4 research outputs found

    The classification of wink-based eeg signals by means of transfer learning models

    Get PDF
    Stroke is one of the dominant causes of impairme nt. An estimation of half post-stroke survivors suffer from a severe motor or cognitive deterioration, that affects the functionality of the affected parts of the body, which in turn, prevents the patients from carrying out Activities of Daily Living (ADL). EEG signals which contains information on the activities carried out by a human that is widely used in many applications of BCI technologies which offers a means of controlling exoskeletons or automated orthosis to facilitate their ADL. Although motor imagery signals have been used in assisting the hand grasping motion amongst others motions, nonetheless, such signals are often difficult to be generated. It is non-trivial to note that EEG-based signals for instance, winking could mitigate the aforesaid issue. Nevertheless, extracting and attaining significant features from EEG signals are also somewhat challenging. The utilization of deep learning, particularly Transfer Learning (TL), have been demonstrated in the literature to b e able to provide seamless extraction of such signals in a myria d of various applications. Hitherto, limited studies have investigated the classification of wink-based EEG signals through TL accompanied by classical Machine Learning (ML) pipelines. This study aimed to explore the performance of different pre-processing methods, namely Fast Fourier Transform, Short-Time Fourier Transform, Discrete Wavelet Transform, and Continuous Wavelet Transform (CWT) that could allow TL models to extract features from the images generated and classify through selected classical ML algorithms . These pre-processing methods were utilized to convert the digital signals into respective images of all the right and left winking EEG signals along with no winking signals that were collected from ten (6 males and 4 females, aged between 22 and 29) subjects. The implementation of pre-processing algorithms has been demonstrated to be able to mitigate the signal noises that arises from the winking signals without the need for the use signal filtering algorithms. A new form of input which consists of scalogram and spectrogram images that represents both time and frequency domains , are then introduced in the classification of wink-based EEG signals. Different TL models were exploited to extract features from the transformed EEG signals. The features extracted were then classified through three classical ML models, namely Support Vector Machine, k -Nearest Neighbour (k-NN) and Random Forest to determine the best pipeline for wink -based EEG signals. The hyperparameters of the ML models were tuned through a 5-fold crossvalidation technique via an exhaustive grid search approach. The training, validation and testing of the models were split with a stratified ratio of 60:20:20, respectively. The results obtained from the TL-ML pipelines were evaluated in terms of classification accuracy, Precision, Recall, F1-Score and confusion matrix. It was demonstrated from the simulation investigation that the CWT model could yield a better signal transformation amongst the preprocessing algorithms. In addition, amongst the eighteen TL models evaluated based on the CWT transformation, fourteen was f ound to be able to extract the features reasonable, i.e., VGG16, VGG19, ResNet101, ResNet101 V2, ResNet152, ResNet152 V2, Inception V3, Inception ResNet V2, Xception, MobileNetV2, DenseNet 121, DenseNet 169, NasNetMobile and NasNetLarge. Whilst it was observed that the optimized k-NN model based on the aforesaid pipeline could achieve a classification accuracy of 100% for the training, validation, and tes t data. Nonetheless, upon carrying out a robustness test on new data, it was demonstrated that the CWT-NasNetMobile-kNN pipeline yielded the best performance. Therefore, it could be concluded that the proposed CWT-NasNetMobile-k-NN pipeline is suitable to be adopted to classify -winkbased EEG signals for BCI applications,for instance a grasping exoskeleton

    An enhanced stress indices in signal processing based on advanced mmatthew correlation coefficient (MCCA) and multimodal function using EEG signal

    Get PDF
    Stress is a response to various environmental, psychological, and social factors, resulting in strain and pressure on individuals. Categorizing stress levels is a common practise, often using low, medium, and high stress categories. However, the limitation of only three stress levels is a significant drawback of the existing approach. This study aims to address this limitation and proposes an improved method for EEG feature extraction and stress level categorization. The main contribution of this work lies in the enhanced stress level categorization, which expands from three to six levels using the newly established fractional scale based on the quantities' scale influenced by MCCA and multimodal equation performance. The concept of standard deviation (STD) helps in categorizing stress levels by dividing the scale of quantities, leading to an improvement in the process. The lack of performance in the Matthew Correlation Coefficient (MCC) equation is observed in relation to accuracy values. Also, multimodal is rarely discussed in terms of parameters. Therefore, the MCCA and multimodal function provide the advantage of significantly enhancing accuracy as a part of the study's contribution. This study introduces the concept of an Advanced Matthew Correlation Coefficient (MCCA) and applies the six-sigma framework to enhance accuracy in stress level categorization. The research focuses on expanding the stress levels from three to six, utilizing a new scale of fractional stress levels influenced by MCCA and multimodal equation performance. Furthermore, the study applies signal pre-processing techniques to filter and segregate the EEG signal into Delta, Theta, Alpha, and Beta frequency bands. Subsequently, feature extraction is conducted, resulting in twenty-one statistical and non-statistical features. These features are employed in both the MCCA and multimodal function analysis. The study employs the Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour (k-NN) classifiers for stress level validation. After conducting experiments and performance evaluations, RF demonstrates the highest average accuracy of 85%–10% in 10-Fold and K-Fold techniques, outperforming SVM and k-NN. In conclusion, this study presents an improved approach to stress level categorization and EEG feature extraction. The proposed Advanced Matthew Correlation Coefficient (MCCA) and six-sigma framework contribute to achieving higher accuracy, surpassing the limitations of the existing three-level categorization. The results indicate the superiority of the Random Forest classifier over SVM and k-NN. This research has implications for various applications and fields, providing a more effective equation to accurately categorize stress levels with a potential accuracy exceeding 95%

    Synthesis of normal and abnormal heart sounds using Generative Adversarial Networks

    Get PDF
    En esta tesis doctoral se presentan diferentes métodos propuestos para el análisis y síntesis de sonidos cardíacos normales y anormales, logrando los siguientes aportes al estado del arte: i) Se implementó un algoritmo basado en la transformada wavelet empírica (EWT) y la energía promedio normalizada de Shannon (NASE) para mejorar la etapa de segmentación automática de los sonidos cardíacos; ii) Se implementaron diferentes técnicas de extracción de características para las señales cardíacas utilizando los coeficientes cepstrales de frecuencia Mel (MFCC), los coeficientes de predicción lineal (LPC) y los valores de potencia. Además, se probaron varios modelos de Machine Learning para la clasificación automática de sonidos cardíacos normales y anormales; iii) Se diseñó un modelo basado en Redes Adversarias Generativas (GAN) para generar sonidos cardíacos sintéticos normales. Además, se implementa un algoritmo de eliminación de ruido utilizando EWT, lo que permite una disminución en la cantidad de épocas y el costo computacional que requiere el modelo GAN; iv) Finalmente, se propone un modelo basado en la arquitectura GAN, que consiste en refinar señales cardíacas sintéticas obtenidas por un modelo matemático con características de señales cardíacas reales. Este modelo se ha denominado FeaturesGAN y no requiere una gran base de datos para generar diferentes tipos de sonidos cardíacos. Cada uno de estos aportes fueron validados con diferentes métodos objetivos y comparados con trabajos publicados en el estado del arte, obteniendo resultados favorables.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic
    corecore