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Abstract—In this paper, we derive the Bayesian Cramér-Rao
lower bound for three dimensional hybrid localization using
time-of-arrival (ToA) and direction-of-arrival (DoA) types of
measurements. Unlike previous works, we include the practical
constraint that the anchor position is not known exactly but
rather up to some error. The resulting bound can be used for
error analysis of such a localization system or as an optimality
criterion for the selection of suitable anchors.

Index Terms—Bayesian CRLB, anchor uncertainty, hybrid,
localization

I. INTRODUCTION

Accurately knowing the positions of wireless network nodes
is essential for many current and next-generation applications
in automotive, military and public service systems. GPS tech-
nology has been very successful in providing rough positioning
information suitable for outdoor navigation. However, due to
reduced satellite reception, the GPS system cannot provide
reliable positioning information indoors. Because of this, ter-
restrial localization solutions have gained success in situations
where GPS falls short. In wireless localization, a target posi-
tion can be obtained by measuring position related signals with
respect to a number of nodes in the network. Common types
of measurements are the distance, angle or signal strength. In
order to obtain absolute positioning information, the position
of the network nodes must be known and the nodes are referred
to as anchors (or reference points). For example, in GPS,
the satellites which follow an accurately determined trajectory
around the earth act as (moving) anchors.

Apart from the actual position estimation, a large amount of
research has focused its attention on formulating fundamental
limits on the achievable positioning accuracy. These limits can
serve as a benchmark for localization or as a criterion for
anchor selection [1], [2]. Furthermore, because the localization
accuracy strongly depends on the geometry of the network, the
bounds can be used to solve the optimal anchor placement
problem [3][4]. A widely used fundamental bound is the
Cramér-Rao lower bound (CRLB) which bounds the achiev-
able variance of an unbiased estimate [5]. In [6], the CRLB
for time-of-arrival (ToA), i.e., distance-based, localization is
presented for multiple cooperating targets. In [7], the bound
is applied to ultra-wideband signals and in [4], the CRLB
for direction-of-arrival (DoA) is derived. In all of the above
works, the position of the anchors is considered to be known
exactly. However, in practical scenarios, this is rarely the case.
For example, the position of the anchor can be measured by

means of GPS, or using the simultaneous localization and
mapping (SLAM) principle, where a mobile robot estimates
the position of the anchors by driving around in the area. Even
in the common case where the anchor position is measured
manually, it remains subject to some error. In [8], the CRLB
for ToA-based wireless localization is derived for anchors with
a Gaussian position uncertainty.

In this work, we generalize this for hybrid ToA and DoA
based localization where the anchor uncertainty can have an
arbitrary distribution. It turns out that the derivation of this
bound is conceptually different from [8]. The generalization
for arbitrary distributions is not only valuable from a theoretic
point of view, it also has a practical application in that it can
be used when the anchor position is described by particles
(for example, as a result of a particle based estimation of the
anchor).

II. PROBLEM STATEMENT

A. System model

Consider a wireless network in which the target user has
coordinates xt ∈ Rη with η = 2, 3 for two or three dimen-
sional localization, respectively. The target user is wirelessly
connected to M + N neighboring anchors with coordinates
xref
k ∈ Rη where k = 1, 2, ...,M+N . Let us consider that the

first M anchors have uncertain position information and the
last N anchors have exact position information. We assume
that for the inaccurate anchors, the distribution pk(xref

k ) of the
position is known for the respective kth anchor. An example
network is shown in Fig. 1 for M = 5 and N = 1.

The target user can make both distance (ToA) measurements
rk and bearing (DoA) measurements bk with the kth anchor,
modeled by

rk = ‖xt − xref
k ‖+ ζk (1)

bk =
xt − xref

k

‖xt − xref
k ‖

+ ξk (2)

with ζk and ξk terms that represent possible errors resulting
from measurement noise, hardware imperfections and signal
modeling inaccuracies. We model ζk and ξk as zero mean
normally distributed noise with variance σ2

r and σ2
bIη , respec-

tively. The collection of all measurements is denoted by z.
Furthermore, the prior distribution of the target is given by
p0(xt).
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Figure 1. System setup with M = 5 inaccurate anchors and N = 1 precise
anchor. The dashed boundaries represent the 95% confidence regions for the
uncertain anchors’ positions. The solid ellipse represents the 95% confidence
region of the prior distribution of the target.

