67 research outputs found

    Unified Pretraining Target Based Video-music Retrieval With Music Rhythm And Video Optical Flow Information

    Full text link
    Background music (BGM) can enhance the video's emotion. However, selecting an appropriate BGM often requires domain knowledge. This has led to the development of video-music retrieval techniques. Most existing approaches utilize pretrained video/music feature extractors trained with different target sets to obtain average video/music-level embeddings. The drawbacks are two-fold. One is that different target sets for video/music pretraining may cause the generated embeddings difficult to match. The second is that the underlying temporal correlation between video and music is ignored. In this paper, our proposed approach leverages a unified target set to perform video/music pretraining and produces clip-level embeddings to preserve temporal information. The downstream cross-modal matching is based on the clip-level features with embedded music rhythm and optical flow information. Experiments demonstrate that our proposed method can achieve superior performance over the state-of-the-art methods by a significant margin

    Clustering Approaches for Multi-source Entity Resolution

    Get PDF
    Entity Resolution (ER) or deduplication aims at identifying entities, such as specific customer or product descriptions, in one or several data sources that refer to the same real-world entity. ER is of key importance for improving data quality and has a crucial role in data integration and querying. The previous generation of ER approaches focus on integrating records from two relational databases or performing deduplication within a single database. Nevertheless, in the era of Big Data the number of available data sources is increasing rapidly. Therefore, large-scale data mining or querying systems need to integrate data obtained from numerous sources. For example, in online digital libraries or E-Shops, publications or products are incorporated from a large number of archives or suppliers across the world or within a specified region or country to provide a unified view for the user. This process requires data consolidation from numerous heterogeneous data sources, which are mostly evolving. By raising the number of sources, data heterogeneity and velocity as well as the variance in data quality is increased. Therefore, multi-source ER, i.e. finding matching entities in an arbitrary number of sources, is a challenging task. Previous efforts for matching and clustering entities between multiple sources (> 2) mostly treated all sources as a single source. This approach excludes utilizing metadata or provenance information for enhancing the integration quality and leads up to poor results due to ignorance of the discrepancy between quality of sources. The conventional ER pipeline consists of blocking, pair-wise matching of entities, and classification. In order to meet the new needs and requirements, holistic clustering approaches that are capable of scaling to many data sources are needed. The holistic clustering-based ER should further overcome the restriction of pairwise linking of entities by making the process capable of grouping entities from multiple sources into clusters. The clustering step aims at removing false links while adding missing true links across sources. Additionally, incremental clustering and repairing approaches need to be developed to cope with the ever-increasing number of sources and new incoming entities. To this end, we developed novel clustering and repairing schemes for multi-source entity resolution. The approaches are capable of grouping entities from multiple clean (duplicate-free) sources, as well as handling data from an arbitrary combination of clean and dirty sources. The multi-source clustering schemes exclusively developed for multi-source ER can obtain superior results compared to general purpose clustering algorithms. Additionally, we developed incremental clustering and repairing methods in order to handle the evolving sources. The proposed incremental approaches are capable of incorporating new sources as well as new entities from existing sources. The more sophisticated approach is able to repair previously determined clusters, and consequently yields improved quality and a reduced dependency on the insert order of the new entities. To ensure scalability, the parallel variation of all approaches are implemented on top of the Apache Flink framework which is a distributed processing engine. The proposed methods have been integrated in a new end-to-end ER tool named FAMER (FAst Multi-source Entity Resolution system). The FAMER framework is comprised of Linking and Clustering components encompassing both batch and incremental ER functionalities. The output of Linking part is recorded as a similarity graph where each vertex represents an entity and each edge maintains the similarity relationship between two entities. Such a similarity graph is the input of the Clustering component. The comprehensive comparative evaluations overall show that the proposed clustering and repairing approaches for both batch and incremental ER achieve high quality while maintaining the scalability

    CICHMKG: a large-scale and comprehensive Chinese intangible cultural heritage multimodal knowledge graph

    Get PDF
    Intangible Cultural Heritage (ICH) witnesses human creativity and wisdom in long histories, composed of a variety of immaterial manifestations. The rapid development of digital technologies accelerates the record of ICH, generating a sheer number of heterogenous data but in a state of fragmentation. To resolve that, existing studies mainly adopt approaches of knowledge graphs (KGs) which can provide rich knowledge representation. However, most KGs are text-based and text-derived, and incapable to give related images and empower downstream multimodal tasks, which is also unbeneficial for the public to establish the visual perception and comprehend ICH completely especially when they do not have the related ICH knowledge. Hence, aimed at that, we propose to, taking the Chinese nation-level ICH list as an example, construct a large-scale and comprehensive Multimodal Knowledge Graph (CICHMKG) combining text and image entities from multiple data sources and give a practical construction framework. Additionally, in this paper, to select representative images for ICH entities, we propose a method composed of the denoising algorithm (CNIFA) and a series of criteria, utilizing global and local visual features of images and textual features of captions. Extensive empirical experiments demonstrate its effectiveness. Lastly, we construct the CICHMKG, consisting of 1,774,005 triples, and visualize it to facilitate the interactions and help the public dive into ICH deeply

    DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines

    Get PDF
    Integrated data analysis (IDA) pipelines—that combine data management (DM) and query processing, high-performance computing (HPC), and machine learning (ML) training and scoring—become increasingly common in practice. Interestingly, systems of these areas share many compilation and runtime techniques, and the used—increasingly heterogeneous—hardware infrastructure converges as well. Yet, the programming paradigms, cluster resource management, data formats and representations, as well as execution strategies differ substantially. DAPHNE is an open and extensible system infrastructure for such IDA pipelines, including language abstractions, compilation and runtime techniques, multi-level scheduling, hardware (HW) accelerators, and computational storage for increasing productivity and eliminating unnecessary overheads. In this paper, we make a case for IDA pipelines, describe the overall DAPHNE system architecture, its key components, and the design of a vectorized execution engine for computational storage, HW accelerators, as well as local and distributed operations. Preliminary experiments that compare DAPHNE with MonetDB, Pandas, DuckDB, and TensorFlow show promising results

    Temporal Action Localization with Enhanced Instant Discriminability

    Full text link
    Temporal action detection (TAD) aims to detect all action boundaries and their corresponding categories in an untrimmed video. The unclear boundaries of actions in videos often result in imprecise predictions of action boundaries by existing methods. To resolve this issue, we propose a one-stage framework named TriDet. First, we propose a Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. Then, we analyze the rank-loss problem (i.e. instant discriminability deterioration) in transformer-based methods and propose an efficient scalable-granularity perception (SGP) layer to mitigate this issue. To further push the limit of instant discriminability in the video backbone, we leverage the strong representation capability of pretrained large models and investigate their performance on TAD. Last, considering the adequate spatial-temporal context for classification, we design a decoupled feature pyramid network with separate feature pyramids to incorporate rich spatial context from the large model for localization. Experimental results demonstrate the robustness of TriDet and its state-of-the-art performance on multiple TAD datasets, including hierarchical (multilabel) TAD datasets.Comment: An extended version of the CVPR paper arXiv:2303.07347, submitted to IJC
    • …
    corecore