9 research outputs found

    Functional connectivity decreases in autism in emotion, self, and face circuits identified by knowledge-based enrichment analysis

    Get PDF
    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity

    Revisiting non-linear functional brain co-activations: directed, dynamic and delayed

    Full text link
    The center stage of neuro-imaging is currently occupied by studies of functional correlations between brain regions. These correlations define the brain functional networks, which are the most frequently used framework to represent and interpret a variety of experimental findings. In previous work we first demonstrated that the relatively stronger BOLD activations contain most of the information relevant to understand functional connectivity and subsequent work confirmed that a large compression of the original signals can be obtained without significant loss of information. In this work we revisit the correlation properties of these epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC) across regions of interest. We show that the proposed metric provides at once, without extensive numerical complications, directed information of the functional correlations, as well as a measure of temporal lags across regions, overall offering a different perspective in the analysis of brain co-activation patterns. In this paper we provide for a proof of concept, based on replicating and completing existing results on an Autism database, to discuss the main features and advantages of the proposed strategy for the study of brain functional correlations. These results show new interpretations of the correlations found on this sample.Comment: 12 pages, 8 figure

    Identifying Brain Network Topology Changes in Task Processes and Psychiatric Disorders

    Get PDF
    Hervorming Sociale Regelgevin

    Estimating feedforward and feedback effective connections from fMRI time series: Assessments of statistical methods

    Get PDF
    We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear systems; Granger causal regression; a multivariate autoregressive model with a permutation test; the Group Iterative Multiple Model Estimation (GIMME) algorithm; the Ramsey et al. non-Gaussian methods; two non-Gaussian methods by Hyvärinen and Smith; a method due to Patel et al.; and the GlobalMIT algorithm. We introduce and also compare two new methods, Fast Adjacency Skewness (FASK) and Two-Step, both of which exploit non-Gaussian features of the BOLD signal. We give theoretical justifications for the latter two algorithms. Our test models include feedback structures with and without direct feedback (2-cycles), excitatory and inhibitory feedback, models using experimentally determined structural connectivities of macaques, and empirical human resting-state and task data. We find that averaged over all of our simulations, including those with 2-cycles, several of these methods have a better than 80% orientation precision (i.e., the probability of a directed edge is in the true structure given that a procedure estimates it to be so) and the two new methods also have better than 80% recall (probability of recovering an orientation in the true structure)

    Deep learning on graphs - applications to brain network connectivity

    Get PDF
    corecore