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Abstract: Accurate and detailed spatial soil information about within-field variability is essential
for variable-rate applications of farm resources. Soil total nitrogen (TN) and total carbon (TC) are
important fertility parameters that can be measured with on-line (mobile) visible and near infrared
(vis-NIR) spectroscopy. This study compares the performance of local farm scale calibrations with
those based on the spiking of selected local samples from both fields into an European dataset
for TN and TC estimation using three modelling techniques, namely gradient boosted machines
(GBM), artificial neural networks (ANNs) and random forests (RF). The on-line measurements were
carried out using a mobile, fiber type, vis-NIR spectrophotometer (305–2200 nm) (AgroSpec from tec5,
Germany), during which soil spectra were recorded in diffuse reflectance mode from two fields in the
UK. After spectra pre-processing, the entire datasets were then divided into calibration (75%) and
prediction (25%) sets, and calibration models for TN and TC were developed using GBM, ANN and
RF with leave-one-out cross-validation. Results of cross-validation showed that the effect of spiking
of local samples collected from a field into an European dataset when combined with RF has resulted
in the highest coefficients of determination (R2) values of 0.97 and 0.98, the lowest root mean square
error (RMSE) of 0.01% and 0.10%, and the highest residual prediction deviations (RPD) of 5.58 and
7.54, for TN and TC, respectively. Results for laboratory and on-line predictions generally followed
the same trend as for cross-validation in one field, where the spiked European dataset-based RF
calibration models outperformed the corresponding GBM and ANN models. In the second field
ANN has replaced RF in being the best performing. However, the local field calibrations provided
lower R2 and RPD in most cases. Therefore, from a cost-effective point of view, it is recommended to
adopt the spiked European dataset-based RF/ANN calibration models for successful prediction of
TN and TC under on-line measurement conditions.

Keywords: on-line vis-NIR measurement; total nitrogen; total carbon; spiking; gradient boosted
machines; artificial neural networks; random forests

1. Introduction

Estimation of carbon and nitrogen status in the soil is crucial from both agricultural and
environmental points of view. It is well known that soil total carbon (TC) and total nitrogen (TN)
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are vital factors for soil fertility and crop production [1,2]. Traditional laboratory analysis methods
for TN and TC are laborious, time-consuming, costly and destructive [3,4]. Therefore, proximal soil
sensing (PSS) techniques, in particular visible and near infrared (vis-NIR) reflectance spectroscopy can
be considered as a cost-effective and alternative technique for estimating TN and TC [5,6].

On-line (tractor-driven) vis-NIR spectroscopy offers the possibility of collecting high spatial
resolution data, compared with conventional laboratory analyses. However, on-line spectroscopic
measurements are affected by ambient and experimental conditions that need to be overcome for
accurate prediction to be achieved. One way to reduce these negative influences is by adopting
advanced multivariate calibrations techniques, particularly those approaches that account for
nonlinearity between NIR spectral response and soil properties [5]. Furthermore, overlapping of
absorption bands of those properties and scatter effects result in complex absorption patterns,
which cannot be derived using simple correlation or linear techniques [7].

Non-linear regression has been introduced in the literature as the best option to model
spectroscopic data [8,9]. Among those models, support vector machines (SVM) [5,9], artificial
neural networks (ANNs) [10,11], boosted regression trees [12], multivariate adaptive regression
splines (MARS) [9,13] and random forests (RF) [14,15] were proven to provide improved prediction
performances as compared to the linear partial least squares regression (PLSR) for modelling nonlinear
phenomena like soil properties [8,11]. Neural networks, specifically multilayer perceptrons (MLPS),
are mathematical models that use learning algorithms inspired by the brain to store information [16].
They have been examined in the field of spectroscopy using simulated data [17]. They have been
used successfully to model a complex spectral library including over 1100 soil samples for large-scale
study [14], and were used to predict OC based on on-line vis-NIR measurements, outperforming PLSR
with ratio of prediction deviation (RPD) of and 2.28 [11]. However, overfitting is a major problem for
ANN analysis, which has required special data pretreatment [18].

Recently, RF has received growing attention in vis-NIR spectral analyses in different domains. It is
an ensemble learning technique, introduced by Breiman [19], as a combination of tree predictors that
is robust and rarely overfits; it hence yields highly accurate predictions [19–21]. Accordingly, RF can
handle nonlinear and hierarchical behaviors when introducing variability to the general spectral library
for predicting local samples. Boosting trees (BT) characterized by the stochastic that enhances predictive
performance, decreases the variance of the final model, by utilizing only a arbitrary subset of data to
match each new tree [22]. Viscarra Rossel and Behrens [14] have applied BT to predict soil OC, pH and
clay content using non-mobile (laboratory-based) spectroscopy measurement. Gradient boosted
machines (GBM) is a hybrid method that incorporates both boosting and bagging approaches [22,23].
It performs boosting through choosing, at each step, the arbitrary sample of the data ultimately
causing a progressive enhancement of the model performance [23]. GBM has been used successfully
in digital mapping of OC [23–25]. Despite the importance of RF and GBM, no study on the use of
both modelling methods for on-line spectroscopy measurement of soil properties can be found in the
literature. The hypothesis of this study is that both GBM and RF outperform ANN for the on-line
prediction of soil TN and TC.

The main goal of this paper is to compare the performance of GBM, ANNs and RF for the on-line
prediction of TN and TC based on local (single field) dataset from two target fields and spiking of local
samples of these two target fields into an European dataset.

