6 research outputs found

    A parallel hypothesis method of autonomous underwater vehicle navigation

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2009This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating information that is not normally used. The parallel hypothesis method allows the in-situ identification of acoustic multipath time-of-flight measurements between a vehicle and an external transponder and uses them in real-time to augment the navigation algorithm during periods when direct-path time-of-flight measurements are not available. A proof of concept was conducted using real-world data obtained by the Woods Hole Oceanographic Institution Deep Submergence Lab's Autonomous Benthic Explorer (ABE) and Sentry autonomous underwater vehicles during operations on the Juan de Fuca Ridge. This algorithm uses a nested architecture to break the navigation solution down into basic building blocks for each type of available external information. The algorithm classifies external information as either line of position or gridded observations. For any line of position observation, the algorithm generates a multi-modal block of parallel position estimate hypotheses. The multimodal hypotheses are input into an arbiter which produces a single unimodal output. If a priori maps of gridded information are available, they are used within the arbiter structure to aid in the elimination of false hypotheses. For the proof of concept, this research uses ranges from a single external acoustic transponder in the hypothesis generation process and grids of low-resolution bathymetric data from a ship-based multibeam sonar in the arbitration process. The major contributions of this research include the in-situ identification of acoustic multipath time-of-flight measurements, the multiscale utilization of a priori low-resolution bathymetric data in a high-resolution navigation algorithm, and the design of a navigation algorithm with a exible architecture. This flexible architecture allows the incorporation of multimodal beliefs without requiring a complex mechanism for real-time hypothesis generation and culling, and it allows the real-time incorporation of multiple types of external information as they become available in situ into the overall navigation solution

    Informationsfusion für die kooperative Umfeldwahrnehmung vernetzter Fahrzeuge

    Get PDF
    Kooperative Fahrzeugentscheidungen erfordern eine gemeinsame, konsistente Wahrnehmung. Dazu werden Fusionsmethoden für kommunizierte Eigen- und Umfeldinformationen entwickelt und erprobt. Die Registrierung in gemeinsame Koordinaten erfolgt nach Lokalisierung durch fusionierte GPS- und Koppelnavigationsdaten. Die dezentrale Fusion kombiniert rekursive Multi-Objekt-Verfolgung und gitterbasierte Karte. So können negative Sensorevidenzen beschrieben und Inkonsistenzen plausibilisiert werden

    Informationsfusion für die kooperative Umfeldwahrnehmung vernetzter Fahrzeuge

    Get PDF
    Kooperative Fahrzeugentscheidungen erfordern eine gemeinsame, konsistente Wahrnehmung. Dazu werden Fusionsmethoden für kommunizierte Eigen- und Umfeldinformationen entwickelt und erprobt. Die Registrierung in gemeinsame Koordinaten erfolgt nach Lokalisierung durch fusionierte GPS- und Koppelnavigationsdaten. Die dezentrale Fusion kombiniert rekursive Multi-Objekt-Verfolgung und gitterbasierte Karte. So können negative Sensorevidenzen beschrieben und Inkonsistenzen plausibilisiert werden

