen empirically. The
MAP estimate of the parameters is obtained as:

θ̂MAP = arg max
θ
{ln Pr[D|θ] + ln Pr[θ]} (8)

where Pr[D|θ] =

N∏
i=1

Pr[y1i , ..., y
R
i |xi, θ]

=

N∏
i=1

Pr[y1i , ..., y
R
i |yi = 1, α]Pr[yi = 1|xi, θ]+

Pr[y1i , ..., y
R
i |yi = 0, β]Pr[yi = 0|xi, θ].

(9)

Here, D = {xi, y11 ..., yRi }Ni=1. The parameter set, θ =
{α, β,w}, can be estimated using a combination of EM and
Newton-Raphson update [13]. This in turn can be used to
obtain probabilistic estimates of the labels, {µi}Ni=1, where

µi = Pr[yi = 1|y11 , ..., yRi , xi, θ]. (10)

This procedure is similar to the method proposed by
Raykar et al. [13], with the difference that annotator confi-
dences are used in place of features for estimating the labels.

2) F-Model: The F-Model uses the estimated label values,
{µi}Ni=1 to train a classifier using the audio-visual features
{fi}Ni=1 as inputs. Since we use a separate stage for using
the audio visual features, we first threshold the labels into
binary class labels (either 0 or 1) and then use a classifier for
classification. In our experiments, we use a Support Vector
Machine (SVM) with radial basis kernel to achieve this.

B. Model with Annotator Labels Only (Model II)

In order to emphasize the importance of the use of
annotation weights estimated by the annotators in the model,
we also altered our original model to use only the annotator
labels, to get the A-model. Since for our original model, we
are choosing a uniform prior for the sensitivity/selectivities,
for this model, we can compute the ML estimate instead of
the MAP estimate for comparison. We therefore maximize

θ̂ML = arg max
θ
{ln Pr[D|θ]}, (11)

where D = {y11 ..., yRi }Ni=1 and θ = {α, β} is the parameter
set. Pr[D|θ] is defined as:

Pr[D|θ] =

N∏
i=1

1

2
(pi + qi), (12)

pi = Pr[{yri }Rr=1|yi = 1, α] =

R∏
j=1

[αj ]y
j
i [1− αj ]1−y

j
i , (13)

qi = Pr[{yri }Rr=1|yi = 0, β] =

R∏
j=1

[βj ]1−y
j
i [1− βj ]y

j
i . (14)

We get the update equations as follows:

E-Step: µi = Pr[yi = 1|{yri }Rr=1, θ] =
pi

pi + qi
(15)

M-Step: αj =

∑N
i=1 µiy

j
i∑N

i=1 µi
, βj =

∑N
i=1(1− µi)(1− yji )∑N

i=1(1− µi)
(16)

The resulting model is similar to the model proposed in [15].

C. Integrated Single-Step Model (Model III)

As a third model, we model the annotators and audio-
visual features jointly, similar to the work of Raykar et al.
[13]. The objective of this is to compare the selectivity and
sensitivities of annotators as well as the estimated labels with
that of our original model.



V. MULTIMODAL NONVERBAL FEATURES

Social psychologists have found that dominance is often
displayed via audio and visual cues such as speaking time,
turns, interruptions, pitch, visual activity, expressions, and
gaze [10], [6]. In connection to these nonverbal cues, we
extract the following audio and visual features as descriptors
of dominance. The exact definitions and the details of the
features have been given by other authors (Jayagopi et. al.
[8], and Aran and Gatica-Perez [1]).

A. Audio Features
For the audio features, we used recordings from close-talk

microphones attached to each participant in the meetings and
based on speaker segmentation, we extracted the following
features that characterize basic turn taking attributes: speak-
ing length, speaking turns, turns without short utterances,
average speaker turn duration, successful interruptions, and
speaker floor grabs.

B. Visual Activity Features
We processed the close-up camera video data (4 cameras,

one per person) to estimate the total activity of each person in
each frame with standard computer vision techniques, such
as skin color detection and motion estimation, and extracted
the following features: visual activity length, visual activity
turns, turns without short movements, average visual activity
turn duration, visual activity interruptions, and visual activity
floor grabs. These features can be considered analogous to
turn taking features in speech.

C. Audio-Visual Features
We also use Audio-Visual (AV) multimodal features,

which are defined as the visual activity features of a person
while speaking (i.e. all frames when people are silent are not
considered). These features are multimodal as both audio and
visual modalities are taken into account during the extraction:
AV length, AV turns, turns without short movements, average
AV turn duration, AV interruptions, and AV floor grabs.