2. Materials and Methods

2.1. Experimental Sites

Two experimental fields were used in this study, namely, Hessleskew and Hagg with total area
of about 12 ha and 21 ha, respectively, both located in Yorkshire (Hessleskew, longitudes −0.590◦

and −0.586◦ W, and latitudes 53.844◦ and 53.844◦ N; Hagg, longitudes of −1.172◦ and −1.166◦ W,
and latitudes of 53.936◦ and 53.941◦ N), The United Kingdom. Hessleskew field is cultivated with
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cereal crops in rotation, where Hagg field is cultivated with vegetable crops (e.g., carrots, cabbage,
onions and leeks). The soil texture for the Hessleskew and Hagg fields is clay and sandy loam,
respectively, according to United States Department of Agriculture (USDA) textural soil classification
system [26].

2.2. On-Line Soil Measurement and Collection of Soil Samples

Both fields were scanned using the on-line system designed and developed by Mouazen [27].
This is a multi-sensor platform consists of a subsoiler, which penetrates the soil to any depth (5–50 cm),
creating a trench, whoever bottom part is smoothened with the downwards forces acting on the
subsoiler. The subsoiler has been retrofitted with the optical probe and attached to a frame. It was
installed into the three point hitch of the tractor. The optical measurement was performed using
an AgroSpec mobile, fibre type, vis-NIR spectrophotometer (Tec5 Technology for Spectroscopy,
Geramany) with spectral range of 305–2200 nm. A differential global positioning system (DGPS)
(EZ-Guide 250, Trimble, Sunnyvale, CA, USA) was utilized to record the positioning associated with
on-line measured spectra along with sub-meter precision (Figure 1). The on-line measurement had been
completed after previous crop harvest in summer of 2015 and 2016 for Hessleslekew and Hagg fields,
respectively. The subsoiler was dragged at parallel transects of 12 m apart, setting the subsoiler tip at
about 15 cm deep. A total of 122 and 149 soil samples were collected during the on-line measurement
from the former and latter fields, respectively. These samples were used for calibration and validation
of the vis-NIR sensor.
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Figure 1. The on-line visible and near infrared (vis-NIR) spectroscopy sensor developed by Mouazen [27].

2.3. Laboratory Chemical and Optical Measurements

Fresh soil samples were used in the laboratory spectral and chemical analyses. Each soil sample
was placed in a glass container and mixed well then divided into two parts. The first part was used to fill
three Petri dishes of 2 cm in diameter 2 cm deep, representing three replicated measurements. Each soil
sample were packed into plastic Petri dishes for soil scanning using the same spectrometer used in
the on-line measurements. To obtain optimal diffuse reflection, and hence a good signal-to-noise
ratio, all plant and pebble particles were manually removed and the surface was pressed gently
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with a spatula to be smooth before scanning. A total of ten scans were collected from each replicate,
and these were averaged into one spectrum. The second part of each sample was air dried before it
was analyzed for total carbon (TC) using the combustion method. This was done by oxidizing the
carbon to carbon dioxide (CO2) by heating the soil to at least 900 ◦C on a flow of oxygen-containing
gas that is free from carbon dioxide. The amount of carbon dioxide released is then measured by
a thermal conductivity detector (TCD). When the soil is heated to a temperature of at least 900 ◦C,
any carbonates present are completely decomposed [28]. The total nitrogen was determined using
the Dumas method by heating the soil to a temperature of at least 900 ◦C in the presence of oxygen
gas. During oxidized combustion, mineral and organic nitrogen compounds produce the oxidation
products NOx, in addition to molecular nitrogen (N2). Copper in the reduction tube quantitatively
reduces these nitrogen oxides to N2 and binds excess oxygen. The amount of nitrogen is then measured
by a TCD [29].

2.4. Spectra Pretreatment

The raw average spectra of the on-line and laboratory scanning were subjected to pre-processing,
including successively, noise cut, maximum normalization, first derivative and smoothing using
the prospectr-R package [30]. First, the spectral range outside 370–1979 nm was cut to remove the
noise at both edges. Then, a moving average with five successive wavelengths was used to reduce
noise. Maximum normalization followed, which is typically used to get all data to approximately
the same scale, with maximum values of 1. The maximum normalisation led to better results for the
measurement of TC and TN as compared to the other pre-treatment options tested, including mean
and peak normalization. Spectra were then subjected to first derivation using gap–segment derivative
(gapDer) algorithms [31] with a second-order polynomial approximation. This method enables the
first or higher-order derivatives, including a smoothing factor, to be computed, which determines how
many adjacent variables will be used to estimate the polynomial approximation used for derivatives.
This gapDer resulted in a better performance than second derivative that increased the noise and
reduced the quality of models’ prediction performance. Finally, smoothening with the Savitzky–Golay
technique was carried out to remove noise from the spectra.

2.5. Dataset Set Selection and Modelling Techniques

The following two data sets were considered in this study:

1. Local dataset: where samples collected from two fields (Hessleskew, n = 122; Hagg, n = 149),
2. European dataset (n = 528), where a total of 528 samples collected from five European countries,

namely, Germany (150 samples from two fields), Denmark (147 samples from five fields),
the Netherlands (43 samples from one field), Czech Republic (99 samples from four fields),
and the UK (89 samples from four fields) were collected.

