16 research outputs found

    VLSI decoding architectures: flexibility, robustness and performance

    Get PDF
    Stemming from previous studies on flexible LDPC decoders, this thesis work has been mainly focused on the development of flexible turbo and LDPC decoder designs, and on the narrowing of the power, area and speed gap they might present with respect to dedicated solutions. Additional studies have been carried out within the field of increased code performance and of decoder resiliency to hardware errors. The first chapter regroups several main contributions in the design and implementation of flexible channel decoders. The first part concerns the design of a Network-on-Chip (NoC) serving as an interconnection network for a partially parallel LDPC decoder. A best-fit NoC architecture is designed and a complete multi-standard turbo/LDPC decoder is designed and implemented. Every time the code is changed, the decoder must be reconfigured. A number of variables influence the duration of the reconfiguration process, starting from the involved codes down to decoder design choices. These are taken in account in the flexible decoder designed, and novel traffic reduction and optimization methods are then implemented. In the second chapter a study on the early stopping of iterations for LDPC decoders is presented. The energy expenditure of any LDPC decoder is directly linked to the iterative nature of the decoding algorithm. We propose an innovative multi-standard early stopping criterion for LDPC decoders that observes the evolution of simple metrics and relies on on-the-fly threshold computation. Its effectiveness is evaluated against existing techniques both in terms of saved iterations and, after implementation, in terms of actual energy saving. The third chapter portrays a study on the resilience of LDPC decoders under the effect of memory errors. Given that the purpose of channel decoders is to correct errors, LDPC decoders are intrinsically characterized by a certain degree of resistance to hardware faults. This characteristic, together with the soft nature of the stored values, results in LDPC decoders being affected differently according to the meaning of the wrong bits: ad-hoc error protection techniques, like the Unequal Error Protection devised in this chapter, can consequently be applied to different bits according to their significance. In the fourth chapter the serial concatenation of LDPC and turbo codes is presented. The concatenated FEC targets very high error correction capabilities, joining the performance of turbo codes at low SNR with that of LDPC codes at high SNR, and outperforming both current deep-space FEC schemes and concatenation-based FECs. A unified decoder for the concatenated scheme is subsequently propose

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams

    Application-specific protocol architectures for wireless networks

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 145-154).In recent years, advances in energy-efficient design and wireless technologies have enabled exciting new applications for wireless devices. These applications span a wide range, including real-time and streaming video and audio delivery, remote monitoring using networked microsensors, personal medical monitoring, and home networking of everyday appliances. While these applications require high performance from the network, they suffer from resource constraints that do not appear in more traditional wired computing environments. In particular, wireless spectrum is scarce, often limiting the bandwidth available to applications and making the channel error-prone, and the nodes are battery-operated, often limiting available energy. My thesis is that this harsh environment with severe resource constraints requires an application-specific protocol architecture, rather than the traditional layered approach, to obtain the best possible performance. This dissertation supports this claim using detailed case studies on microsensor networks and wireless video delivery. The first study develops LEACH (Low-Energy Adaptive Clustering Hierarchy), an architecture for remote microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. This approach improves system lifetime by an order of magnitude compared to general-purpose approaches when the node energy is limited. The second study develops an unequal error protection scheme for MPEG-4 compressed video delivery that adapts the level of protection applied to portions of a packet to the degree of importance of the corresponding bits. This approach obtains better application-perceived performance than current approaches for the same amount of transmission bandwidth. These two systems show that application-specific protocol architectures achieve the energy and latency efficiency and error robustness needed for wireless networks.by Wendi Beth Heinzelman.Ph.D

    An Overview of the ATSC 3.0 Physical Layer Specification

    Full text link
    "(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")This paper provides an overview of the physical layer specification of Advanced Television Systems Committee (ATSC) 3.0, the next-generation digital terrestrial broadcasting standard. ATSC 3.0 does not have any backwards-compatibility constraint with existing ATSC standards, and it uses orthogonal frequency division multiplexing-based waveforms along with powerful low-density parity check (LDPC) forward error correction codes similar to existing state-of-the-art. However, it introduces many new technological features such as 2-D non-uniform constellations, improved and ultra-robust LDPC codes, power-based layered division multiplexing to efficiently provide mobile and fixed services in the same radio frequency (RF) channel, as well as a novel frequency pre-distortion multiple-input single-output antenna scheme. ATSC 3.0 also allows bonding of two RF channels to increase the service peak data rate and to exploit inter-RF channel frequency diversity, and to employ dual-polarized multiple-input multiple-output antenna system. Furthermore, ATSC 3.0 provides great flexibility in terms of configuration parameters (e.g., 12 coding rates, 6 modulation orders, 16 pilot patterns, 12 guard intervals, and 2 time interleavers), and also a very flexible data multiplexing scheme using time, frequency, and power dimensions. As a consequence, ATSC 3.0 not only improves the spectral efficiency and robustness well beyond the first generation ATSC broadcast television standard, but also it is positioned to become the reference terrestrial broadcasting technology worldwide due to its unprecedented performance and flexibility. Another key aspect of ATSC 3.0 is its extensible signaling, which will allow including new technologies in the future without disrupting ATSC 3.0 services. This paper provides an overview of the physical layer technologies of ATSC 3.0, covering the ATSC A/321 standard that describes the so-called bootstrap, which is the universal entry point to an ATSC 3.0 signal, and the ATSC A/322 standard that describes the physical layer downlink signals after the bootstrap. A summary comparison between ATSC 3.0 and DVB-T2 is also provided.Fay, L.; Michael, L.; Gómez Barquero, D.; Ammar, N.; Caldwell, MW. (2016). An Overview of the ATSC 3.0 Physical Layer Specification. IEEE Transactions on Broadcasting. 62(1):159-171. doi:10.1109/TBC.2015.2505417S15917162

