2,174 research outputs found

    Improvement of a security enhanced one-time two-factor authentication and key agreement scheme

    Get PDF
    AbstractIn 2010, Hölbl et al. showed that Shieh et al.’s mutual authentication and key agreement scheme is vulnerable to the smart card lost attack, not achieving perfect forward secrecy, and proposed a security enhanced scheme to eliminate these weaknesses. In this paper, we show that Hölbl et al.’s security enhancement is still vulnerable to the smart card lost attacks. In addition, their scheme cannot resist impersonation attacks and parallel session attacks. Seeing that the existing mutual authentication schemes using smart cards are almost vulnerable to the smart card lost attacks, we further propose a new one-time two-factor mutual authentication and key agreement scheme to eliminate these weaknesses

    A review and cryptanalysis of similar timestamp-based password authentication schemes using smart cards

    Get PDF
    The intent of this paper is to review some timestampbased password authentication schemes using smart cards which have similar working principles. Many of the proposed timestampbased password authentication schemes were subsequently found to be insecure. Here, we investigate three schemes with similar working principles, show that they are vulnerable to tricky forgery attacks, and thus they fail to ensure the level of security that is needed for remote login procedure using smart cards. Though there are numerous works available in this field, to the best of our knowledge this is the first time we have found some critical flaws in these schemes that were not detected previously. Along with the proofs of their flaws and inefficiencies, we note down our solution which could surmount all sorts of known attacks and thus reduces the probability of intelligent forgery attacks. We provide a detailed literature review how the schemes have been developed and modified throughout years. We prove that some of the schemes which so far have been thought to be intractable are still flawed, in spite of their later improvements

    On Security Analysis of Recent Password Authentication and Key Agreement Schemes Based on Elliptic Curve Cryptography

    Get PDF
    Secure and efficient mutual authentication and key agreement schemes form the basis for any robust network communication system. Elliptic Curve Cryptography (ECC) has emerged as one of the most successful Public Key Cryptosystem that efficiently meets all the security challenges. Comparison of ECC with other Public Key Cryptosystems (RSA, Rabin, ElGamal) shows that it provides equal level of security for a far smaller bit size, thereby substantially reducing the processing overhead. This makes it suitable for constrained environments like wireless networks and mobile devices as well as for security sensitive applications like electronic banking, financial transactions and smart grids. With the successful implementation of ECC in security applications (e-passports, e-IDs, embedded systems), it is getting widely commercialized. ECC is simple and faster and is therefore emerging as an attractive alternative for providing security in lightweight device, which contributes to its popularity in the present scenario. In this paper, we have analyzed some of the recent password based authentication and key agreement schemes using ECC for various environments. Furthermore, we have carried out security, functionality and performance comparisons of these schemes and found that they are unable to satisfy their claimed security goals

    Cryptanalysis and improvement of chen-hsiang-shih's remote user authentication scheme using smart cards

    Get PDF
    Recently, Chen-Hsiang-Shih proposed a new dynamic ID-based remote user authentication scheme. The authors claimed that their scheme was more secure than previous works. However, this paper demonstrates that theirscheme is still unsecured against different kinds of attacks. In order to enhance the security of the scheme proposed by Chen-Hsiang-Shih, a new scheme is proposed. The scheme achieves the following security goals: without verification table, each user chooses and changes the password freely, each user keeps the password secret, mutual authentication, the scheme establishes a session key after successful authentication, and the scheme maintains the user's anonymity. Security analysis and comparison demonstrate that the proposed scheme is more secure than Das-Saxena-Gulati's scheme, Wang et al.'s scheme and Chen-Hsiang-Shih.Peer ReviewedPostprint (published version

    A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Get PDF
    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme
    corecore