VI. EXPERIMENTAL SETUP AND RESULTS

We performed our experiments on two datasets: a synthetic
dataset and the DOME corpus for dominance estimation.
The synthetic dataset is specifically used for validating our
model’s performance with respect to a golden ground truth,
as the golden ground truth does not exist for the dominance
estimation task (and often when analysing many other social
traits), given that it is based on human judgements.

A. Results on Synthetic Data
To generate the synthetic data, we defined a new task

on the DOME corpus as follows: “Determine whether the
participant is visually more active than the average group
activity”. Following the task definition, we use the visual
activity length (VL) feature as the basis for generating the
ground truth and the ground truth weights. In principle, any
other feature could have also been chosen by changing the
task definition. To generate the ground truth, the value of
VL for each participant was normalized by the total visual
activity in the meeting (nF ) and participants showing more

than 25% of the total activity in the meeting were assigned
label yi = 1 as being “visually active”:

yi =

{
1, if nFi > 0.25,
0, otherwise.

(17)

The annotations were then generated for R = 3 annotators,
from the ground truth by randomly inverting values based
on the sensitivity/selectivity of annotators. The weights given
by these annotators were computed by adding noise to the
ground truth weights, while satisfying two constraints: (i) It
should be greater than zero and (ii) Distortion must be more
for an annotator with lower value of sensitivity/selectivity.
The procedure for doing this is given in Algorithm 1. Note
that the annotator weights for this data is real valued as
opposed to the discrete valued weights used in real anno-
tations. We simulated three annotators, in order to keep the

Algorithm 1 Algorithm to generate artificial annotations

Inputs:
M : # of meetings, G : # of participants/meeting
R : # of annotators, {(αj = βj) = γj}Rj=1

GT ∈ RM×G : Ground truth
nF ∈ RM×G : Ground truth weights
Output:
{Yj ∈ RM×G}Rj=1 : Labels given by annotators
{Xj ∈ RM×G}Rj=1 : Weights given by annotators
for j = 1 to R do
Yj = GT
Xj = nF + min(nF )× (1− γj) ∗ (rnd(M,G)− 0.5)
T ←rnd(M,G) ∈ RM×G

for i = 1 to M do
for k = 1 to G do

if T (i, k) >= γj then
Yj(i, k)←!Yj(i, k)

similarity to the DOME corpus. As the data used to generate
the simulation is from the DOME corpus, the amount of data
is the same: we have 125 four-person meetings in total.

To study the effect of different values for annotator
sensitivity and selectivity, we varied these parameters and
calculated the accuracy of the estimated labels and the Root
Mean Square (RMS) error of the estimated parameters with
respect to the ground truth. The estimated labels are calcu-
lated using the A-model from Models I and II. For simplicity,
we assumed that for each annotator j, the sensitivity and
selectivity values are equal (αj = βj = γj). The results for
all our experiments were based on the mean value obtained
for 10 independent trials.

For our experiments, we kept two annotators constant
(by setting γ1 = γ2 = ∆ and varied the parameter γ3
for the third annotator. The experiments were repeated for
∆ = {0.6, 0.7, 0.8, 0.9, 1}. The mean F-measure for the label
estimation task was calculated by averaging 10 independent
trials for different parameter values. The results are given in
Fig. 2(a). It is clear from the figures that Model I outperforms
Models II and III in all cases. For a simpler presentation, we
also show the mean F-measure averaged across all γ3 values
for a given ∆, for the three models and also the majority
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voting case, in Fig. 2(b). An interesting result we see is that
the exclusion of VL when training Model III (which uses the
features) causes the label estimation accuracy to drop below
that of Model II, but its inclusion improves it beyond that
of Model II. This is an expected result as the ground truth
has been derived from the VL feature. In either case Model
I outperforms other models, and all models outperform the
majority voting case.

Further, we see that the performance of all models dips
around γ3 = 0.5. This is an interesting result as γ3 = 0.5
corresponds to the case in which approximately 50% of the
samples are wrongly annotated. This shows that the models
have successfully used or discarded information given by the
third annotator for γ > 0.5 and γ < 0.5 respectively.

Next, we plotted the RMS error in the A-model parameter
estimation averaged across all γ3 values, for a given value
of ∆. The RMS error is computed using the equation:

e
(RMS)
K =

√∑R
j=1 (α̂j

(K)−γGT )2+(β̂j
(K)−γGT )2

2×R , (18)

where K corresponds to either Model I or Model II,
γGT = 1 is the ground truth specificity/sensitivity,

α̂
(K)
j , β̂

(K)
j are the estimated parameters for annotator j for

model K, and R is the number of annotators. The results are
given in Fig. 3. We see that Model I outperforms both Models
II and III. Also, the errors converge for ∆ = γ3 = 1. This is
expected as the annotations are very clean in this case and
the additional information given in the form of annotation
weights or other features is not required. Interestingly, the
model errors for Model III were greater than that of Model II,
even though Model III trained with VL included performed
better than model II in terms of label estimation accuracy.
Also, the RMS errors for Model III when VL is not used
were higher. This suggests that inclusion of features that do
not perfectly contain the same information as VL distorts the
model estimation process. An important implication of this
result is that an integrated model as suggested by Raykar
et.al. [13] works better when the features are not noisy. This
further justifies the use of our two stage model for the next
experiment on the DOME corpus with real annotators.

