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ABSTRACT

A central goal in neuroscience is to understand how dynamic networks of neural activity

produce effective representations of the world. Advances in the theory of graph measures

raise the possibility of elucidating network topologies central to the construction of these

representations. We leverage a result from the description of lollipop graphs to identify an

iconic network topology in functional magnetic resonance imaging data and characterize

changes to those networks during task performance and in populations diagnosed with

psychiatric disorders. During task performance, we find that task-relevant subnetworks

change topology, becoming more integrated by increasing connectivity throughout cortex.

Analysis of resting state connectivity in clinical populations shows a similar pattern of

subnetwork topology changes; resting scans becoming less default-like with more integrated

sensory paths. The study of brain network topologies and their relationship to cognitive

models of information processing raises new opportunities for understanding brain function

and its disorders.

AUTHOR SUMMARY

Our mental lives are made up of a series of predictions about the world calculated by our

brains. The calculations that produce these predictions are a result of how areas in our brain

interact. Measures based on graph representations can make it clear what information can be

combined and therefore help us better understand the computations the brain is performing.

We make use of cutting-edge techniques that overcome a number of previous limitations

to identify specific shapes in the functional brain network. These shapes are similar to

hierarchical processing streams that play a fundamental role in cognitive neuroscience. The

importance of these structures and the technique is highlighted by how they change under

different task constraints and in individuals diagnosed with psychiatric disorders.

INTRODUCTION

How do we link dynamic changes in functional brain structure to the processing of informa-

tion? Brain activity organizes into stable networks that vary in strength and change with task

demands (Greicius, Krasnow, Reiss, & Menon, 2003; Smith et al., 2009). Because of its ease of

implementation and relatively low cost, the analysis of resting functional magnetic resonance

imaging (rfMRI) data (Raichle et al., 2001) in particular has had a tremendous impact, leading
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Brain network topologies in task and disorder

to several large-scale public initiatives like the Human Connectome Project (HCP; Essen et al.,fMRI:
Functional Magnetic Resonance
Imaging: A resonance imaging
technique used to detect blood
oxygen levels changes in the brain,
used as an aggregate measure of
neural activity in the imaged region.

2013). One of the most promising methods used to study rfMRI activation has been to con-

struct network models of functional connectivity between areas of the brain (E. T. Bullmore &

Functional connectivity:
A measure of the functional
relationship between two regions of
the brain, generally via a measure of
similarity between time courses from
those regions.

Bassett, 2011; Goñi et al., 2014; van den Heuvel & Pol, 2010). These models are characterized

by network measures like efficiency (Fornito, 2016) and have been applied to a wide variety of

challenges including the study of psychiatric disorders (for review, see Avena-Koenigsberger,

Misic, & Sporns, 2017). Improving our ability to interpret the meaning of these measures for

brain processing would have tremendous impact.

To improve our ability to interpret network models of brain connectivity, we seek measures

of topology that can be related to models of cognitive information processing. The study of the

relationship between brain network topology and function has been accelerating and is key to

explaining dynamic information processing in health and disease (Stiso & Bassett, 2018). To

better understand how information is processed in a dynamic context, it is necessary to link

specific brain-network topologies to cognitively meaningful information-processing structures.

Network analysis of brain data typically involves descriptions of an inferred network. Here, we

instead describe brain connections as stochastic processes (in our case, using a random walk),Random walk on graph:
A walk on the graph, which at each
node selects the next node randomly
from the connected nodes until
reaching the destination.

avoiding the constraints of a specific network model and instead describing general properties

of brain functional connectivity in a given mental state. This improved description of brain

connectivity can then be used to link results from graph theory to network topologies common

in cognitive models of the brain. As a first step, we utilize a result from the theory of graph

measures, which establishes that isolated chains of nodes produce maximally long random

walks between points on the graph. In particular, a lollipop graph consists of a set of fullyLollipop graph:
A graph consisting of a complete
component connected to a path
graph (a linear chain of nodes).

connected nodes attached to a chain of linearly connected nodes. In a random walk on a

lollipop graph, the number of hops required to reach the tail of the lollipop stick is greater

than for other topological structures (Brightwell & Winkler, 1990). We target extremely long

randomwalks between brain areas as a measure of the presence, and relative isolation, of linear

chains of nodes. We note that this topology is similar to that found in hierarchical processing

streams, a structure important in cognitive models. We hypothesize that those brain areas that

take a long time to reach in a randomwalk are often situated in such an information-processing

topology.

We focus on the tails of random-walk network connectivity distributions to address the fol-

lowing four key questions. (a) How does the relative isolation of a linear chain of nodes change

the distribution of connectivity in a synthetic network? (b) Are there subnetworks in resting-

state cortex that have properties similar to a linear chain of nodes? (c) How are linear-chain

Resting state:
An experimental manipulation in
which the subject is resting and is not
actively engaging in a task.

subnetworks changed by task demands? (d) Does the characterization of network topology

have value in understanding and diagnosing psychiatric disorders?

MATERIALS AND METHODS

Hitting-Time Functional Connectivity Model

One common approach to find the connectivity matrix of a brain network is to threshold

the Pearson correlation matrix to obtain the adjacency matrix for the network. Although thisAdjacency matrix:
A matrix representation of a graph
with ijth element indicating the
weight of the edge from node i to
node j.

method is very simple, it has some shortcomings that might cause inaccuracy in the results.