The Kennard–Stone algorithm [32] was used to select the calibration set (75%), and the rest of the
samples (25%) were assigned for the prediction set. The Kennard–Stone algorithm allows to select
points (samples) with a uniform distribution over the predictor space. It begins through selecting
the pair of samples that are the farthest apart. They are assigned to the calibration set and removed
from the dataset. Then, the procedure assigns remaining samples to the calibration set by computing
the distance between each unassigned samples i0 and selected samples i and finding the sample i0
for which:

dselected = max
i0

(min
i
(di, i0)) (1)

This essentially selects sample i0, which is the farthest apart from its closest neighbors i in the
calibration set based on the the Mahalanobis distance (H), which can be defined as the dissimilarity
measure matrix (H) between samples in a given matrix X and can be computed as follows:
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H
(
xi , xj

)
=
√(

xi , xj
)M−1(xi , xj

)T (2)

where M is the variance–covariance matrix and vector T. The algorithm uses the H that can be achieved
by performing a PCA analysis on the input data and computing H as follows:

H2
ij =

A

∑
a=1

(t̂ia − t̂ja)
2/λ̂ia (3)

where t̂ia is the ath principal component score of sample i, t̂ja is the corresponding value for sample j,
λ̂ia is the eigenvalue of principal component a, and A is the number of principal components included
in the computation [30].

Spiking was used to introduce the local variability of the two experimental fields into the European
dataset. A total of 85 and 110 samples that have been selected from the Hessleskew and Hagg fields,
respectively, using the Kennard–Stone algorithm were spiked into the European dataset.

Before running the analysis, the entire dataset of each target field (Hesselskew or Hagg) was
divided into 75% for calibration, and 25% for prediction as described above. This was done for both
the laboratory and on-line collected soil spectra. The 75% soil samples were used for developing
the calibration models for the local dataset (single field), and the spiked European dataset model.
To evaluate these models, cross-validation technique with leave-one-out cross-validation (LOOV)
was performed on the training data (75%). For independent validation, the laboratory reference
measurement values of the prediction set (25%), e.g., 37 and 39 samples from Hessleskew and Hagg,
respectively, were compared with the laboratory and on-line predicted concentration values at the
same positions.

2.5.1. Random Forests Regression

Random forests (RF) is an ensemble learning method developed by Breiman [19], which can be
described as follows:

Suppose we have a calibration set C = {C1, . . . ., Cn} with Ci ≡ (xi, yi) and an independent test
case C0 with predictor x0, the following steps can be carried out:

(1) Sample the calibration set C with replacement to generate bootstrap resamples B1, . . . , BM

(2) For each resample Bm, m = 1, . . . , M, grow a regression tree Tm.
(3) For predicting the test case C0 with covariate x0, the predicted value by the whole RF is obtained

by combining the results given by individual trees. Let f̂ ∗m(x0) denote the prediction of C0 by
mth tree, the RF prediction for regression problems can then be written [33] as:

1
M

M

∑
m=1

f̂ ∗m(x0) (1a)

RF is generally used for data classification and regression. The algorithm works by growing an
ensemble of regression trees based on binary recursive partitioning, where the algorithm first begins
with a number of bootstrap samples (ntree) from the predictor space (original data) [34]. Each bootstrap
sample will then grow regression tree with a modifying operation, in which subsequently a number of
the predictors (mtry) are randomly sampled, and the algorithm chooses the best split from among those
sampled variables rather than considering all variables. The default mtry value is the square root of the
total number of variables [35]. Therefore, the number of trees (ntree) needs to be set sufficiently high.
Consequently, RF hardly overfits when more trees are added [19], but produce a limited generalisation
error [20,36]. The final prediction can be obtained as the mean value of the individual predictions
made by each decision tree. RF does not need complicated data pretreatment and runs very fast
when compared to other machines learning algorithms such as ANNs and GBM [37], which is a very
important factor in the field of on-line and in situ measurements. Figure 2 shows the main processes
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of the RF algorithm. In this work, an ntree of 100 and an mtry of 2 were used to develop the TN
and TC models. These parameters were determined by the tune RF function implemented in the R
software package, named random forest version 4.6–12 [38]. The same split of datasets described
above (75% calibration, 25% prediction) were utilised for RF analysis.
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2.5.2. Gradient Boosted Machines (GBM)

Boosting is a method based on the idea of combining a set of weak learners and delivers
superior predictive performance whose always highly accurate [39]. In GBM, the learning procedure
sequentially fits new models to the training data, utilizing suitable techniques (loss function,
weak learner and additive model) progressively to increase emphasis on observations modelled
poorly through the existing collection of trees. This particular enhancement can be achieved through
constructing the new base-learners to become maximally related using the negative gradient of the
loss function, linked to the entire ensemble (Figure 2). Boosting draws bootstrap samples of the
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predictor data, fits a tree, and subtracts the prediction from the original data. The trees tend to be
iteratively suited to the residuals and the predictions summed up [40]. Steps to avoid overfitting are
essential because the sequential nature of boosting allows trees to be added before the model is entirely
overfitted [41]. According to Hastie [38] the GBM algorithm can be described as follows:

1− Initialize f0(x) = arg minγ

N

∑
i=1

L(Yi, γ). (2a)

This initializes the optimal constant model, which is just a single terminal node tree.
For m = 1 to M:

(a) For i = 1, 2, . . . , N compute

rim = −
[

∂L(Yi, f (xi))

∂ f (xi)

]
f= fm−1

(2b)

The components of the negative gradient are referred to the generalized residuals rim of the
current model on the ith observation evaluated at f = f m−1.

(b) Fit a regression tree to the targets rim giving terminal regions

Rjm, j = 1, 2, . . . . . . .Jm.

