50,189 research outputs found

    The Sensing Capacity of Sensor Networks

    Full text link
    This paper demonstrates fundamental limits of sensor networks for detection problems where the number of hypotheses is exponentially large. Such problems characterize many important applications including detection and classification of targets in a geographical area using a network of sensors, and detecting complex substances with a chemical sensor array. We refer to such applications as largescale detection problems. Using the insight that these problems share fundamental similarities with the problem of communicating over a noisy channel, we define a quantity called the sensing capacity and lower bound it for a number of sensor network models. The sensing capacity expression differs significantly from the channel capacity due to the fact that a fixed sensor configuration encodes all states of the environment. As a result, codewords are dependent and non-identically distributed. The sensing capacity provides a bound on the minimal number of sensors required to detect the state of an environment to within a desired accuracy. The results differ significantly from classical detection theory, and provide an ntriguing connection between sensor networks and communications. In addition, we discuss the insight that sensing capacity provides for the problem of sensor selection.Comment: Submitted to IEEE Transactions on Information Theory, November 200

    Power Optimization for Network Localization

    Get PDF
    Reliable and accurate localization of mobile objects is essential for many applications in wireless networks. In range-based localization, the position of the object can be inferred using the distance measurements from wireless signals exchanged with active objects or reflected by passive ones. Power allocation for ranging signals is important since it affects not only network lifetime and throughput but also localization accuracy. In this paper, we establish a unifying optimization framework for power allocation in both active and passive localization networks. In particular, we first determine the functional properties of the localization accuracy metric, which enable us to transform the power allocation problems into second-order cone programs (SOCPs). We then propose the robust counterparts of the problems in the presence of parameter uncertainty and develop asymptotically optimal and efficient near-optimal SOCP-based algorithms. Our simulation results validate the efficiency and robustness of the proposed algorithms.Comment: 15 pages, 7 figure

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Bayesian Bounds on Parameter Estimation Accuracy for Compact Coalescing Binary Gravitational Wave Signals

    Get PDF
    A global network of laser interferometric gravitational wave detectors is projected to be in operation by around the turn of the century. Here, the noisy output of a single instrument is examined. A gravitational wave is assumed to have been detected in the data and we deal with the subsequent problem of parameter estimation. Specifically, we investigate theoretical lower bounds on the minimum mean-square errors associated with measuring the parameters of the inspiral waveform generated by an orbiting system of neutron stars/black holes. Three theoretical lower bounds on parameter estimation accuracy are considered: the Cramer-Rao bound (CRB); the Weiss-Weinstein bound (WWB); and the Ziv-Zakai bound (ZZB). We obtain the WWB and ZZB for the Newtonian-form of the coalescing binary waveform, and compare them with published CRB and numerical Monte-Carlo results. At large SNR, we find that the theoretical bounds are all identical and are attained by the Monte-Carlo results. As SNR gradually drops below 10, the WWB and ZZB are both found to provide increasingly tighter lower bounds than the CRB. However, at these levels of moderate SNR, there is a significant departure between all the bounds and the numerical Monte-Carlo results.Comment: 17 pages (LaTeX), 4 figures. Submitted to Physical Review

    Bayesian CRLB for hybrid ToA and DoA based wireless localization with anchor uncertainty

    Get PDF
    In this paper, we derive the Bayesian Cramér-Rao lower bound for three dimensional hybrid localization using time-of-arrival (ToA) and direction-of-arrival (DoA) types of measurements. Unlike previous works, we include the practical constraint that the anchor position is not known exactly but rather up to some error. The resulting bound can be used for error analysis of such a localization system or as an optimality criterion for the selection of suitable anchors
    corecore