One challenge is that the Pearson correlation coefficient does not account for latent variables,

which might result in a high correlation among two regions that are not directly connected. In

addition, the choice of threshold is arbitrary, creating interpretation and generalization issues.

To overcome these challenges, we integrated the following changes into a standard network

analysis pipeline for neuroimaging. First, to compensate for latent variables, we use the partial
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Brain network topologies in task and disorder

correlation (Smith et al., 2011) to find the connectivity matrix. Let ρij represent the partial cor-Partial correlation:
Linear correlation of two variables
controlling for the effect of other
variables in the model.

relation between xi and xj (the BOLD time series associated with regions i and j, respectively).

Therefore, we use a weighted brain functional network with adjacency matrix A = [ρij]. The

degree of node i is di = ∑
N
j=1 |ρij|. Second, we normalize edge strength using self loops that

preserve the overall connectivity of each node relative to others. Third, we characterize the

network using the hitting time, a random-walk measure that reflects the expected number ofHitting time:
The expected number of hops to go
from one node to another node by
running a random walk on the graph.

edges that need to be crossed to transition from one node to another. We next describe the

edge strength and hitting-time approaches in detail.

Edge Strength Normalization

For a random walk, the probability transition matrix is P = [pij], where pij is defined asProbability transition matrix:
A matrix representation of a graph
with ijth element representing the
probability of transitioning from node
i to node j.

pij =
|ρij|

∑
N
j=1 |ρij|

=
|ρij|

di
. (1)

The major drawback of this definition is that it fails to distinguish a strongly connected from

a weakly connected node. Consider a network with five nodes (a, b, c, d, e) and six edges.

Suppose that all edges connected to node a have weight 0.9. And, suppose that node b is

connected to the same nodes as node a, but with edges with weight 0.1 (Figure 1A). Applying

Equation 1, both nodes a and b will have the same transition probabilities, and therefore, the

same relative connectivity.

To overcome this problem, we add a self loop to nodes with weaker connections. To im-

plement this, we find the node with maximum degree in the network. For every other node,

we subtract the degree of that node from the maximum degree and add that as a self edge to

the node. Therefore, the new degree matrix is D′ = dmax I, and the new adjacency matrix is

A′ = [ρ′ij], where

ρ′ij = ρij, i, j = 1, . . . , N and i 6= j,

ρ′ii = dmax − di, i = 1, . . . , N, (2)

dmax = maxi(di), i = 1, . . . , N, and I is the identity matrix.

Figure 1. Edge strength normalization to maintain connectivity differences between a strongly
connected and a weakly connected node. (A) A weighted graph with five nodes and six edges. (B)
Adding self loops to nodes with weaker connections in order to normalize the probabilities. (C)
Transition probabilities from nodes a and b after normalization (the transition probabilities from
nodes c, d, and e are not included in this figure).
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Hitting Time

We run random-walk models on the graph with the new transition probability matrix P′ =

D′−1A′ to calculate the hitting-time matrix H = [hij]. The hitting time from node i to node j,

hij, is the expected number of hops to visit node j for the first time, for a random walk started

at node i.

Hitting time is an asymmetric measure, meaning that hij and hji might be different. For

example, for a lollipop graph, the hitting times from the nodes on the complete component to

nodes on the chain are much larger than the reverse direction, because a randomwalker spends

more time in the complete component. We compute the hitting times between pairs of nodes

using the graph Laplacian method introduced in spectral graph theory (Aldous & Fill, 2002).Graph Laplacian:
A matrix representation of a graph,
which can be used to extract various
properties of the graph.

This method is advantageous as it does not require the exact knowledge of the adjacency

matrix, instead using a probabilistic approximation of the adjacency matrix of the network.

Following Lovász and Simonovits (1993), we calculated the normalized graph Laplacian as

L = D′−1/2(D′ − A′)D′−1/2 = I − P′, (3)

where, D′ is the degree matrix and A′ is the adjacency matrix of the graph after normaliza-

tion as defined in the main text. We used the eigenvalues and eigenvectors of L to calculate

the hitting-time matrix H = [hij] (Lovász & Simonovits, 1993);

hij = ∑
k>1

d′

λk
(

µ2
kj

d′j
−

µkiµkj
√

d′id
′
j

), i, j = 1, . . . , N and i 6= j, (4)

hii = 0, i = 1, . . . , N,

where, d′i is the degree of node i, i = 1, . . . , N, and d′ is the sum of all degrees (after nor-

malization; see main text). 0 = λ1 < λ2 < · · · < λn are the n eigenvalues of L , and µkj is the

jth element of kth eigenvector of L (Lovász & Simonovits, 1993).

Adding the self loops in the normalization step does not make the graphs reducible or peri-

odic, meeting the requirements of the hitting-time calculation we use here (Norris, 1997). Code

for analysis in this project can be found under the first author’s name on GitHub: https://github.

com/SNaGLab: Hitting-time-analysis (Rezaeinia, 2018).