(c) For j = 1, 2, . . . ., Jm compute

γjm = arg min
γ

∑
xiεRjm

L(Yi, fm−1(xi) + γ) (2c)

γ parameterizes the split variables and split points at the internal nodes, and the predictions at
the terminal nodes. In the gbm package ε is shrinkage with default 0.001 that to allow at least for
1000 trees. The best fits the current residuals is added to the expansion at each step as in step (d).
This produces fm(x), and the process is repeated. At each iteration m, one solves for the optimal lose
function and add to the current expansion fm−1(x).

The boosting models were fitted by using the code published by Elith et al. [42], which is based
on the package gbm in R software. There is a range of tuning parameters for GBM model; shrinkage
reduces the participation of each tree to the final model. Shrinkage setup was recommend to be small
enough (0.01–0.001) to allow at least for 1000 trees [42]. Hence, for all procedures, shrinkage was set
to the lower end of the recommendations (0.001). The subsampling rate “bag fraction” that specifies
the ratio of the data to be used at each iteration was set up to the default (0.50). The number of trees
(ntree) is more relevant than for random forest, as gradient boosting overfits if ntree is excessive.
Hence, ntree was determined for each individual modeling case. The same split of datasets described
above (75% calibration, 25% prediction) were utilised for GBM analysis.

2.5.3. Artificial Neural Networks (ANNs)

ANNs are a machine learning framework that attempts to mimic the learning pattern of natural
biological neural networks and are based on their ability to “learn” throughout a training procedure
exactly where they're given inputs and a set of anticipated results. ANNs are a machine learning
framework that attempts to mimic the learning pattern of natural biological neural networks and
are based on their ability to “learn” throughout a training procedure exactly where they’re given
inputs and a set of anticipated results. The neural network used in this study was a multilayer
perceptron (MLP) neural network. It typically consists of an input layer (i.e., spectral data or principal
components), one or more hidden layers, where the real processing is performed via a system of
weighted ‘connections’, and an output layer (prediction), where the answer is output (Figure 2).



Sensors 2017, 17, 2428 8 of 22

They function by linking the input neurons to output neurons, through the connections (weights).
The ANNs algorithm with single layer can be described [43] as follows:

First, r different linear combinations of the x-variables are built

yj = a0j + a1jx1 + . . . + amjxm for j = 1, . . . ., r (3a)

and then a nonlinear function s—often the sigmoid function—is applied:

zj = σ
(
yj
)
=

1
1 + exp

(
−yj

) for j = 1, . . . ., r (3b)

Equations (3a) and (3b) constitute a neuron with several inputs x and one output z.
The new variables zj can be used in different ways to produce the final output y:
(a) as inputs of a neuron with output y, (b) in a linear regression model,

y = b0 + b1z1 + b2z2 + . . . + brzr + e (3c)

and (c) in a nonlinear regression model

y = b0 + b1 f1(z1) + b2 f2(z2) + . . . + br fr(zr) + e (3d)

The most straightforward approach was used to build the ANNs model. This is performed
using the training and test sets. Samples in the training data sets were the same as those in the
calibration sets used in the RF and GBM analyses, whereas the test sets were the same as the prediction
set. Leave-one-out cross-validation was used to avoid over-fitting and to monitor the training error.
The input layer has the same number of input nodes to the number of soil samples used in each
calibration set. The output layer has one node of TN and TC. The number of nodes in the hidden layer
was adjusted during the training from 6 to 20 to get the optimised network structure, which resulted in
the lowest training error. The training algorithm was selected as stochastic gradient descent, and the
training time was set to 1000 times. Exponential and logistic functions were selected for the hidden
and the output layers, respectively. The performance of the resultant models were chosen according to
the following evaluation parameters: high R2 (both in calibration and prediction), and low root mean
square error of prediction (RMSEP). The caret package [44] has been used to perform the ANN models
in R software [45].

2.6. Evaluation of Model Accuracy

Model performance for the prediction of TN and TC were evaluated by means of R2, RMSEP and
RPD, which can be defined as follows:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n− 1
(4a)

R2 = 1− SSerror

SStotal
(4b)

where the SStotal and SSerror are the variance of measured values and the sum of squared
residuals, respectively:

SStotal =
n

∑
i=1

(yi − y)2 (4c)

SSerror =
n

∑
i=1

(yi − ŷi)
2 (4d)

RPD = SD/RMSE (4e)
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Viscarra Rossel et al. [46] classified the RPD values referring to accuracy of modelling into six
classes: excellent (RPD > 2.5), very good (RPD = 2.5–2.0), good (RPD = 2.0–1.8), fair (RPD = 1.8–1.4),
poor (RPD = 1.4–1.0), and very poor model (RPD < 1.0). In this study, we adopted this model
classification criterion to compare between different calibration models in cross-validation and in
laboratory and on-line predictions.

3. Results

3.1. Laboratory Measured Soil Properties

The descriptive statistics for measured TN and TC in both fields are shown in Table 1 and Figure 3.
It can be observed that TN concentration is low, with mean and maximum values of 0.25% and 0.34%,
respectively, whereas the mean and maximum values of TC are 2.12% and 3.67%, respectively, in the
Hessleskew field. Both TN and TC in the Hagg field are even smaller than in the Hessleskew field,
with mean values of 0.21% and 1.92%, respectively (Table 1). The small range of variability in TN and
TC implies these fields are certainly not the optimal case study, as the smaller the variability is, the less
successful results can be expected for the prediction capability of the vis-NIR spectroscopy calibration
models established [6].