III. BAYESIAN CRLB

A. Preliminaries

Before we consider the anchor uncertainty, let us formulate
the Bayesian CRLB for hybrid DoA and ToA localization. In
the next subsection, we will build upon this bound to derive
the CRLB with anchor uncertainty.

Using the system model from the previous section, we can
describe the posterior distribution p(xt|z) of xt given the
measurements z. Without anchor uncertainty, i.e., for M = 0,
we obtain the following posterior distribution of the target
position:

p(xt|z) ∝ p(z|xt)p0(xt) (3)

=

N∏
k=1

pk(zk|xt)p0(xt) (4)

=

N∏
k=1

pk(rk|xt)pk(bk|xt)p0(xt) (5)

with pk(rk|xt) = N (rk; ‖xt − xref
k ‖, σ2

r ) and pk(bk|xt) =

N (bk;
xt−xref

k

‖xt−xref
k ‖

,Σb).

It is well-known [5] that the covariance matrix of an
unbiased estimate x̂t(z) is bounded by the BCRLB as follows

Cx̂t
= Ez,xt

[
(xt − x̂t(z)) (xt − x̂t(z))

T
]
� F−1t (6)

where Ez,xt
[ · ] denotes the expectation over the distribution

of z and xt, the symbol � denotes positive-semidefinite
inequality and F−1t is the inverse of the Bayesian Fisher
information matrix (BFIM) of xt. In turn, the BFIM of xt,
using the posterior distribution in (3), is given by

Ft , −Ez,xt

[
∂2log p(xt|z)

∂x2
t

]
= −Ext

[
∂2log p0(xt)

∂x2
t

]
− Ez,xt

[
M+N∑
k=1

∂2log p(zk|xt)

∂x2
t

]

= Ωt + Ext

[
M+N∑
k=1

H(xt, xref
k )

]
(7)

where Ωt = −Ext

[
∂2log p0(xt)

∂x2
t

]
, which will be large when-

ever the prior distribution is concentrated. The η × η matrix
H(xt, xref

k ) = Ez

[
∂2log p(zk|xt)

∂x2
t

]
can be obtained for dis-

tance and bearings measurements in [3] and [4], respectively.
Using the shorthand notation pk = xt − xref

k , we obtain
H(xt, xref

k ) = Hr(pk) + Hb(pk) where

Hr(pk) , Erk
[
∂2log pk(rk|xt)

∂x2
t

]
=

1

σ2
r

pkp
T
k

‖pk‖2
(8)

Hb(pk) , Ebk

[
∂2log pk(bk|xt)

∂x2
t

]
=

(
Iη − pkp

T
k

‖pk‖2

)
σ2
b‖pk‖2

(9)

with Iη the η × η identity matrix. The positive definite H-
matrices can be seen as the basic building blocks of the FIM
for localization. Each H(xt, xref

k ) describes the amount of
information resulting from the measurements made with the
kth anchor.

B. Anchor uncertainty

With uncertainty over the position of the anchors, the esti-
mation is no longer governed by the posterior distribution in
(3). To introduce the uncertainties of the anchors, we consider
the joint posterior distribution of the target and uncertain
anchors. Define θ = [xt,x

ref
1:M ], where xref

1:M represents the
anchor positions xref

k for k = 1..M . We can factorize the joint
posterior distribution of θ given the measurements z using
Bayes’ rule:

p(θ|z) ∝ p(z|θ)p(θ)

= p(z|θ)p0(xt)

M∏
k=1

pk(x
ref
k ) (10)

Now, the marginal distribution of the target position can be
obtained by marginalizing out all the uncertain anchors xref

1:M

p(xt|z) ∝
ˆ
p(θ|z) dxref

1:M . (11)