RESULTS

To detect and characterize linear chains of nodes, we focus on the random-walk measure of

connectivity hitting time (Lovász & Simonovits, 1993) defined above. In synthetic graphs and

estimated networks, a node is a point in the graph (or area of the brain) and an edge is a connec-

tion between two nodes. Hitting time between nodes i and j is a random variable describing

the number of steps to get from node i to node j for the first time (represented as hij) dur-

ing a random walk, a measure equivalent to mean first-passage time (Avena-Koenigsberger

et al., 2017). Diffusion measures of networks, like hitting time, are becoming more com-

monly used and are the focus of active research (Goñi et al., 2013; Lambiotte, Delvenne,

& Barahona, 2014; Shen & Meyer, 2008). Diffusion-based measures carry significant method-

ological advantages. First, they overcome common issues caused when thresholding is used to

define binary connections (Goulas, Schaefer, &Margulies, 2015; Reijneveld, Ponten, Berendse,

& Stam, 2007; Rubinov & Sporns, 2011; Zalesky, Fornito, & Bullmore, 2010). Second, they do
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Brain network topologies in task and disorder

not require perfect knowledge of the network to make a robust estimation of connectivity (i.e.,

it does not require the exact adjacency matrix (Lovász & Simonovits, 1993). Third, measures

like hitting time are asymmetric, meaning hitting time from one node to another may be dif-

ferent from the return trip, giving the best opportunity to identify extremeness in connectivity

(Lovász & Simonovits, 1993). Here, we will use “hitting time” to refer to the expected num-

ber of edges to be traversed rather than the variable itself and “hitting-time distribution” to be

the subject-average distribution of the expected number of edges to be traversed when moving

between combinations of nodes. We begin by looking at the relationship between extreme hit-

ting times and synthetic graph structure and then extend those findings to a publicly available

functional magnetic resonance imaging (fMRI) dataset.

How does the relative isolation of a linear chain of nodes change the distribution of

connectivity in a synthetic network? We consider a chain of sequentially connected nodes

as a model for a hierarchical processing stream. Formally, a chain of sequentially connected

nodes can be described as N nodes arranged in a line, so that there is an edge between nodes

i and i + 1 for i = 1, . . . , N − 1, and no edges between nodes i and j where j 6= i − 1, i + 1.

Theoretical results have found that a chain of sequentially connected nodes attached to a fully

connected network (i.e., a lollipop graph) results in maximal hitting times when the chain is a

third of the network (Brightwell & Winkler, 1990). We now compare the distribution of hitting

times over nodes in a lollipop graph to small-world (Watts and Strogatz, 1998), random (Erdős-

Rényi; Erdős and Rényi, 1959), and complete synthetic graphs in Figure 2. Each graph consists

of 100 nodes. Random and small-world graphs are an average of 100 configurations. Linear

Figure 2. Hierarchical processing streams in lollipop graphs produce extremely long hitting times.
Hitting-time distributions for (A) lollipop, (B) small world, (C) random, and (D) complete graphs with
100 nodes (averaged over 100 runs for small-world and random networks). The graphs on top of the
distributions are smaller representations of the graphs used to generate the distributions. Axis scales
change significantly with graph type (e.g., lollipop hitting time is several orders of magnitude larger
than the other graphs).
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chains of nodes result in larger hitting times that produce increased skewness in the hitting-

time distribution. For example, in Figure 2, panels A and D represent two extreme examples of

hitting-time distribution in a network. Because of the presence of a path in A, the hitting time

has a long tail (nonzero probability) that extends to large values (above 120,000). While in D

each node is fully connected to every other node and hence, hitting time is the same across all

pairs (in this case, 100) and the distribution is a single value with no tail. We focus on Kelley

skewness (Kelley, 1923) as our measure of skewness because it directly compares the tails ofKelley skewness:
A percentile based measure of
skewness defined as
P90 + P10 − 2 × P50.

the distribution. Kelley skewness (hereafter just skewness) therefore provides a more robust

separation of extreme cases from changes in the interior of the distribution.

Although perfectly isolated linear chains of nodes produce extreme hitting times, it is possi-

ble that even weak connections to the chain might significantly reduce hitting times to nodes

on the chain. To characterize changes in the hitting-time distribution when a linear chain of

nodes is not perfectly isolated, we begin with a random graph and alter its connectivity to

isolate a linear chain of nodes (Figure 3). Beginning with 50 nodes, edges of weight 1 were

added between each pair of nodes with a probability of 0.6. We then randomly chose 10 con-

nected nodes in the graph (1/5 of the graph) and reduced the weight of edges between those

connected nodes and the rest of the network by 0.05 for 19 iterations. This process created

a linear subgraph that becomes progressively more isolated until it resembles the stick of a

lollipop graph. As a control for reduced connectivity across the network as a whole, we took

the same graph we started with above and reduced all existing edge weights by 0.05 for 19

iterations. To preserve the reduction in overall connectivity (edge weights are typically nor-

malized by the total connectivity of a node), edge weight reductions were added back as self

loops (see Materials and Methods). These self loops are required as part of the random walk to

preserve the physiological principle that reduced neuronal activity would result in a reduction

of connectivity (not just a shift between connections).