Sensors 2017, 17, 2428 9 of 22 

 

3. Results 

3.1. Laboratory Measured Soil Properties 

The descriptive statistics for measured TN and TC in both fields are shown in Table 1 and Figure 3. 
It can be observed that TN concentration is low, with mean and maximum values of 0.25% and 0.34%, 
respectively, whereas the mean and maximum values of TC are 2.12% and 3.67%, respectively, in the 
Hessleskew field. Both TN and TC in the Hagg field are even smaller than in the Hessleskew field, 
with mean values of 0.21% and 1.92%, respectively (Table 1). The small range of variability in TN and 
TC implies these fields are certainly not the optimal case study, as the smaller the variability is, the 
less successful results can be expected for the prediction capability of the vis-NIR spectroscopy 
calibration models established [6]. 

 
Figure 3. Histograms, box-plots and descriptive statistics of (a) soil total nitrogen (TN) and (b) total 
carbon (TC) for Hessleskew and Hagg fields, and European dataset. 

The mean and median of TN are equal in Hessleskew and Hagg, indicating that TN fallows 
normal distribution, meanwhile European dataset shows left skewed with the mean being greater 
than the median (0.15 and 0.14%, respectively). The sample distribution of TC is similar to TN in both 
Hessleskew and Hagg with unimodal as the mean and median values are comparable, whereas the 
distribution of TC in European dataset shows non-modality and left skewed with the mean being 
larger than the median (1.67% and 1.45%, respectively). 

Figure 3. Histograms, box-plots and descriptive statistics of (a) soil total nitrogen (TN) and (b) total
carbon (TC) for Hessleskew and Hagg fields, and European dataset.



Sensors 2017, 17, 2428 10 of 22

The mean and median of TN are equal in Hessleskew and Hagg, indicating that TN fallows
normal distribution, meanwhile European dataset shows left skewed with the mean being greater
than the median (0.15 and 0.14%, respectively). The sample distribution of TC is similar to TN in both
Hessleskew and Hagg with unimodal as the mean and median values are comparable, whereas the
distribution of TC in European dataset shows non-modality and left skewed with the mean being
larger than the median (1.67% and 1.45%, respectively).

Table 1. Descriptive statistics for soil total carbon (TC) and total nitrogen (TN) for Hessleskew, Hagg
fields, and European datasets.

Min 1st Qu. Median Mean 3rd Qu. Max St.dev

Hessleskew (n = 122)

TN (%) 0.19 0.23 0.25 0.25 0.26 0.34 0.02
TC (%) 1.72 1.94 2.05 2.12 2.22 3.67 0.30

Hagg (n = 149)

TN (%) 0.13 0.19 0.21 0.21 0.24 0.35 0.04
TC (%) 1.34 1.68 1.90 1.92 2.08 3.18 0.31

European (n = 528)

TN (%) 0.03 0.11 0.14 0.15 0.17 0.30 0.04
TC (%) 0.45 1.22 1.45 1.67 1.70 3.76 0.77

3.2. Performance of the Calibration Models for Predicting TN

Table 2 and Figures 4 and 5 show the cross-validation, laboratory and on-line prediction
results for TN calibration models developed with local and European datasets. In cross-validation,
RF outperformed both GBM and ANN, successively, for modelling TN. The best results achieved with
RF are based on the spiked European dataset with R2 = 0.97, RMSECV = 0.01%, and RPD = 5.58
for the Hagg field, and R2 = 0.96, RMSECV = 0.01%, and RPD = 4.83 for the Hessleskew field
(Table 2). The lowest results are obtained with ANN based on local dataset with R2 = 0.35,
RMSE = 0.03%, and RPD = 1.25 for the Hagg field, and R2 = 0.62, RMSE = 0.01%, and RPD = 1.62 for
the Hessleskew field.

The performance of the laboratory prediction shows a different trend to that of the cross-validation,
where the GBM based on the spiked European dataset models generally provide the best results with
R2 = 0.87, RMSE = 0.02%, and RPD = 2.79 in the Hesselskew field (Table 2; Figure 4), followed by
RF model based on the spiked European dataset with R2 = 0.84, RMSE = 0.02%, and RPD = 2.51 in
the Hagg field (Table 2; Figure 5). However, GBM-local dataset-based models in particular for the
Hessleskew field has resulted in the least significant results (R2 = 0.60, RMSE = 0.01%, and RPD = 1.60),
and R2 = 0.62, RMSE = 0.02%, and RPD = 1.65 in the Hagg field, shown in Table 2). ANN outperforms
GBM in modeling based on local dataset with R2 of 0.69 and 0.66, RMSE of 0.01% and 0.02%, and RPD
of 1.81 and 1.74 for the Hessleskew and Hagg field, respectively. However, RF local model shows
better performances for laboratory prediction of TN, compared to both ANN and GMB based on the
corresponding datasets, particularly in the Hesselskew field.

Like for the cross-validation, the best results of on-line prediction are obtained with RF, followed
successively by GBM and ANN (Table 2). This is true in the Hagg field, where the highest results of
RF model obtained with the spiked European dataset with R2 = 0.83, RMSE = 0.02%, and RPD = 2.40,
followed by RF model based on local dataset with R2 = 0.79, RMSE = 0.02%, and RPD = 2.20 in the Hagg
field (Table 2; Figure 5). The local-ANN based model has the lowest results in the Hagg field (R2 = 0.11,
RMSE = 0.04%, and RPD = 1.07) and the Hessleskew field (R2 = 0.26, RMSE = 0.02%, and RPD = 1.18),
followed by GBM local model for the the Hessleskew field (R2 = 0.53, RMSE = 0.02%, and RPD = 1.48,
Table 2). However, the model prediction performance varies between the two studied fields. Although
the best performing local dataset was with RF, ANN provides a better prediction with the spiked dataset
in the Hesselskew field, although the differences are small compared to RF and GBM.
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Table 2. Hessleskew and Hagg fields results in cross-validation, laboratory and on-line predictions using local, and spiked European dataset based on gradient
boosted machines (GBM), artificial neural networks (ANNs) and random forests (RF) models.

