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Multi-Scale Convolutional-Stack Aggregation for
Robust White Matter Hyperintensities

Segmentation

Hongwei Li1, Jianguo Zhang3, Mark Muehlau2, Jan Kirschke2, and
Bjoern Menze1

1. Technical University of Munich,
2. Klinikum rechts der Isar

3. University of Dundee, United Kingdom

Abstract. Segmentation of both large and small white matter hyperin-
tensities/lesions in brain MR images is a challenging task which has
drawn much attention in recent years. We propose a multi-scale ag-
gregation model framework to deal with volume-varied lesions. Firstly,
we present a specifically-designed network for small lesion segmentation
called Stack-Net, in which multiple convolutional layers are connected,
aiming to preserve rich local spatial information of small lesions before
the sub-sampling layer. Secondly, we aggregate multi-scale Stack-Nets
with different receptive fields to learn multi-scale contextual information
of both large and small lesions. Our model is evaluated on recent MIC-
CAI WMH Challenge Dataset and outperforms the state-of-the-art on
lesion recall and lesion F1-score under 5-fold cross validation. In addi-
tion, we further test our pre-trained models on a Multiple Sclerosis lesion
dataset with 30 subjects under cross-center evaluation. Results show that
the aggregation model is effective in learning multi-scale spatial informa-
tion.

Keywords: White Matter Hyperintensities, Deep Learning

1 Introduction

White matter hyperintensities (WMH) characterized by bilateral, mostly sym-
metrical lesions are commonly seen on FLAIR magnetic resonance imaging (M-
RI) of clinically healthy elderly people; furthermore, they have been repeatedly
associated with various neurological and geriatric disorders such as mood prob-
lems and cognitive decline [2]. Detection of such lesions on MRI has become a
crucial criterion for diagnosis and predicting prognosis in early stage of diseases.

Different from brain tumor segmentation [5] in MR images where most of
the abnormal regions are large and with spatial continuity, in the task of WMH
segmentation, both large and small lesions with high discontinuity are commonly
found as shown in Fig. 1. Generally, small abnormal region contains relatively
less contextual information due to the poor spatial continuity. Furthermore, the
feature representation of small lesions tend to be trivial when image features
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Fig. 1: From left to right: axial slices from 34 to 37 of one case from the MICCAI
WMH Challenge public training set, showing the high discontinuity of white
matter hyperintensities. The red pixels indicate the WMH annotated by a neu-
roradiologist.

are extracted in a global manner. One solution to tackle this issue is to use
an ensemble model or aggregation model [9] to learn different attributes i.e.,
multi-levels of feature representation from the training data.

Although there exist various computer-aided diagnostic systems for auto-
matic segmentation of white matter hyperintensities [1,7], the reported results
are largely incomparable due to different datasets and evaluation protocols. The
MICCAI WMH Segmentation Challenge 2017 1 was the first competition held
to compare state-of-the-art algorithms on this task. The winning method [3] of
the challenge employed the modified U-Net [8] architecture and ensemble mod-
els (U-Net ensembles in short). Three U-Net models of same architecture were
trained with shuffled data and different weight initializations.

In traditional fully convolutional networks [4], each convolutional layer is fol-
lowed by a max-pooling operation which causes the loss of spatial information. In
the task of WMH segmentation, this sub-sampling operation can be devastating
because small-volume hyperintensities with less than 10 voxels are commonly
found. Instead of using single convolutional layer before the sub-sampling layer,
we hypothesize that a convolutional stack with multiple convolutional layer is
able to extract rich local information and it would be more effective by prop-
agating the feature maps learned to the high-resolutional deconvolutional layer
by skip connections similar to the U-Net approach [8].

In this paper, we present a stacked architecture of fully convolutional network
called Stack-Net which aims at preserving the local spatial information of small
lesions and propagating them to deconvolutional layers. We further aggregate
two Stack-Nets with different receptive fields to learn multi-scale spatial infor-
mation from both large and small abnormal regions. Our method outperforms
the state-of-the-art in lesion recall by 4% on the MICCAI Challenge Dataset
with 60 cases. In addition, we test our pre-trained models on a private Multiple

1 http://wmh.isi.uu.nl/

http://wmh.isi.uu.nl/


Sclerosis (MS) lesion dataset with 30 subjects. Results further demonstrate the
effectiveness of the aggregation idea.