Average hitting time increases as the chain of nodes becomes more isolated but also

when the graph becomes more disconnected as a whole. Hence, mean hitting time does

not distinguish between these two scenarios. However, in our simulations, skewness changed

Figure 3. The skewness of the hitting-time distribution distinguishes a reduction of overall connec-
tivity from a subgraph that becomes more linear. (A) Mean and skewness of hitting-time distribution
as the strength of all connections is reduced by 0.05 for 19 iterations. Toy networks for this tran-
sition are represented on the x-axis. Reductions in connectivity are added as self loops. (B) Mean
and skewness of hitting-time distribution as the strength of connections between linear component
and the rest of the graph is reduced by 0.05 for 19 iterations. Toy networks on the x-axis represent
synthetic graphs with a linear subgraph as the path (red) is made more linear.
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significantly as the linear subgraph becomes more isolated but only minimally when the av-

erage connectivity of the whole graph decreased. Skewness also increased with the relative

isolation of the chain of nodes but was present even when each node in the chain was some-

what connected to the rest of the graph (Figure 3).

We have shown that a lollipop component present in a graph results in significant increase

of (Kelley) skewness of hitting-time distribution, but is this relationship true in heterogeneous

topologies? It is important to note that other changes in graph structure may also result in

extreme hitting times. One commonly employed graph measure is modularity, the extent to

which the graph can be easily separated into different communities.

To evaluate the effect of modularity on hitting-time distribution, we have tested a large

number of networks with different levels of Louvain modularity and numbers of chain motifs

(three node linear components). We generated random networks, each with 100 nodes varying

the number of edges. To allow a comparison across a given number of edges, we generated

multiple graphs with the same number of edges by choosing k edges uniformly from the full

possible set of edges. k was varied from 200 to 1,000 in intervals of 50 and 1,000 to 2,500 in

intervals of 100. The range of the average degree is [4, 50], with a range of Louvain modularity

of [0.1, 0.6]. Keeping only those graphs that were connected resulted in 15,243 graphs for

comparison. Using a linear model, we sought to explain skewness as a function of modularity,

number of edges, and number of chain motifs. Number of edges (p < 0.001, t(15, 241) =

4.16, β = −0.0052), modularity (p < 0.001, t(15, 241) = 37.4, β = 239), and the number of

chain motifs (p < 0.001, t(15, 241) = 13.8, β = 9.5) all independently explain some variance

in skewness. In the remaining analysis of brain networks, we therefore test whether nodes

with extreme hitting times also become less chain-like.

Are there subnetworks in resting-state cortex that have properties similar to a linear chain

of nodes? Motivated by the above simulations, we utilized the skewness of the hitting-time

distribution to identify potential linear chains of nodes in cortical connectivity data. The brain

is made up of a large number of highly interconnected regions (Cherniak, 1990) evolved to

efficiently integrate a variety of sources of information (Friston, 2010) that can be represented

as a network. Graph-theoretic models of the brain have been used to effectively segment com-

monly associated regions of the brain into large-scale networks and describe the properties

of brain information processing (for review see E. Bullmore & Sporns, 2009) in health and

disorder (Bassett & Sporns, 2017; Fox & Greicius, 2010). Characterizations of brain network

changes in development or psychiatric disorder often utilize graph measures like efficiency

(Latora & Marchiori, 2001) and small-worldness (Watts & Strogatz, 1998), which typically in-

clude the average path length in their definition (for common measurement descriptions, see

Achard & Bullmore, 2007). Even measures that may not directly utilize the average path length

(e.g., modularity, Newman & Girvan, 2004; Stiso & Bassett, 2018) sometimes rely on commu-

nity detection methods that incorporate the average path length. The use of an average path

length rests on the assumption that path lengths in that network are normally distributed and

so can lead to the mischaracterization of the topology of the network. The concern arises be-

cause of the use of an average and is present in both traditional and diffusion-based graph

measures. Overcoming this assumption requires the use of specific subnetwork models (for

example, see Khambhati, Medaglia, Karuza, Thompson-Schill, & Bassett, 2018) or the cap-

ture of deviations from normality in the path-length distribution. Here, we use Kelley skew-

ness of the hitting-time distribution to distinguish changes in the network as a whole from the

presence of network topologies resembling hierarchical processing streams.
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To test for the presence of skewness in cortical connectivity, we generated a hitting-time

measure of connectivity (see Materials and Methods) for resting-state functional data from neu-

rotypical participants who were part of a large open-source dataset (LA5c, UCLA Consortium

for Neuropsychiatric Phenomics; Poldrack et al., 2016; see Supporting Information). Network

nodes were 180 anatomical regions from the multimodal parcellation of Glasser et al. (2016).

The average hitting-time distribution of neurotypical resting-state functional connectivity is

positively skewed (Kelley skewness of 15.04 and Pearson’s coefficient of skewness of 2.3); see

Figure 4A. A D’Agostino-Pearson test (Trujillo-Ortiz & Hernandez-Walls, 2003) showed that

as a whole the hitting times were not normally distributed (Z(skew) = 110, 3496, χ2(2) =

17, 864.8071, p < 0.001).

Although skewness of a distribution can originate frommany sources, ranging from a smooth

shift of the distribution as a whole to far-ranging outliers, the particular skewness measure used

here (Kelley skewness) directly compares the extremes of the distribution (90% compared with

10%), limiting the potential causes of the skewness. Limiting our test for skewness to the tails

of the distribution is consistent with our aim of identifying changes in linear-chain topologies,

which have been shown to produce maximal hitting times in lollipop networks (see above).