Hessleskew Hagg

Local European Local European

RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

GBM n.trees n.trees

Cross-
100 TN 0.01 0.63 1.64 0.01 0.96 4.81 100 TN 0.02 0.63 1.66 0.01 0.96 5.01
100 TC 0.16 0.67 1.75 0.06 0.98 6.48 100 TC 0.19 0.65 1.70 0.12 0.98 6.49

Lab Prediction
100 TN 0.01 0.60 1.60 0.02 0.87 2.79 100 TN 0.02 0.62 1.65 0.02 0.79 2.21
100 TC 0.23 0.60 1.59 0.20 0.82 2.40 100 TC 0.21 0.61 1.61 0.19 0.83 3.03

On-line Prediction
100 TN 0.02 0.53 1.48 0.02 0.66 1.80 100 TN 0.02 0.59 1.58 0.02 0.77 2.11
100 TC 0.26 0.54 1.49 0.24 0.66 1.78 100 TC 0.22 0.52 1.46 0.20 0.79 2.95

ANN size size

Cross- validation
2 TN 0.01 0.62 1.62 0.01 0.77 2.08 2 TN 0.03 0.35 1.25 0.03 0.73 1.92
2 TC 0.21 0.44 1.34 0.15 0.86 2.69 2 TC 0.18 0.70 1.82 0.18 0.86 2.79

Lab Prediction
2 TN 0.01 0.69 1.81 0.01 0.71 2.02 2 TN 0.02 0.66 1.74 0.02 0.68 1.87
2 TC 0.25 0.51 1.45 0.20 0.83 2.44 2 TC 0.25 0.47 1.40 0.21 0.84 2.59

On-line Prediction
2 TN 0.02 0.26 1.18 0.01 0.68 1.78 2 TN 0.04 0.11 1.07 0.03 0.59 1.59
2 TC 0.34 0.19 1.13 0.25 0.78 2.14 2 TC 0.27 0.75 1. 95 0.20 0.85 2.63

RF ntree ntree

Cross- validation
100 TN 0.01 0.83 2.45 0.01 0.96 4.83 100 TN 0.01 0.84 2.50 0.01 0.97 5.58
100 TC 0.12 0.82 2.38 0.06 0.98 6.48 100 TC 0.13 0.84 2.52 0.10 0.98 7.54

Lab Prediction
100 TN 0.01 0.82 2.40 0.02 0.81 2.33 100 TN 0.02 0.78 2.18 0.02 0.84 2.51
100 TC 0.25 0.75 2.02 0.23 0.78 2.16 100 TC 0.18 0.81 2.35 0.14 0.88 3.49

On-line Prediction
100 TN 0.01 0.72 1.93 0.04 0.55 1.52 100 TN 0.02 0.79 2. 20 0.02 0.83 2.40
100 TC 0.21 0.69 1.82 0.20 0.75 2.13 100 TC 0.15 0.77 2.13 0.14 0.86 3.24

n.trees = total number of trees to fit., size = number of units in the hidden layer, ntree = number of trees.
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Figure 4. Scatter plots of visible and near infrared (vis-NIR)-predicted versus laboratory-analysed
total nitrogen (TN) in Hessleskew field in cross validation (a); lab prediction (b) and on-line prediction
(c); using local dataset (A) and spiked European dataset (B); comparing between gradient boosted
machines (GBM), artificial neural network (ANNs) and random forests (RF) models.
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Figure 5. Scatter plots of visible and near infrared (vis-NIR)-predicted versus laboratory-analysed total
nitrogen (TN) in Hagg field in cross validation (a); lab prediction (b) and on-line prediction (c), using
local dataset (A) and spiked European dataset (B); comparing between gradient boosted machines
(GBM); artificial neural network (ANNs) and random forests (RF) models.
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3.3. Performance of the Calibration Models for Predicting TC

Table 2 and Figures 6 and 7 show the results of cross-validation, laboratory and on-line predictions.
For cross-validation, the RF outperformed both GBM and ANN models. The best results are achieved
with RF using the spiked European dataset in both fields with R2 = 0.98, RMSECV = 0.10% and
RPD = 7.54 for the Hagg field, and R2 = 0.98, RMSECV = 0.06% and RPD = 6.48 for the Hesselskew
field. However, the performance of the RF model in the Hessleskew field is identical to that of GBM.
While the results of local-ANN based model is the poorest in the Hessleskew field with R2 = 0.44,
RMSE = 0.21% and RPD = 1. 34, followed by local-GBM based model in the Hagg field with R2 = 0.65,
RMSECV = 0.19% and RPD = 1.70. Overall, the cross-validation results for TC is identical to that for
TN reported above.

The laboratory prediction of TC behaves similarly to the cross-validation stage, where RF
over-performs both GBM and ANN (Table 2), with the best results obtained for the RF model based on
the spiked European dataset (R2 = 0.88, RMSE = 0. 14% and RPD = 3.49 in the Hagg field, followed
by GBM model based on the spiked European dataset (R2 = 0.83, RMSE = 0. 15% and RPD = 3.16 in
the Hagg field). However, ANN model outperforms both RF and GBM in the Hessleskew field with
the spiked European dataset (R2 = 0.83, RMSE = 0.20% and RPD = 2.44). RF models outperform both
GBM and ANN models based on the local dataset in both Hesselsekew and Hagg fields (Table 2 and
Figure 8).