B. Results on the DOME corpus
The DOME corpus contains 14 groups of annotators and

26 meetings have been annotated on average by each group.
For Model I, we chose a beta prior that corresponds to a
uniform distribution (in (5) and (6)) as we have no reason
to initially favor one annotator over the other. The value of
the prior for weights (Γ−1) in (7) was varied and Γ = 0.05
was found to be good. For Models I and II, we trained one
A-model per annotator group in the first stage. In the second
stage, we used all the estimated labels together to train the
classifier that uses audio-visual cues described in Section V.
Since our data set size was moderate (125 × 4 = 500 data
samples), we used leave-one-out cross validation to get the
average performance. A threshold of 0.5 was used to obtain
the class labels for training the SVMs in the second stage.

The results are given in Table I. We report the mean F-
measure for Model I and II for different feature sets: audio,
visual, audio-visual, feature level fusion of audio and video,
and feature level fusion of all feature sets. F-Measure was
chosen as a performance metric because of the imbalance in



TABLE I: Performance of F-model on audio-visual features
Feature Set Mean F-Measure

Model I Model II

Audio (A) 0.78 0.77
Video (V) 0.71 0.73

Audio-Visual (AV) 0.77 0.77
A+V+AV 0.43 0.45

A + V 0.64 0.68
Baseline 0.40 0.41

the class sizes as accuracy does not take this into account.
The baseline reflects the case where a classifier assigns the
label of the largest class to each data sample. Interestingly,
we found that both models gave us similar performance. In
all cases, the models performed better than random.

In order to facilitate further comparisons between these
models, we used Model III to obtain label estimates by
jointly modeling features and annotations. We only used the
audio features for training Model III since they gave the
highest performance in our previous experiment. We com-
puted the RMS difference between the A-Model parameters
of Model I and Models II and III using:

e
(RMS)
K,L =

√∑R
j=1 (α̂j

(K)−α̂j
(L))2+(β̂j

(K)−β̂j
(L)

)2

2×R , (19)

where K refers to either Model II or Model III, L refers
to Model I, and α̂j , β̂j are the estimated parameters for
annotator j and R is the total number of annotators. We
computed the median value of the RMS difference (Given in
Table II). The RMS difference between models I and II is
larger than I and III. The trends in the results tally with that
obtained using synthetic data. Table III shows the difference
in the estimated labels between the three models. We see that
the label estimates of Model II and III are quite similar, and
Model I estimates are closer to Model III than Model II.

TABLE II: Median value of RMS difference in annotator
model parameters with respect to Model I

Model II Model III

Median of RMS 0.067 0.033

TABLE III: Difference in estimated labels between
different models

I & II I & III II & III

Difference (%) 4.8 2.8 4.0

VII. CONCLUSION

In the context of social interaction analysis, we have
addressed the open problem of modeling annotators’ knowl-
edge to obtain estimates of the ground truth and then training
a classifier, in a two stage process. This enables us to
use the “derived ground truth” for modeling the data using
audio/visual features separately. This is useful in the area
of human interaction analysis and more generally in other
studies that use annotations from multiple annotators. Also,
from our experiments, it is clear that annotation weights, as
used here, are quite useful for the estimation of labels.

By using our proposed approach, all the annotated data
can be utilized, since there is no requirement for a majority
agreement. We also formulated the task as a binary classifi-
cation task for the dominance of each participant, removing
the restriction that there could be only one person showing
dominance, that was assumed in previous works [1], [8], [2].
Our best model used audio (A) cues, with a performance
measure of 0.78, against a baseline of 0.4.

In the future, we would like to study the relationship
between the results obtained for the annotator models and
inter-rater agreement values such as Cohen’s Kappa value.
Further, we would like to learn more parameters that could
help us understand the quality of the data and annotators,
such as the difficulty of labeling a sample and the dependence
of labeling accuracy on characteristics of the data. Further,
in this study, we used annotator weights as a representation
for annotator confidences. We would like to investigate how
different confidence representations can be used to improve
label estimates. Applying this method to other forms of social
data is another dimension of further investigation.
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