The primary auditory, visual, and somatosensory hierarchies show the largest average to-hitting

times (Figure 4B), and are therefore possibly related to chain-like network topologies. It is im-

portant to note that even the use of a Kelley skewness metric does not guarantee the presence

of chain-like network topologies. In fact, random graphs generated from a stochastic block

model that precluded chain-like topologies exhibited Kelley skewness explained by modu-

larity and node degree. We generated 100 graphs with 180 nodes from a stochastic block

model. To define groups and mixing structure, we fixed the probability of connections within

communities to be (p = 0.7) and between communities to be (q = 0.1). To expand the

range of possible modularity, we randomly picked the number of nodes in each community

until we reach 180 (if the total number of nodes passes 180, we reduce the size of the last

community to have a total of 180 nodes in the graph). After removing the null values, we

ended up with 89 graphs with number of communities from 2 to 6 and Louvain modularity

Figure 4. Hitting-time measures of resting-state functional connectivity in neurotypical partici-
pants are positively skewed. (A) Average normalized hitting-time distribution for control subjects
during resting state from the publicly available LA5c study. (B) Average to-hitting time from all
other regions of cortex for lateral (top) and medial (bottom) left maps thresholded to [158(10%),
267(95%)]. The range of data is [129, 310]. Primary auditory, visual, and somatosensory cortices
have the largest to-hitting times in the cortex.
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levels of 0.03 to 0.42. These Stochastic block model netwoks contain Kelley skewness that

is explained by both modularity (β = −1.591e + 03, t(86) = −10.76, p < 0.001) and degree

(β = −8.617e − 02, t(86) = −7.39, p < 0.001). Because Kelley skewness may arise from mul-

tiple sources, we next look for changes in the skewness of the hitting-time distribution during

a task and ask whether those changes are related to regions of the brain with the largest hitting

times during resting scans, and then, whether those areas with the largest rest hitting times also

become less chain-like.

How are linear-chain subnetworks changed by task demands? To better interpret the skew-

ness of cortical networks during resting-state fMRI, we sought to test whether hitting times

become more or less skewed during task performance and which connectivity changes under-

lie those shifts. We compared resting-state and balloon analogue risk task (BART) functionalBART:
Balloon Analogue Risk Task is a
paradigm designed to study risk
taking in an experimental setting.

connectivity from the LA5c study. The BART is a paradigm designed to study risk taking in an

experimental setting. Participants in the BART decide whether to pump a balloon that is at

risk of popping. The BART is defined by visual input and motor responses without structured

auditory stimulation.

Hitting times between cortical areas were calculated for fMRI data collected during the per-

formance of the BART task using the same processing pipeline as for the resting-state scans. To

test for differences in skewness, we then ran a linear mixed-effect model (lme in R) of skewness

of the hitting-time distributions (dependent variable) modeling task (with resting state as a ref-

erence), gender, and age as independent variables. The task variable was treated as a random

effect (BART and resting-state points were paired by participant), which characterizes idiosyn-

cratic variation that is due to individual differences. In our first model, we found significant

difference in skewness for control subjects between BART and rest (β = −10.25, t(118) =

0.79, p < 0.001); see Figure 5. The skewness of hitting-time distribution is significantly re-

duced in the BART (µ = 5.48, σ = 3.96) compared with rest (µ = 15.73, σ = 8.49). Age and

gender did not significantly explain variance in this model. We next sought to test whether

this skewness could be related to nodes with extreme hitting times and whether those nodes

define network topologies that become less chain-like.

To identify those nodes related to differences between rest and task, we first ask which

nodes had the largest hitting-time changes. The 10 regions with the largest hitting-time changes

(paired t test comparing task and rest hitting times, significantly different with p < 0.05, Bon-

ferroni corrected) are V2, V3, V4, V3A, and PGs within the visual cortex, 1, 4, 3b, and OP4

within somatosensory cortex, and the area ’PF’; see Figure 5B–D. Regions are labeled ac-

cording to Glasser et al. (2016). These nodes, which show decreased hitting times during task

performance, overlap heavily with the visual and motor processing streams and correspond

to many of the nodes with the largest hitting times during rest scans. This reduction in hitting

time in the visual and motor pathways during the BART provides support for the role of these

pathways in skewness but does not address whether differences in the chain-like topology is

responsible for the change in hitting times.

To add support for the role of chain-like topologies in large hitting times in brain data, we

calculated a chain index for each node that provides a measure of how similar to an isolated

chain the local connectivity of the node is. For every node in the network located on a three-

node chain motif, we define a chain index by focusing on its two strongest connections. A node

is located on a chain motif if its neighbors with the two strongest connections are stronger than

the remaining connections and if the two strongest connections have a significantly weaker

connection with each other. Assuming that node i is on a chain motif and has Ni neighbors
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Figure 5. The distribution of skewness versus task for control subjects. p value significance codes:
. = 0.1, ∗ ≦ 0.05, ∗∗ ≦ 0.01, ∗ ∗ ∗ ≦ 0.001. The skewness of hitting-time distribution for control
subjects is significantly smaller when the subjects are engaged in BART task compared with rest.
The 10 nodes with largest hitting-time changes are (B) V2, V3, V4, V3A, and PGs (visual), (C) 1,
4, 3b, and OP4 (motor), and (D) PF. The size of each node represents the magnitude of difference
of average to-hitting times (range from 19 to 30.2) and the thickness of each edge represents the
magnitude of difference of partial correlation in BART compared with rest.

and nodes i1 and i2 have the strongest connections to node i, we define chain index for node

i as

ζi = ρii1 + ρii2 −∑
Ni

j=3
ρii j

.