    DRM analysis using a simulator of multiprocessor embedded system

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesOs sistemas multiprocessador são uma tecnologia emergente. O projecto Hijdra, que está a ser desenvolvido na “NXP semiconductors Research” é um sistema multiprocessador de tempo real que corre aplicações com constrangimentos do tipo “hard” e “soft”. Nestes sistemas, os processadores comunicam através de uma rede de silício. As aplicações que correm no sistema multiprocessador consistem em múltiplas tarefas que correm em processadores embutidos. Achar soluções para o mapeamento das tarefas é o maior problema destes sistemas. Uma aplicação para este sistema que tem vindo a ser estudada é o “Car Radio”. Esta dissertação diz respeito a uma aplicação de rádio digital (DRM) na arquitectura Hijdra. Neste contexto, uma aplicação de um receptor de DRM foi estudada. Um modelo de análise de “Data Flow” foi extraído a partir da aplicação, foi estudada a latência introduzida na rede de silício pela introdução de um novo processador (acelerador de Viterbi) e foi estudada a possibilidade do mapeamento das várias tarefas da aplicação em diferentes processadores a correr em paralelo. Muitas estratégias ainda ficaram por definir a fim de optimizar o desempenho da aplicação do receptor de DRM de modo a esta poder trabalhar de uma forma mais eficaz. ABSTRACT: Multiprocessor systems are an emerging technology. The Hijdra project being developed at NXP semiconductors Research is a multiprocessor system running with both hard and soft real time streaming media jobs. These jobs consist of multiple tasks running on embedded multiprocessors. Finding good solutions for job mapping is the main problem of these systems. One application which has being studied for Hijdra is the “Car Radio”. This thesis concerns the study of a digital radio receptor application (DRM) in Hijdra architecture. In this context, a data flow model of analysis was extracted from the application, the latency introduced by the addition of a new tile (Viterbi accelerator) and eventual speed gains were studied and the possibility of mapping the different tasks of the application in different processors was foreseen. Many strategies were yet to be defined in order to optimize the application performance so it can work more effectively in the multiprocessor system

    Dynamic Code Selection Method for Content Transfer in Deep Space Network

    Get PDF
    Space communications feature large round-trip time delays (for example, between 6.5 and 44 minutes for Mars to Earth and return, depending on the actual distance between the two planets) and highly variable data error rates, for example, bit error rate (BER) of 10−5 is very comand even higher BERs on the order of 10−1 is observed in the deep- space environment. We develop a new content transfer protocol based on RaptorQ codes and turbo codes together with a real-time channel prediction model to maximize file transfer from space vehicles to the Earth stations. While turbo codes are used to correct channel errors, RaptorQ codes are applied to eliminate the need for negative-acknowledgment of the loss of any specific packet. To reduce the effect of channel variation, we develop a practical signal-to-noise ratio (SNR) prediction model that is used to periodically adjust the turbo encoder in distant source spacecraft. This new protocol, termed as dynamic code selection method (DCSM), is compared with two other methods: turbo based genie method (upper bound of DCSM performance) assuming that the channel condition is perfectly known in advance and a static method in which a fixed turbo encoder is used throughout a communication pass. Simulation results demonstrate that the genie can increase telemetry channel throughput expressed in terms of the total number of successfully delivered files during a communication pass by about 20.3 % and DCSM achieves more than 99 % of genie, compared to the static approach being used currently

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Highly-configurable FPGA-based platform for wireless network research

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-164).Over the past few years, researchers have developed many cross-layer wireless protocols to improve the performance of wireless networks. Experimental evaluations of these protocols require both high-speed simulations and real-time on-air experimentations. Unfortunately, radios implemented in pure software are usually inadequate for either because they are typically two to three orders of magnitude slower than commodity hardware. FPGA-based platforms provide much better speeds but are quite difficult to modify because of the way high-speed designs are typically implemented by trading modularity for performance. Experimenting with cross-layer protocols requires a flexible way to convey information beyond the data itself from lower to higher layers, and a way for higher layers to configure lower layers dynamically and within some latency bounds. One also needs to be able to modify a layer's processing pipeline without triggering a cascade of changes. In this thesis, we discuss an alternative approach to implement a high-performance yet configurable radio design on an FPGA platform that satisfies these requirements. We propose that all modules in the design must possess two important design properties, namely latency-insensitivity and datadriven control, which facilitate modular refinements. We have developed Airblue, an FPGA-based radio, that has all these properties and runs at speeds comparable to commodity hardware. Our baseline design is 802.11g compliant and is able to achieve reliable communication for bit rates up to 24 Mbps. We show in the thesis that we can implement SoftRate, a cross-layer rate adaptation protocol, by modifying only 5.6% of the source code (967 lines). We also show that our modular design approach allows us to abstract the details of the FPGA platform from the main design, thus making the design portable across multiple FPGA platforms. By taking advantage of this virtualization capability, we were able to turn Airblue into a high-speed hardware software co-simulator with simulation speed beyond 20 Mbps.by Man Cheuk Ng.Ph.D
    corecore