A method to obtain a bound for the estimation that uses the
marginal distribution of xt can be obtained by considering the
Bayesian CRLB for the target and the M imprecise anchors
jointly. Similar to (6), the Bayesian CRLB bound on the
covariance matrix of an unbiased estimate θ̂(z) is given by

Cθ̂ = Ez,θ

[(
θ − θ̂(z)

)(
θ − θ̂(z)

)T
]
� F−1θ (12)
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with F−1θ is the inverse of the Bayesian Fisher information
matrix of θ. Equation (12) states that Cθ̂ − F−1θ must be
a positive-semidefinite matrix. As per definition this means
that yT(Cθ̂ − F−1θ )y ≥ 0 for any y ∈ Rη(M+1). If we set
y = [vT, 0]T with v ∈ Rη and we define Cx̂t

and F̃−1t as
the η × η upper-left blocks of Cθ̂ and F−1θ , respectively, we
can write yT(Cθ̂ − F−1θ )y = vT(Cx̂t

− F̃−1t )v ≥ 0. Hence,
Cx̂t
− F̃−1t is positive-semidefinite and we obtain a bound on

the covariance of any unbiased estimate x̂t(z):

Cx̂t
= Ez,θ

[
(xt − x̂t(z)) (xt − x̂t(z))

T
]
� F̃−1t . (13)

It must be stressed that the matrix F̃t is –in general– not the
same as the Bayesian FIM Ft in (7). In order to make this
distinction more clear we will call the matrix F̃t the marginal
FIM of xt. In order to derive an expression for the marginal
FIM F̃t, we first derive the η(M + 1)× η(M + 1) Bayesian
Fisher information matrix (FIM) of θ, defined as [9]:

Fθ , −Ez,θ

[
∂2log p(θ|z)

∂θ2

]
= −Ez,θ

[
∂2log p(z|θ)

∂θ2

]
− Eθ

[
∂2log p(θ)

∂θ2

]
= Eθ [Fnb,θ] + Fp (14)

with Fnb,θ the non-Bayesian FIM of θ and Fp a term
related to the prior information of θ. Because the distri-
butions of the anchor positions are independent, the matrix
Fp is a block-diagonal matrix with each η × η block equal
to the Fisher information of the corresponding node, i.e.,
Fp = diag(Ωt, Ωa) with Ωa = diag(Ω1,Ω2, ..,ΩM ) and

Ωk = −Exk

[
∂2log pk(x

ref
k )

∂(xref
k )

2

]
for k = 1..M . The non-Bayesian

FIM Fnb,θ is compactly given as [3]:

Fnb,θ =

[
A −BT

−B C

]
(15)

with

A =

M+N∑
k=1

H(xt, xk) (16)

B = [H(xt, x1), ..., H(xt, xM )]
T (17)

C = diag (H(xt, x1), ..., H(xt, xM )) (18)

The formulation of the non-Bayesian FIM Fnb,θ of the
joint parameters can easily be understood by considering the
building blocks H(xt, xk). More specifically, the diagonal
η × η blocks in (15) correspond to measurements made as
if all neighbors have perfect positioning information. In other
words, the diagonal blocks resemble the information without
uncertainty of the nodes positions and is overly optimistic. The
off-diagonal blocks in (15) represent the interactions between
the nodes, and make a correction for this. Because the anchors
do not interact, i.e. they do not exchange measurements, the
matrix C is simply a block-diagonal matrix. By inserting (15)
into (14), the Bayesian FIM Fθ can be written as

Fθ =

[
Eθ[A] + Ωt −Eθ[B

T]
−Eθ[B] Eθ[C] + Ωa

]
,

[
Ã + Ωt −B̃T

−B̃ C̃ + Ωa

]
. (19)

The desired F−1t is now obtained by taking the η×η upper-
left block of F−1θ . Rather than inverting the whole matrix Fθ,
however, we can take the Schur complement of the lower-right
block of Fθ in (19), which exactly corresponds to the inverse
of F̃−1t (or simply F̃t). More specifically:

F̃t = (Ã + Ωt)− B̃T(C̃ + Ωa)
−1B̃ (20)