2 Method

2.1 Convolutional Stack and Multi-Scale Convolutions

Formulation Let f(·) represent the nonlinear activation function. The kth out-
put feature map of lth layer Ylk can be computed as: Ylk = f(Wr

lk∗x) where
the input image is denoted by x ; the convolutional kernel with fixed size r×r
related to the k feature map is denoted by Wr

lk; the multiplication sign refers
to the 2D convolutional operator, which is used to calculate the inner product
of the filter model at each location of the input image. We now modify this
convolution structure from layer to stack. Let a convolutional stack S contain L
convolutional layers, the kth output feature map YSk of S can be computed as

YSk = f(Wr
Lk∗f(Wr

(L−1)k. . . f(W
r
0k∗x)). . . ) (1)

Obviously, the use of multiple connected convolutional layers to replace sin-
gle layer would lead to the increase of computational complexity. However, the
local spatial information of small lesions could be largely reduced after the first
pooling layer (with 2 × 2 kernel or larger). As a result, we only replaced the first
two convolutional layers before sub-sampling layers with convolutional stack as
shown in Fig. 2.

We further employed multi-scale convolutional kernels to learn different con-
textual information from both large and small abnormal regions. In our task,
we aggregate the proposed two Stack-Nets with different receptive fields. Stack-
Net with small receptive field i.e., 3×3 kernel, is expected to learn local spatial
information of small-volume hyperintensities while Stack-Net with large kernel
is designed to learn spatial continuity of large abnormal regions. Two models
were trained and optimized independently and were aggregated by using a vot-
ing strategy during the testing stage. Let Pi be the 3D segmentation probablity
masks predicted by one single model Mi. Then the final segmentation proba-
bility map of the aggregation of n models is defined as: Paggr = 1

n

∑
i Pi. The

threshold for generating binary mask is set to 0.4.

Architecture As shown in Fig. 2, we built two Stack-Nets with different convo-
lutional kernels, which takes as input the axial slices (2D) of two modalities from
the brain MR scans during both training and testing. Different from the winning
architecture U-Net Ensembles [3] in the MICCAI challenge, we replaced the first
two convolutional layers by a convolutional stack, with 3 × 3 and 5 × 5 kernel
size respectively. Each convolutional stack is followed by a rectified linear unit
(ReLU) and a 2×2 max pooling operation with stride 2 for downsampling. The
depth of the convolutional stack was set as L=5. In total the network contains
24 convolutional and de-convolutional layers.
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Fig. 2: Overview of the multi-scale convolutional-stack aggregation model. We
replaced the traditional single convolutional-layer with convolutional-stack to
extract and preserve local information of small lesions. The depth of the
convolution-stack was flexible and set to 5 in our experiments. Two convolution-
al kernels i.e., 3×3 and 5×5 were used in two Stack-Nets to learning multi-scale
context information. The detailed parameters setting/architecture was presented
in Fig. 3.

Training For the data preprocessing, each slice and the corresponding segmen-
tation mask were cropped or padded to 200× 200 to guarantee a uniform input
for the model. Then we obtained the brain mask using simple thresholding and
mask filling. Gaussian normalization was applied to each subject to rescale the
intensities. Dice loss function [6] was employed during the training process. Data
augmentation including rotation, shearing and zoom was used during the batch
training. The optimal number of epochs was set to 50 by contrasting training
loss and validation loss over epochs (validation set here is part of the training
set). The batch size was set to 30 and learning rate was set to 0.0002 throughout
all of the experiments.

3 Materials

3.1 Datasets and Experimental Setting

Two clinical datasets: the public MICCAI WMH dataset with 60 cases from 3
centers and a private MS Lesion dataset with 30 cases collected from a hospital
in Munich, were employed in our experiments. For each dataset, the FLAIR
and T1 modality of each subject were co-registered. Properties of the data were
summarised in Table 1. In the experiments reported in Section 4.1 and 4.2, five-
fold cross-validation setting was used. Specifically, subject IDs were used to split



Fig. 3: Detailed parameters setting of the deep networks. The number of stacked
layers is 2.

