3,746 research outputs found

    Hypergeometric Functions of Matrix Arguments and Linear Statistics of Multi-Spiked Hermitian Matrix Models

    Full text link
    This paper derives central limit theorems (CLTs) for general linear spectral statistics (LSS) of three important multi-spiked Hermitian random matrix ensembles. The first is the most common spiked scenario, proposed by Johnstone, which is a central Wishart ensemble with fixed-rank perturbation of the identity matrix, the second is a non-central Wishart ensemble with fixed-rank noncentrality parameter, and the third is a similarly defined non-central FF ensemble. These CLT results generalize our recent work to account for multiple spikes, which is the most common scenario met in practice. The generalization is non-trivial, as it now requires dealing with hypergeometric functions of matrix arguments. To facilitate our analysis, for a broad class of such functions, we first generalize a recent result of Onatski to present new contour integral representations, which are particularly suitable for computing large-dimensional properties of spiked matrix ensembles. Armed with such representations, our CLT formulas are derived for each of the three spiked models of interest by employing the Coulomb fluid method from random matrix theory along with saddlepoint techniques. We find that for each matrix model, and for general LSS, the individual spikes contribute additively to yield a O(1)O(1) correction term to the asymptotic mean of the linear statistic, which we specify explicitly, whilst having no effect on the leading order terms of the mean or variance

    Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line vis-NIR spectroscopy measurements of soil total nitrogen and total carbon

    Get PDF
    Accurate and detailed spatial soil information about within-field variability is essential for variable-rate applications of farm resources. Soil total nitrogen (TN) and total carbon (TC) are important fertility parameters that can be measured with on-line (mobile) visible and near infrared (vis-NIR) spectroscopy. This study compares the performance of local farm scale calibrations with those based on the spiking of selected local samples from both fields into an European dataset for TN and TC estimation using three modelling techniques, namely gradient boosted machines (GBM), artificial neural networks (ANNs) and random forests (RF). The on-line measurements were carried out using a mobile, fiber type, vis-NIR spectrophotometer (305-2200 nm) (AgroSpec from tec5, Germany), during which soil spectra were recorded in diffuse reflectance mode from two fields in the UK. After spectra pre-processing, the entire datasets were then divided into calibration (75%) and prediction (25%) sets, and calibration models for TN and TC were developed using GBM, ANN and RF with leave-one-out cross-validation. Results of cross-validation showed that the effect of spiking of local samples collected from a field into an European dataset when combined with RF has resulted in the highest coefficients of determination (R-2) values of 0.97 and 0.98, the lowest root mean square error (RMSE) of 0.01% and 0.10%, and the highest residual prediction deviations (RPD) of 5.58 and 7.54, for TN and TC, respectively. Results for laboratory and on-line predictions generally followed the same trend as for cross-validation in one field, where the spiked European dataset-based RF calibration models outperformed the corresponding GBM and ANN models. In the second field ANN has replaced RF in being the best performing. However, the local field calibrations provided lower R-2 and RPD in most cases. Therefore, from a cost-effective point of view, it is recommended to adopt the spiked European dataset-based RF/ANN calibration models for successful prediction of TN and TC under on-line measurement conditions

    BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems

    Full text link
    We present a new algorithm that significantly improves the efficiency of exploration for deep Q-learning agents in dialogue systems. Our agents explore via Thompson sampling, drawing Monte Carlo samples from a Bayes-by-Backprop neural network. Our algorithm learns much faster than common exploration strategies such as ϵ\epsilon-greedy, Boltzmann, bootstrapping, and intrinsic-reward-based ones. Additionally, we show that spiking the replay buffer with experiences from just a few successful episodes can make Q-learning feasible when it might otherwise fail.Comment: 13 pages, 9 figure
    • …
    corecore