Due to the linearity of the expectation operator, we ob-
tain Ã =

∑M+N
k=1 Ψk, B̃ = [Ψ1, ..., ΨM ]T and C̃ =

diag (Ψ1, ..., ΨM ), where Ψk = Ext,xk
[H(xt, xk)]. Insert-

ing this into (20) results in

F̃t = Ωt +

M+N∑
k=1

Ψk − B̃T(C̃ + Ωn)
−1B̃

= Ωt +

M+N∑
k=M+1

Ψk +

M∑
k=1

(
Ψk −Ψk(Ψk + Ωk)

−1Ψk

)
= Ωt︸︷︷︸

prior

+

M+N∑
k=M+1

Ψk︸ ︷︷ ︸
precise anchors

+

M∑
k=1

(Ψ−1k + Ω−1k )−1︸ ︷︷ ︸
imprecise anchors

. (21)

In the last equation, we used the Woodbury identity1, which
is allowed only if Ψk and Ωk have an inverse. This is
true because the expected value results in an infinite sum of
different rank one matrices, resulting in full rank and thus
invertible matrices Ψk and Ωk, for k ≤M .

In case the prior distribution of the target and the distri-
butions of the imprecise anchors are Gaussian, i.e., p0(xt) =
N (µt, Σt) and pk(xk) = N (µk, Σk), we obtain a closed
form expression for the terms Ωt and Ωk, i.e., Ωt = Σ−1t

and Ωk = Σ−1k . This results in the marginal FIM for the
Gaussian approximation:

F̃t = Σ−1t +

M+N∑
k=M+1

Ψk +

M∑
k=1

(Ψ−1k + Σk)
−1. (22)

C. Effect of uncertainty

In order to understand the effect that the uncertainty of the
anchors has on the performance of localization, we consider
the bound in case the the measurement noise goes to zero.
For this we evaluate the trace of the inequality in (13) which
results in a bound on the mean squared error (MSE), i.e.,
MSE(x̂t) > tr F̃−1t .

Let us consider ToA-based localization only, although the
same derivation is valid for DoA-based localization. By using

1The Woodbury identity is given by: (A + UBV)−1 = A−1 −
A−1U(B−1 +VA−1U)−1VA−1.
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equation (8) and the definition of Ψk for ToA-based localiza-
tion, we can write:

Ψk =
1

σ2
r

Ext,xref
k

[
pkp

T
k

‖pk‖2

]
. (23)

First we consider the bound on the MSE when there is no
uncertainty in the anchor positions, i.e., M = 0, and we let
the measurement noise go to zero.

lim
σ2
r→0

tr F̃−1M=0 = lim
σ2
r→0

tr

(
Ωt +

N∑
k=1

Ψk

)−1

= lim
σ2
r→0

tr

(
Ωt +

1

σ2
r

K

)−1
= lim

σ2
r→0

tr
(
σ2
r K
−1 − σ4

r K
−1 (σ2

r K
−1 + Ω−1t

)−1
K−1

)
= 0 (24)

where K =
∑M
k=1

pkp
T
k

‖pk‖2 . As we expected, we see from (24)
that, if K−1 exists, the bound on the MSE goes to zero when
there is no noise in the measurements. Whenever K is singular,
which is true when all anchors are collinear on a line that
goes through the target, the limit does not go to zero but
rather to infinity, corresponding to an ill-chosen geometry of
the anchors.

Similarly for the case where all anchors have uncertainty,
i.e., N = 0, we write the bound on the MSE when the
measurement noise goes to zero:

lim
σ2
r→0

tr F̃−1N=0 = lim
σ2
r→0

tr

(
Ωt +

M∑
k=1

(
Ψ−1k + Ω−1k

)−1)−1

= tr

(
Ωt +

M∑
k=1

Ωk

)−1
(25)

With anchor uncertainty, we see that the bound on the MSE
does not go zero. In fact, the uncertainty in the anchors’
positions is transferred to the uncertainty in the target position.
For the Gaussian case where Ωt =

1
σ2
t
Iη and all anchors have

equal uncertainty Ωk = 1
σ2
p
Iη , we can write equation (25) as

follows:

lim
σ2
r→0

tr F̃−1N=0 = tr

(
1

σ2
t

Iη +

M∑
k=1

1

σ2
p

Iη

)−1

=
σ2
t σ

2
p

Mσ2
t + σ2

p

η (26)

Here we see that if we increase the number of anchors, the
bound of the MSE will decrease.