Similarly to the laboratory prediction, the best results for the on-line prediction are achieved using
RF based on the spiked European dataset in the Hagg field (R2 = 0.86, RMSE = 0.14% and RPD = 3.24),
followed by GBM based on the spiked European dataset in the Hagg field also (R2 = 0.85, RMSE = 0.
20% and RPD = 2.95). Again, ANN based on the spiked European dataset outperform both RF and
GBM in the Hessleskew field (R2 = 0.78, RMSE = 0.25% and RPD = 2.14). For the local dataset based
models, RF outperforms both GBM and ANN models in both the Hagg and Hessleskew fields (Table 2;
Figure 8).

4. Discussion

4.1. Comparison of Model Performance

In this work we compared the accuracy of the GBM, ANN and RF methods for the prediction of
TN and TC based on local and European datasets. The variations of R2, RPD as well as RMSE values
obtained from cross-validation, laboratory and on-line prediction are shown in Table 2 and Figures 8
and 9.

Although RF models have resulted in the highest prediction performance followed by GBM in
cross-validation, this was the case for the laboratory and on-line predictions in the Hagg field only,
whereas ANN models based on the spiked European dataset has provided improved results for the
laboratory (for TC only) and on-line (for both TC and TN) predictions in the Hessleskew field only.
This means that the laboratory prediction followed the same trend as for cross-validation in the Hagg
field only, where RF outperform both GBM and ANN. Sorenson et al. [15] found RF to outperform
ANN for the prediction of OC and TN for non-mobile measurement, reporting RMSE = 0.62 and 1.56%,
and RPD = 2.1 and 0.90 for RF and ANN, respectively, for OC and RMSE of 0.60 and 0.12%, and RPD
of 2.1 and 1.0 for RF and ANN, respectively for TN. Viscarra Rossel and Behrens [14] reported better
prediction results for RF compared to BT, but was less performing than ANN using the discrete wavelet
transform as the predictors (RMSEP of 0.99%, 0.93% and 0.75%, and R2 of 0.83, 0.84, and 0.89 for
DWT-BT, DWT-RF, and DWT-ANN, respectively). This points out that, depending on the geographic
region, one method may outperform several others [47].
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Figure 6. Scatter plots of visible and near infrared (vis-NIR)-predicted versus laboratory-analysed 
total carbon (TC) in the Hesselskew field in cross validation (a); lab prediction (b) and on-line 
prediction (c); using local dataset (A) and spiked European dataset (B); comparing between gradient 
boosted machines (GBM), artificial neural networks (ANNs) and random forests (RF) models. 

Figure 6. Scatter plots of visible and near infrared (vis-NIR)-predicted versus laboratory-analysed total
carbon (TC) in the Hesselskew field in cross validation (a); lab prediction (b) and on-line prediction
(c); using local dataset (A) and spiked European dataset (B); comparing between gradient boosted
machines (GBM), artificial neural networks (ANNs) and random forests (RF) models.



Sensors 2017, 17, 2428 16 of 22

Sensors 2017, 17, 2428 16 of 22 

 

 
Figure 7. Scatter plots of visible and near infrared (vis-NIR)-predicted versus laboratory-analysed 
total carbon (TC) in the Hagg field in cross validation (a); lab prediction (b) and on-line prediction (c); 
using local dataset (A) and spiked European dataset (B); comparing between gradient boosted 
machines (GBM), artificial neural networks (ANNs) and random forests (RF) models. 

Figure 7. Scatter plots of visible and near infrared (vis-NIR)-predicted versus laboratory-analysed
total carbon (TC) in the Hagg field in cross validation (a); lab prediction (b) and on-line prediction
(c); using local dataset (A) and spiked European dataset (B); comparing between gradient boosted
machines (GBM), artificial neural networks (ANNs) and random forests (RF) models.
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Figure 8. Comparison of residual prediction deviation (RPD) values for (A) total nitrogen (TN) and (B) 
total carbon (TC) predictions obtained with (a) gradient boosted machines (GBM); (b) artificial neural 
networks (ANNs) and (c) random forests (RF) analyses in cross-validation (Cal), laboratory prediction 
(Lab) and on-line prediction (Online). Results were generated with local field datasets of 122 and 149 
samples for the Hessleskew and Hagg fields, respectively, and a spiked European dataset (528 samples). 
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(Lab) and on-line prediction (Online). Results were generated with local field datasets of 122 and 149 
samples for the Hessleskew and Hagg fields, respectively, and a spiked European dataset (528 samples). 

Similar to the on-line predictions, the results of RF for the Hagg field are better than those in the 
Hessleskew field, which is in line with the results reported by Nawar and Mouazen [5] for on-line 
measurement based on the spiked European dataset (RMSEP of 0.03–0.19% and RPD of 5.21–5.94 for 