Table 1: Detailed information of MICCAI WMH Challenge dataset from three
centers and private Multiple Sclerosis dataset from a hospital in Munich.

.

Datasets Lesion Type Subjects Voxel Size (mm3) Size of FLAIR&T1 Scans

Utrecht WMH 20 0.96×0.95×3.00 240×240×48
Singapore WMH 20 1.00×1.00×3.00 252×232×48
GE3T WMH 20 0.98×0.98×1.20 132×256×83

Munich Multiple Sclerosis 30 1.00 ×1.00×0.99 240×240×170

the public training dataset into training and validation sets. In each split, slices
from 16 subjects from each center were pooled into training set, and the slices
from the remaining 4 subjects from each center for testing. This procedure was
repeated until all of the subjects had been used in testing phase. The Dice score,
lesion recall and lesion F1-score of all testing subjects were averaged afterwards.

3.2 Evaluation Metrics

Three evaluation metrics were used to evaluate the segmentation performance
of the algorithm in different aspects from MICCAI WMH Challenge. Given a
ground-truth segmentation map G and a segmentation map P generated by an
algorithm, the evaluation metrics are defined as follows. Dice score: DSC =
2(G∩P)/(|G|+ |P |). This metric measures the overlapping volume of G and P .
Recall for individual lesions: Let NG be the number of individual lesions
delineated in G, and NP be the number of correctly detected lesions after com-
paring P and G. Each individual lesion is defined as a 3D connected component.
Then the recall for individual lesions is defined as: Recall = NP /NG. F1-score
for individual lesions: Let NP be the number of correctly detected lesions
after comparing P and G. NF be the number of wrongly detected lesions in



P . Each individual lesion is defined as a 3D connected component. Then the
F1-score for individual lesions is defined as: F1 = NP /(NP + NF ).

4 Results

4.1 Comparison with the State-of-the-Art

We conducted experiments on the public MICCAI WMH Challenge dataset (3
subsets, 60 subjects) in a 5-fold cross validation setting. We compared the seg-
mentation performance of the proposed Stack-Net and aggregation model with
the winning method in MICCAI WMH Challenge 2017. Please note that the
proposed Stack-Net has much less parameters than the winning model, i.e., 5
million versus 8 million. The Stack-Net with 3×3 kernel slightly outperforms
U-Net ensembles on Dice score and lesion F1-score and achieved comparable
lesion recall. The aggregation model outperforms U-Net ensembles by 4% on
lesion recall, suggesting that the Stack-Net is capable of learning attributes of
small-volume lesions. We conducted a paired Z-test over the 60 pairs, where each
pair is the lesion recall values obtained on one validation scan by the proposed
aggregation model and U-Net ensembles. Small p-value (p<0.01) on lesion recall
indicates that the improvements are statistically significant while the improve-
ments on Dice score and lesion F1-score are not statistically significant. Fig. 4
shows a segmentation case in which we can see that our aggregation model is
more effective in detecting small lesion.

To better understand how each part of the proposed model worked effec-
tively on the volume-varied lesions, we grouped all the lesions into three types:
small, medium and large, by defining the volume range of each type. Three sets
Ssmall = {s| volume(lesion) < 10}, Smedium = {s| 10 < volume(lesion) < 20}
and Slarge = {s| volume(lesion) > 20} were obtained. The volume was calculat-
ed based on the voxels. Then the number of detected lesions of three types was
calculated by comparing the predicted segmentation masks and ground-truth
segmentation masks on all the test subjects. Fig. 5(a) further shows the distri-
bution of detected lesions with small, medium and large volumes respectively.
Our aggregation model detected 2008 small lesions while the U-Net ensembles
detected 1851, i.e., 8% improvement over U-Net ensembles. We conducted a
paired Z-test over the 60 pairs, where each pair is the recall values of small
lesion obtained on one validation scan by the proposed aggregation model and
U-Net ensembles. Small p-value (p<0.01) on lesion recall indicates that the im-
provements are statistically significant the improvements on Dice score and lesion
F1-score are not statistically significant. We also observed that the aggregation
model achieved a comparable Dice score which measures the overlapping vol-
umes, demonstrating that it was effective in dealing with both large and small
lesions. The Stack-Net with 5×5 kernel slightly outperformed U-Net ensembles
in the detection of large lesions. It demonstrates that large convolutional kernel
is effective in learning contextual information from large abnormality regions
with spatial continuity.
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Fig. 4: Segmentation result of a testing case from Utrecht by U-Net ensembles and
our model respectively. The green area is the overlap between the segmentation
result and the ground truth. The red pixels are the false negatives, and the black
ones are the false positives.

