94 research outputs found

    Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images

    Get PDF
    White matter hyperintensities (WMH) are commonly found in the brains of healthy elderly individuals and have been associated with various neurological and geriatric disorders. In this paper, we present a study using deep fully convolutional network and ensemble models to automatically detect such WMH using fluid attenuation inversion recovery (FLAIR) and T1 magnetic resonance (MR) scans. The algorithm was evaluated and ranked 1 st in the WMH Segmentation Challenge at MICCAI 2017. In the evaluation stage, the implementation of the algorithm was submitted to the challenge organizers, who then independently tested it on a hidden set of 110 cases from 5 scanners. Averaged dice score, precision and robust Hausdorff distance obtained on held-out test datasets were 80%, 84% and 6.30mm respectively. These were the highest achieved in the challenge, suggesting the proposed method is the state-of-the-art. In this paper, we provide detailed descriptions and quantitative analysis on key components of the system. Furthermore, a study of cross-scanner evaluation is presented to discuss how the combination of modalities and data augmentation affect the generalization capability of the system. The adaptability of the system to different scanners and protocols is also investigated. A quantitative study is further presented to test the effect of ensemble size. Additionally, software and models of our method are made publicly available. The effectiveness and generalization capability of the proposed system show its potential for real-world clinical practice.Comment: final version in NeuroImag

    Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation

    Get PDF
    Segmentation of both large and small white matter hyperintensities/lesions in brain MR images is a challenging task which has drawn much attention in recent years. We propose a multi-scale aggregation model framework to deal with volume-varied lesions. Firstly, we present a specifically-designed network for small lesion segmentation called Stack-Net, in which multiple convolutional layers are connected, aiming to preserve rich local spatial information of small lesions before the sub-sampling layer. Secondly, we aggregate multi-scale Stack-Nets with different receptive fields to learn multi-scale contextual information of both large and small lesions. Our model is evaluated on recent MICCAI WMH Challenge Dataset and outperforms the state-of-the-art on lesion recall and lesion F1-score under 5-fold cross validation. In addition, we further test our pre-trained models on a Multiple Sclerosis lesion dataset with 30 subjects under cross-center evaluation. Results show that the aggregation model is effective in learning multi-scale spatial information.It claimed the first place on the hidden test set after independent evaluation by the challenge organizer. In addition, we further test our pre-trained models on a Multiple Sclerosis lesion dataset with 30 subjects under cross-center evaluation. Results show that the aggregation model is effective in learning multi-scale spatial information.Comment: accepted by MICCAI brain lesion worksho

    Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs

    Full text link
    Segmenting vascular pathologies such as white matter lesions in Brain magnetic resonance images (MRIs) require acquisition of multiple sequences such as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid attenuated inversion recovery (FLAIR) sequence --where lesions appear hyperintense--. However, most of the existing retrospective datasets do not consist of FLAIR sequences. Existing missing modality imputation methods separate the process of imputation, and the process of segmentation. In this paper, we propose a method to link both modality imputation and segmentation using convolutional neural networks. We show that by jointly optimizing the imputation network and the segmentation network, the method not only produces more realistic synthetic FLAIR images from T1-w images, but also improves the segmentation of WMH from T1-w images only.Comment: Conference on Medical Imaging with Deep Learning MIDL 201

    A deep learning algorithm for white matter hyperintensity lesion detection and segmentation

    Get PDF
    Purpose: White matter hyperintensity (WMHI) lesions on MR images are an important indication of various types of brain diseases that involve inflammation and blood vessel abnormalities. Automated quantification of the WMHI can be valuable for the clinical management of patients, but existing automated software is often developed for a single type of disease and may not be applicable for clinical scans with thick slices and different scanning protocols. The purpose of the study is to develop and validate an algorithm for automatic quantification of white matter hyperintensity suitable for heterogeneous MRI data with different disease types. / Methods: We developed and evaluated “DeepWML”, a deep learning method for fully automated white matter lesion (WML) segmentation of multicentre FLAIR images. We used MRI from 507 patients, including three distinct white matter diseases, obtained in 9 centres, with a wide range of scanners and acquisition protocols. The automated delineation tool was evaluated through quantitative parameters of Dice similarity, sensitivity and precision compared to manual delineation (gold standard). / Results: The overall median Dice similarity coefficient was 0.78 (range 0.64 ~ 0.86) across the three disease types and multiple centres. The median sensitivity and precision were 0.84 (range 0.67 ~ 0.94) and 0.81 (range 0.64 ~ 0.92), respectively. The tool’s performance increased with larger lesion volumes. / Conclusion: DeepWML was successfully applied to a wide spectrum of MRI data in the three white matter disease types, which has the potential to improve the practical workflow of white matter lesion delineation

    Quality control for more reliable integration of deep learning-based image segmentation into medical workflows

    Get PDF
    Machine learning algorithms underpin modern diagnostic-aiding software, whichhas proved valuable in clinical practice, particularly in radiology. However,inaccuracies, mainly due to the limited availability of clinical samples fortraining these algorithms, hamper their wider applicability, acceptance, andrecognition amongst clinicians. We present an analysis of state-of-the-artautomatic quality control (QC) approaches that can be implemented within thesealgorithms to estimate the certainty of their outputs. We validated the mostpromising approaches on a brain image segmentation task identifying whitematter hyperintensities (WMH) in magnetic resonance imaging data. WMH are acorrelate of small vessel disease common in mid-to-late adulthood and areparticularly challenging to segment due to their varied size, anddistributional patterns. Our results show that the aggregation of uncertaintyand Dice prediction were most effective in failure detection for this task.Both methods independently improved mean Dice from 0.82 to 0.84. Our workreveals how QC methods can help to detect failed segmentation cases andtherefore make automatic segmentation more reliable and suitable for clinicalpractice.<br
    corecore