IV. NUMERICAL RESULTS

A. Simulation setup

In simulation setup, the target user is surrounded with M =
6 imprecise anchors. The prior of the target isN (0, σ2

t I2) with
σt = 0.5m and the prior of the anchors is N (µm, σ

2
nI2) with

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

10

10
0

standard deviation of measurement noise 
r
 [m]

M
S

E
 [m

2 ]

 

 

MMSE estimation
proposed bound
CRLB without anchor uncertainty

σn= 0.5m

σn
=
0.2

m

σ n
=
0m

Figure 2. Evaluation of the bound for distance-based localization for an
uncertainty on the neighbors’ positions varying between σn = {0m, 0.2m,
0.5m}.

µ1 = [R, 0, 0]T, µ2 = [−R, 0, 0]T, µ3 = [0, R, 0]T, µ4 =
[0,−R, 0]T,µ5 = [0, 0, R]T and µ6 = [0, 0,−R]T. In order to
evaluate the bound, we compute the minimum mean squared
error (MMSE) position estimate x̂MMSE = Ep(xt|z) [xt] by
means of importance sampling. Using equations (11) and (10),
we can write the MMSE estimate as follows:

x̂MMSE ,
ˆ

xtp(xt|z) dxt =

ˆ
xtp(θ|z) dθ (27)

=

ˆ
xtp(z|θ) p0(xt)

M∏
k=1

pk(x
ref
k )︸ ︷︷ ︸

proposal q(θ)

dθ (28)

The integral in (28) can be approximated by means of
importance sampling. For the approximation, we use q(θ) =
p0(xt)

∏M
k=1 pk(x

ref
k ) as the proposal distribution. This results

in

x̂MMSE ≈
1

L

L∑
`=1

x`w` (29)

with θ` ∼ q(θ) and the weights w` = x`t p(z|θ
`) for ` =

1..L, and L the number of samples. The number of samples
must be chosen sufficiently high for a good approximation.
In general, more samples will be required when the proposal
distribution is broad and the measurements are made with low
noise. For this simulation setup, L = 10000 is selected to
cover all parameters2.

B. Results

The BCRLB, computed with (22), is compared with the
mean squared error (MSE) of the MMSE estimates obtained

2The simulations are designed to test the bound, because of this, a very
large number of samples is chosen to minimize the estimation error.
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Figure 3. Evaluation of the bound for angle-based localization for an
uncertainty on the neighbors’ positions varying between σn = {0m, 0.2m,
0.5m}.

by (29). In Fig. 2, the bound is shown for range-based local-
ization. In Fig. 3 for angle-based localization. In both Figures
it is apparent that the MMSE estimate closely follows the
bound (the dashed line representing the estimation error almost
coincides with the bound). From this we can conclude that the
bound is correct. For σn = 0, the neighbors act as anchors
and the bound coincides with the well-known non-cooperative
CRLB [10]. It can be seen that an increasing uncertainty of
the neighbors’ positions increases the bound. Furthermore we
observe that as the measurement noise increases the bounds
converge irrespective of amount of anchor uncertainty. We
can conclude that when the ratio of neighbor uncertainty to
measurement noise, i.e., σn/σr or σn/σb, goes to zero, the effect
of the uncertainty can be neglected. In other words, anchor
uncertainty can be considered as a relative quantity and should
be expressed with respect to the accuracy of the measurements.

V. SUMMARY AND CONCLUSIONS

In this paper we derive a fundamental bound on the position-
ing accuracy for hybrid localization with anchor uncertainty.

For this we employ the Bayesian Cramér-Rao lower bound.
By exploiting the specific block structure in the FIM, we are
able to derive a simple and compact expression for the bound.
Simulation results show how the proposed bound can correctly
predict the performance of positioning for both distance based
and angle based positioning.
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