(a) (b)

Fig. 5: a. Distribution of small, medium and large lesions correctly detected by U-
Net ensembles, each component of our aggregation model; b. Overall Dice, lesion
recall and lesion F1-score achieved by six Stack-Nets with different depths.



Table 2: Comparsion with the winning method in MICCAI WHM Challenge
2017. Values in bold indicates results outperforming the state-of-the-art.

.

Method Dice Score Lesion Recall Lesion F1-Score
U-Net ensembles [3] 80.10% 82.96% 76.41%

Stack-Net with 3×3 kernel(ours) 80.75% 82.94% 77.29%
Stack-Net with 5×5 kernel(ours) 80.46% 80.96% 76.75%

Multi-scale aggregation model (ours) 80.09% 86.96% 76.73%

Table 3: Segmenation performance on the MS lesion dataset. Figures in bold
indicate the best performance.

.

Method Dice Score Lesion Recall Lesion F1-Score
U-Net ensembles [3] 75.95% 93.16% 42.41%

Stack-Net with 3×3 kernel (ours) 75.89% 94.76% 42.59%
Stack-Net with 5×5 kernel (ours) 74.71% 93.37% 41.15%

Multi-scale aggregation model (ours) 76.93% 93.16% 49.57%

4.2 Analysis on the Stack-Net

To investigate the effect of the depth in Stack-Net, we evaluate six models with
3×3 kernel with depths ranging from 1 to 6 on the MICCAI WMH dataset using
5-fold cross validation. Using the same grouping criteria and calculation strategy
as mentioned above, we calculate the averaged Dice, averaged lesion recall and
averaged lesion F1-score on all test subjects after 5 splits. As one can observe
from Fig. 5(b) that using the thin convolutional stack i.e., one or two convolu-
tional layer yields relatively poor segmentation performance on three evaluation
metrics. This is because spatial information is reduced drastically after the sub-
sampling layer while the thin stack is not able to preserve rich information and
the reduced spatial information is propagated to the deconvolutional layers.

4.3 Cross-Center Evaluation on the MS Lesion Dataset

To further evaluate the idea of multi-scale spatial aggregation in a cross-center-
evaluation manner, we trained the models on MICCAI WMH dataset, and tested
them on the MS lesion dataset from a hospital in Munich. MS lesions have
a very similar appearance with WM lesions, but most of them are medium
or large lesions. Table 3 reported resulted from a comparison of segmentation
performance of individual network and aggregation model. We observed that
the aggregation model achieved significantly better lesion F1-score compared to
individual networks, suggesting combination of multi-scale spatial information
can help to remove false positives. Interestingly, we found the lesion recall did not
improve after aggregating the individual Stack-Nets. This is due to the fact that
most of the MS lesions are in medium or large size, which made the function
of convolutional stack achieve limited improvement over the lesion recall. It
further suggested that the aggregation of models with multi-scale receptive field
is effective in learning multi-scale spatial information.



5 Conclusions

In this paper, we explored an architecture specifically designed for small lesion
segmentation, to learn attributes of small regions. We found the convolution-
al stack was effective in preserving local information of small lesions and the
rich information was propagated to the high-resolution deconvolutional stack.
By aggregating multi-scale Stack-Net with different receptive fields, our method
outperformed the state-of-the-art on MICCAI WMH Challenge dataset. We fur-
ther showed multi-scale context aggregation model was effective in MS lesion
segmentation under a cross-center evaluation.
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