Figure 8. Comparison of residual prediction deviation (RPD) values for (A) total nitrogen (TN) and
(B) total carbon (TC) predictions obtained with (a) gradient boosted machines (GBM); (b) artificial
neural networks (ANNs) and (c) random forests (RF) analyses in cross-validation (Cal), laboratory
prediction (Lab) and on-line prediction (Online). Results were generated with local field datasets of
122 and 149 samples for the Hessleskew and Hagg fields, respectively, and a spiked European dataset
(528 samples).
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Figure 9. Comparison of root mean square error (RMSE) values for (A) total nitrogen (TN) and
(B) total carbon (TC) predictions obtained with (a) gradient boosted machines (GBM); (b) artificial
neural networks (ANNs) and (c) random forests (RF) analyses in cross-validation (Cal), laboratory
prediction (Lab) and on-line prediction (Online). Results were generated with local field datasets of
122 and 149 samples for the Hessleskew and Hagg fields, respectively, and a spiked European dataset
(528 samples).
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Similar to the on-line predictions, the results of RF for the Hagg field are better than those in the
Hessleskew field, which is in line with the results reported by Nawar and Mouazen [5] for on-line
measurement based on the spiked European dataset (RMSEP of 0.03–0.19% and RPD of 5.21–5.94 for
TN and TC, respectively). However, results in this research are better than those reported by Kuang
and Mouazen [48] using PLSR, with RPD of 2.52 and 2.33 for TN and OC, respectively and better
than ANN models [11] for on-line prediction of OC (RPD = 2.28, compared to RPD of 2.52 of the
current research). RF outperforms both GBM and ANN for on-line predictions in the Hagg field only,
whereas ANN replaces RF in being the best performing for on-line prediction in the Hessleskew field.
From the quality of on-line prediction of the studied two soil properties it can be concluded that ANN
might perform equally as RF, which rejects the hypothesis of the current work that both RF and GBM
outperform ANN for on-line prediction of TN and TC.

4.2. Influence of Dataset on Models’ Performance

The influence of dataset size and concentration range showed great influences on the performance
in calibration and prediction. The results associated with spiking local samples into the European
dataset more often enhances the overall model performance, especially for cross-validation,
in comparison with those obtained using the local dataset (Table 2 and Figure 8), which is in agreement
with the results presented by Brown [49] and Sankey et al. [50] for non-mobile measurements,
and Kuang and Mouazen [48] for on-line measurements. The improvement was mainly expressed
as improved R2 and RPD, and RMSEP in laboratory and on-line predictions (Table 2 and Figure 9).
This finding is in agreement with Kuang and Mouazen [48], who reported improvement in R2 and RPD
for predictions of TN and TC by adding local samples into a general library. Furthermore, Nawar and
Mouazen [5] reported that the spiking of local soil samples into European datasets turned out to be
a competent method to enhance the prediction associated with target field samples. Compared to
published results, using the spiking of target field samples into European samples obtained with PLSR
analyses [48] for TN (RPD = 1.96–2.52) and OC (RPD = 1.88–2.38), the results of on-line prediction
based on RF in the current research is better for TN and TC, and better than those results reported
for on-line measurement of OC by Kuang et al. [11] using ANN analysis with RPD and RMSE values
of 2.28 and 1.25%, respectively. Taking into account the small variation range of TN and TC in the
two scanned fields (Table 1), spiking of the European dataset with local samples seems to provide
the best scenario to improve on-line prediction performance. This was also proved to be true for
laboratory-scanned (non-mobile) soil spectra spiked into global or European datasets [51,52].

A possible explanation for the high performance of both the laboratory and on-line predictions
with the spiked European data set is the wider concentration ranges (larger variability) within the
datasets for both properties compared to the narrow range of the local datasets. This wide range
or variability is indeed a fundamental factor in the calibration of the vis-NIR spectroscopy which is
essential for successful modelling of data, particularly in fields with narrow concentration ranges.
In fact, if the concentration range in a field is too narrow, no calibration models can be established
at all, and it will be essential at this point to spike selected samples from a target field into existing
spectral library with wide concentration range. This implies that the overall model performance may
depend to a large extent of variability exist in the dataset [53]. This is the reason why researchers
have concluded that calibration models should be established based on libraries that capture wide
concentration range and soil types [54]. Kuang and Mouazen [6] reported that fields with small
variations in concentrations of a given soil property will properly lead to inferior model performance
(small R2 and RPD). Furthermore, Nawar and Mouazen [5] found that spiked local sample with small
variation (small range) into an European dataset with wide concentration range improved the on-line
prediction (in terms of improved R2 and RPD and decreased RMSEP) of TN and TC compared to
local datasets.
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5. Conclusions

In this study the performance of generalized boosted machines (GBM), artificial neural networks
(ANNs), and random forests (RF) methods was compared for the visible and near infrared spectroscopy
prediction of soil total nitrogen (TN) and total carbon (TC) under laboratory (non-mobile) and on-line
(mobile) scanning conditions in two selected fields in the UK (Hessleskew and Hagg fields). We have
tested the performance of these modelling methods using local and European datasets, spiked with
samples from the two target fields. Generally, the performance of the GBM, ANN and RF models
varied according to the dataset used. Results showed the majority of the RF models to outperform
the corresponding GBM and ANN models in cross-validation, laboratory and on-line predictions.
Results in cross-validation showed improved performance with the spiked European dataset that were
collected from 16 fields in five European countries. Nevertheless, the performance of laboratory and
on-line predictions does not necessarily behave similarly to cross-validation. The ANN model based on
the spiked European dataset showed better performance than RF and GBM in laboratory (for TC only)
and on-line prediction (for TC and TN) in the Hessleskew field only. The highest on-line prediction
results were observed with RF models in the Hagg field based on the spiked European dataset.

From the results obtained in this work, it is observed that calibrations obtained with the spiked
European dataset is the most successful option for on-line predictions of the TN and TC, compared
to field local calibration. The spiked European calibrations based on 528 samples provided a larger
coefficient of determination (R2) and residual prediction deviation (RPD) compared to the local
calibration models for TN and TC in both fields. Future work needs to focus on optimizing the
selection of an optimal dataset to be spiked into the European dataset. This needs to test distance
matrices and sample selection algorithms for potential improvement in the prediction quality of
resulted models compared to random sample selection based modelling.
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