If a node is located on a perfect chain, the chain index will be at its maximum. If a node has

equal connections to every other node in the network (the least chain-like network), the chain

index will be a large negative number that depends on the number of nodes in the network.

Comparing connectivity during the BART with rest, the largest reductions in the chain index

were for a set of nodes that overlapped heavily with those nodes with the largest hitting time

(8 of the 10 nodes described above), including V2, V3, V3A, V6, and V6A within the visual

cortex, 1, 4, 3b, and OP4 within somatosensory cortex, and the area PF. Labels are according

to Glasser et al. (2016). In accordance, the nodes with the largest hitting-time changes also

show increased connectivity during the BART. Connections from nodes with the largest hitting

times that have changed significantly (paired t tests comparing connections from each node

during task and rest, p < 0.05 Bonferroni corrected) are indicated in Figure 5 by gray lines,
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with the thickness of the line indicating the size of the change. During task performance, nodes

in task-related sensory streams (which have large hitting times during rest) have smaller hitting

times, becoming less like isolated chains and instead more widely integrated.

Does the characterization of network topology have value in understanding and diagnosing

psychiatric disorders? Brain network efficiency, which is commonly defined by the mean dis-

tance between nodes, has been shown to change in disorders such as Alzheimer’s (Dennis &

Thompson, 2014), schizophrenia (Besnard et al., 2018; Li et al., 2017), and others (Cheng et al.,

2016). Reductions in measures of efficiency that utilize mean distance could be due to (a). Re-

duced overall connectivity; or (b) subnetwork changes that lead to skewed hitting-time distribu-

tions. As described in Figure 3, we can distinguish these possibilities by focusing on skewness. If

skewness changes, the differences between psychiatric populations and controls is more likely

to be due to subnetwork changes than a change in overall connectivity. We ran an ordinary

least squares regression model with skewness of the resting-state hitting-time distribution as

the dependent variable, and group (dummy coded, reference controls), gender (dummy coded,

reference females), and age (mean centered, linear) as independent variables. We analyzed

resting-state functional data from four patient groups, control, schizophrenia, bipolar, and at-

tention deficit hyperactivity disorder (ADHD).We found significant differences in skewness be-

tween schizophrenia and control populations (β = −5.130, t(252) = 1.268, p < 0.001), bipolar

and control populations (β = −4.060, t(252) = 1.324, p < 0.001), and a trend-level difference

between ADHD patients and control populations (β = −2.445, t(252) = 1.324, p = 0.066),

see Figure 6. Gender and age did not significantly explain variance in this model.

To identify those nodes related to skewness differences between schizophrenia, bipolar

disorder, and controls, we first ask which nodes had the largest hitting-time changes. The 10

Figure 6. Skewness of the hitting-time distribution is significantly different across patient groups.
(A) Distribution of skewness of the hitting-time distributions in patient and control groups during
resting-state scans. Ct, Sz, Bp, and Ad stand for control, schizophrenia, bipolar, and ADHD, respec-
tively. Significance codes: . = 0.1, ∗ ≦ 0.05, ∗∗ ≦ 0.01, ∗ ∗ ∗ ≦ 0.001. The skewness of hitting-time
distribution is significantly smaller for subjects with schizophrenia and bipolar disorders compared
with neurotypicals. The 10 nodes with the largest change in hitting time for subjectswith schizophre-
nia include V2, V3, V4, V3A, and V7 (visual, top blue), 1, 2, 24dd, and 4 (motor, top green), and
A4 (auditory, top red). The 10 nodes with the largest change in hitting time for subjects with bipolar
disorder include MT, V4, and V6A (visual, bottom blue), 1, 2, 4, and 7AL (motor, bottom green),
A5 (auditory, bottom red), and VIP and 31pv (bottom yellow). The size of each node represents the
magnitude of difference of average to-hitting times (range from 7.1 to 33.4) and the thickness of each
edge represents the magnitude of difference of partial correlation in psychiatric disorder compared
with control subjects during rest.
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regions with the largest hitting-time changes between (t tests comparing schizophrenia and

control groups for each region, significantly different with p < 0.05 Bonferroni corrected) were

V2, V3, V4, V3A, and V7 within the visual cortex, 1, 2, 4, and 24dd within somatosensory

cortex and A4 within the auditory cortex for subjects with schizophrenia. For subjects with

bipolar disorder, the 10 regions with the largest hitting-time changes (significantly different in

t tests comparing bipolar and control groups with p < 0.05 Bonferroni corrected) were MT,

V4, and V6A within visual cortex, 1, 2, 4, and 7AL within somatosensory cortex, A5 within

auditory cortex, and VIP and 31pv. Regions are labeled according to Glasser et al. (2016).