    Efficient planning under uncertainty with macro-actions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-168).Planning in large, partially observable domains is challenging, especially when good performance requires considering situations far in the future. Existing planners typically construct a policy by performing fully conditional planning, where each future action is conditioned on a set of possible observations that could be obtained at every timestep. Unfortunately, fully-conditional planning can be computationally expensive, and state-of-the-art solvers are either limited in the size of problems that can be solved, or can only plan out to a limited horizon. We propose that for a large class of real-world, planning under uncertainty problems, it is necessary to perform far-lookahead decision-making, but unnecessary to construct policies that condition all actions on observations obtained at the previous timestep. Instead, these problems can be solved by performing semi conditional planning, where the constructed policy only conditions actions on observations at certain key points. Between these key points, the policy assumes that a macro-action - a temporally-extended, fixed length, open-loop action sequence, comprising a series of primitive actions, is executed. These macro-actions are evaluated within a forward-search framework, which only considers beliefs that are reachable from the agent's current belief under different actions and observations; a belief summarizes an agent's past history of actions and observations. Together, semi-conditional planning in a forward search manner restricts the policy space in exchange for conditional planning out to a longer-horizon. Two technical challenges have to be overcome in order to perform semi-conditional planning efficiently - how the macro-actions can be automatically generated, as well as how to efficiently incorporate the macro action into the forward search framework. We propose an algorithm which automatically constructs the macro-actions that are evaluated within a forward search planning framework, iteratively refining the macro actions as more computation time is made available for planning. In addition, we show that for a subset of problem domains, it is possible to analytically compute the distribution over posterior beliefs that result from a single macro-action. This ability to directly compute a distribution over posterior beliefs enables us to enjoy computational savings when performing macro-action forward search. Performance and computational analysis for the algorithms proposed in this thesis are presented, as well as simulation experiments that demonstrate superior performance relative to existing state-of-the-art solvers on large planning under uncertainty domains. We also demonstrate our planning under uncertainty algorithms on target-tracking applications for an actual autonomous helicopter, highlighting the practical potential for planning in real-world, long-horizon, partially observable domains.by Ruijie He.Ph.D

    Learning Search Strategies from Human Demonstrations

    Get PDF
    Decision making and planning with partial state information is a problem faced by all forms of intelligent entities. The formulation of a problem under partial state information leads to an exorbitant set of choices with associated probabilistic outcomes making its resolution difficult when using traditional planning methods. Human beings have acquired the ability of acting under uncertainty through education and self-learning. Transferring our know-how to artificial agents and robots will make it faster for them to learn and even improve upon us in tasks in which incomplete knowledge is available, which is the objective of this thesis. We model how humans reason with respect to their beliefs and transfer this knowledge in the form of a parameterised policy, following a Programming by Demonstration framework, to a robot apprentice for two spatial navigation tasks: the first task consists of localising a wooden block on a table and for the second task a power socket must be found and connected. In both tasks the human teacher and robot apprentice only rely on haptic and tactile information. We model the human and robot's beliefs by a probability density function which we update through recursive Bayesian state space estimation. To model the reasoning processes of human subjects performing the search tasks we learn a generative joint distribution over beliefs and actions (end-effector velocities) which were recorded during the executions of the task. For the first search task the direct mapping from belief to actions is learned whilst for the second task we incorporate a cost function used to adapt the policy parameters in a Reinforcement Learning framework and show a considerable improvement over solely learning the behaviour with respect to the distance taken to accomplish the task. Both search tasks above can be considered as active localisation as the uncertainty originates only from the position of the agent in the world. We consider searches in which both the position of the robot and features of the environment are uncertain. Given the unstructured nature of the belief a histogram parametrisation of the joint distribution of the robots position and features is necessary. However, naively doing so becomes quickly intractable as the space and time complexity is exponential. We demonstrate that by only parametrising the marginals and by memorising the parameters of the measurement likelihood functions we can recover the exact same solution as the naive parametrisations at a cost which is linear in space and time complexity

    Further Studies On The Use Of Negative Information In Mobile Robot Localization ∗

    No full text
    Abstract — This paper deals with how the absence of an expected sensor reading can be used to improve Markov localization. Negative information has not been used for robot localization for various reasons like sensor imperfections, and occlusions that make it hard to determine if a missing sensor reading is really caused by the absence of a feature. We address these difficulties by carefully modeling the robot’s main sensor, its camera. Taking into account the viewing frustum and detected obstacles, the absence of a sensor reading can be associated with the absence of that particular feature. This information can then be integrated into the localization process. We show the positive effect on robot localization in various experiments. (a) In a specific setup, the robot is able to localize using negative information where without it, it is unable to localize. (b) We demonstrate the importance of modeling occlusions and the impact of false negatives on localization. (c) We show the positive impact in a typical run
    corecore