Connections that have changed significantly (t tests comparing connections from each node

between groups, p < 0.05 Bonferroni corrected) from these nodes are indicated by gray lines,

with the thickness of the line indicating the size of the change.

We find evidence that individuals with schizophrenia and bipolar disorder have less skewed

hitting-time distributions than controls during resting-state fMRI. The regions of cortex with the

largest hitting-time reductions between patient and control populations are in sensory/motor

cortex and overlap with many of the same regions that have extremely large to-hitting times

during rest in controls. It is possible that the large hitting-time values found in these regions

of the cortex are related to the theoretical finding that linear chains of nodes produce maxi-

mal hitting times and that a reduction in hitting time in these regions occurs when the nodes

are part of a topology that is less chain-like. We therefore also compared the chain index for

schizophrenia, bipolar, and control groups. The 10 regions with the largest changes of chain

index (t tests comparing schizophrenia and control groups for each region, significantly differ-

ent with p < 0.05 Bonferroni corrected) are V2, V3, V4, V3A, and V7 within the visual cortex,

1, OP4, and 24dd within somatosensory cortex, and A4 and A5 within the auditory cortex for

subjects with schizophrenia. For subjects with bipolar disorder, the 10 regions with the largest

changes of chain index (significantly different in t tests comparing bipolar and control groups

with p < 0.05 Bonferroni corrected) are V4, V3A, and V6A within visual cortex, 1, 2, 4, and

7AL within somatosensory cortex, A5 within auditory cortex, and VIP and PFcm. The conver-

gence of evidence of changes in extreme hitting-time values in sensory areas of cortex and

those same areas being connected in a less chain-like topology in schizophrenia and bipolar

disorder is consistent with our hypothesis that path-length changes in these populations are

likely to be related to subnetwork topology shifts and not changes to the network on average.

DISCUSSION

We have presented evidence that the skewness of connectivity in cortical brain networks can

be used to infer likely network topology changes that improve our understanding of information

processing in the brain. Using random graphs we showed that the isolation of linear motifs is

one prominent cause of skewness in hitting time even in the presence of mixed topologies. We

then showed that skewness, but not average of brain-connectivity distributions, is related to

psychiatric diagnosis. We confirmed that these differences in skewness were related to a linear-

chain topology by testing for changes in a chain index. In networks for which connectivity

is positively skewed, a change in subnetwork topology (and possibly a different brain state)

is a more parsimonious explanation than changes in average connectivity. These topology

changes are focused in sensory areas of the brain, and when compared with changes brought

about during task performance, they provide an initial mechanistic link between resting-state

connectivity changes and clinical diagnosis.

Extremely large hitting times can be linked to linear-chain topologies through theoretical

work showing that lollipop networks result in maximal hitting times (Brightwell & Winkler,
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1990). We have shown using a toy problem that the extremeness of hitting-time values scales

with how isolated a linear chain of nodes is and that the presence of chain motifs is related

to extreme hitting-time values even in random networks with mixed topologies above and

beyond modularity of the network. Resting brain networks also have extreme hitting times that

are likely related to hierarchical processing in sensory cortex. When they are most isolated

from the rest of the network, hierarchical processing streams resemble the chain of nodes on

the linear component of a lollipop graph. This parallel motivates the use of extremely long

random walks between brain areas as a measure of the presence, and relative isolation, of

hierarchical processing streams. In particular, hitting time of a region of interest can be utilized

to detect presence of linear components likely to be hierarchical processing streams. A central

dogma of neuroscience is that sensory representations are constructed hierarchically (Hubel &

Wiese, 1962; Kikuchi, Horwitz, & Mishkin, 2010; Van Essen & Maunsell, 1983). Hierarchical

processing streams have also been a focal component of computer vision models since 1971

(Giebel, 1971) and a significant contributor to the success of modern convolutional neural

networks (LeCun, Bengio, & Hinton, 2015). Their foundational nature has made the study of

hierarchical processing streams the focus of targeted analyses (e.g., Sepulcre, Sabuncu, Yeo,

Liu, & Johnson, 2012). Here, we showed that nodes from sensory and motor areas of the brain

have extreme hitting times that contribute to Kelley skewness. By comparing resting to task-

based network topologies, we can show that decreases in hitting time are also associated with

sensory hierarchies becoming less chain like.

Task changes in functional connectivity can be observed as changes in functional brain

network topology. Previous work has highlighted the central role of path length and the inte-

gration of isolated paths in function. In Goñi et al. (2014), a notion of path transitivity — which

accounted for not only the shortest path, but also local detours along that path — was the best

predictor of functional connectivity. Similar notions of distributed communicability (related

to the diffusion of information over the network) were used to quantify the disruption of the

global communication in the cortex that was triggered by the pharmacogenetic inactivation of

the amygdala (Grayson et al., 2016), and to detect changes in functional connectivity after a

stroke (Crofts et al., 2011). A thorough review of these concepts and their relationships to the

notion of mean first-passage time, which is equivalent to the mean hitting time, is provided in

Avena-Koenigsberger et al. (2017). Because the mean hitting time conflates overall changes in

connectivity with changes to a subnetwork, these changes may be better explained using Kelley

skewness, which specifically focuses on extreme values and so provides a mechanism to iden-

tify potential subnetwork changes. Extreme values contributing to connectivity skewness were

associated with sensory areas of the brain specifically associated with the task. Hitting times

in these sensory areas of the brain became shorter and less extreme during BART task perfor-

mance. Sensory areas became more strongly connected to distant areas throughout the brain.

The nodes with the largest reductions in hitting time were found in brain sensory areas re-

lated to the BART task (somatosensory and visual areas). One additional area also showed a

decrease in hitting time: PF. PF is located in the inferior parietal lobule and is thought to be re-

lated to risk processing (Weber & Huettel, 2008). In line with its role in the processing of visual

magnitude, it showed increased connectivity with visual inputs. Broadly, the introduction of a

task caused sensory processing streams to become better connected to other task-relevant ar-

eas, and less chain-like. This result is somewhat counterintuitive since hierarchical processing

pipelines are often described as most distinct when active. We do find evidence of increased

connectivity within sensory networks, but these increases in strength within the sensory pro-

cessing stream are offset by wider integration, making their network topology less chain-like.

In addition, whether the processing pipeline becomes more or less integrated depends on

the calculation underlying the transition probability between areas. When similar models are
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constructed using the raw correlation values, group and task differences in the same dataset are

consistent but in the opposite direction (Rezaeinia & Carter, 2017). This is likely due to the re-

dundant connections and task event correlations (Cole et al., 2018) included in raw correlation

models. Here, we focused on the partial correlation of brain region time series that minimizes

redundant connections, following the state of the art in the field (Smith et al., 2011). In spite

of the complexities raised, the distribution of task-relevant information throughout the brain is

consistent with what would be most likely to improve BART task performance and supports the

interpretation of sensory hierarchies as existing as relatively isolated linear network topologies

during rest. In future work it would be helpful to incorporate additional multifaceted tasks to

generalize these findings to the incorporation of sensory information under other constraints.

Skewness of the connectivity distribution also explains cortical network differences between

psychiatric diagnoses. Resting functional connectivity in a large neurotypical population is sig-

nificantly positively skewed. In such a case, average efficiency for such a network would be

biased and less representative of the network as a whole. An important finding is that changes

in connectivity between clinical and control populations are due to changes in skewness rather

than average differences. In fact, the median of connectivity measures changed in the oppo-

site direction with respect to the average. Network connectivity changes between clinical and

control populations are therefore due to a subset of connections rather than the network as a

whole. The identification of specific cortical regions involved in topological changes between

neurotypical and clinical populations provides an opportunity to better understand functional

changes that occur in those populations as well as opportunities for improving diagnosis. Task

performance reduced hitting-time skewness by increasing the connectivity between sensory

areas and the rest of the cortical network. Qualitatively similar changes are seen in clinical

populations, implying further work exploring network topology changes to specific tasks may

help characterize the atypical resting connectivity for individuals with a schizophrenia or bipo-

lar diagnosis. A testable prediction from this implied mechanistic difference would be that

individuals with these diagnoses spend less time in activities typically associated with resting

fMRI (e.g., future planning).

The results presented were based on theoretical predictions and applied to a publicly avail-

able dataset in a rigorous manner. We would like to document the following caveats and qual-

ifications. First, although linear components in networks produce maximal hitting times in the-

ory, it is possible that other network topologies could also produce some degree of skewness.

To answer this concern, we showed that in toy examples skewness was related to short linear

graphs or linear graphs that were still connected to the rest of the graph. We also found that the

hitting-time distribution of both small-world, lollipop, and random graphs are skewed but that

skewness in both cases is dominated by linear paths, even with a linear path that comprises

significantly less than a third of the graph. It is, however, important to note that the number of

linear topologies does not explain all of the variance in Kelley skewness and so there could be

other contributing topologies, perhaps related to modularity and degree. In our human fMRI

analyses, the network as a whole did not become less connected (see the Supporting Infor-

mation), and those areas with extreme values become less chain-like when they have smaller

hitting times. Thus, the relationship between extreme hitting times and linear paths is robust.

In addition, past work on sensory hierarchies (Hubel & Wiese, 1962; Kikuchi et al., 2010;

Van Essen & Maunsell, 1983), recent work showing parallels between convolutional neural

networks and sensory networks (Güçlü & van Gerven, 2015; Kell, Yamins, Shook, Norman-

Haignere, & McDermott, 2018; Khaligh-Razavi & Kriegeskorte, 2014), and the integration of

sensory networks during task performance (see above) are all consistent with the presence of

linear components in the cortical network. Second, we focused on a cortical model of brain
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function, and the absence of subcortical nodes could have affected the topology of the net-

work model. However, the inclusion of subcortical connections to cortical network end points

should not change connectivity measures since the path would still produce larger hitting times

(the largest times may then be shifted to the middle of the sensory hierarchy).

CONCLUSION

In conclusion, establishing a link between network topologies, hierarchical processing pipe-

lines, task engagement, and psychiatric disorders provides an opportunity to interpret corti-

cal network changes in the light of cognitive models of brain function. The interpretation of

network connectivity and information processing topologies is an area of significant focus for

neuroscience (Fornito & Bullmore, 2015). The widespread collection of rfMRI in particular pro-

vides a unique opportunity to extend this work to numerous psychiatric disorders and compare

these findings with the growing body of open-source fMRI task data.
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