272 research outputs found

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Broadcast encryption with dealership

    Get PDF
    In this paper, we introduce a new cryptographic primitive called broadcast encryption with dealership. This notion, which has never been discussed in the cryptography literature, is applicable to many realistic broadcast services, for example subscription-based television service. Specifically, the new primitive enables a dealer to bulk buy the access to some products (e.g., TV channels) from the broadcaster, and hence, it will enable the dealer to resell the contents to the subscribers with a cheaper rate. Therefore, this creates business opportunity model for the dealer. We highlight the security consideration in such a scenario and capture the security requirements in the security model. Subsequently, we present a concrete scheme, which is proven secure under the decisional bilinear Diffie-Hellman exponent and the Diffie-Hellman exponent assumptions

    Efficient identity-based broadcast encryption without random oracles.

    Get PDF
    We propose a new efficient identity-based broadcast encryption scheme without random oracles and prove that it achieves selective identity, chosen plaintext security. Our scheme is constructed based on bilinear Diffie-Hellman inversion assumption and it is a good efficient hybrid encryption scheme, which achieves O(1)-size ciphertexts, public parameters and constant size private keys. In our scheme, either ciphertexts or public parameters has no relation with the number of receivers, moreover, both the encryption and decryption only require one pairing computation. Compared with other identity-based broadcast encryption schemes, our scheme has comparable properties, but with a better efficiency

    Data Sharing on Untrusted Storage with Attribute-Based Encryption

    Get PDF
    Storing data on untrusted storage makes secure data sharing a challenge issue. On one hand, data access policies should be enforced on these storage servers; on the other hand, confidentiality of sensitive data should be well protected against them. Cryptographic methods are usually applied to address this issue -- only encrypted data are stored on storage servers while retaining secret key(s) to the data owner herself; user access is granted by issuing the corresponding data decryption keys. The main challenges for cryptographic methods include simultaneously achieving system scalability and fine-grained data access control, efficient key/user management, user accountability and etc. To address these challenge issues, this dissertation studies and enhances a novel public-key cryptography -- attribute-based encryption (ABE), and applies it for fine-grained data access control on untrusted storage. The first part of this dissertation discusses the necessity of applying ABE to secure data sharing on untrusted storage and addresses several security issues for ABE. More specifically, we propose three enhancement schemes for ABE: In the first enhancement scheme, we focus on how to revoke users in ABE with the help of untrusted servers. In this work, we enable the data owner to delegate most computation-intensive tasks pertained to user revocation to untrusted servers without disclosing data content to them. In the second enhancement scheme, we address key abuse attacks in ABE, in which authorized but malicious users abuse their access privileges by sharing their decryption keys with unauthorized users. Our proposed scheme makes it possible for the data owner to efficiently disclose the original key owner\u27s identity merely by checking the input and output of a suspicious user\u27s decryption device. Our third enhancement schemes study the issue of privacy preservation in ABE. Specifically, our proposed schemes hide the data owner\u27s access policy not only to the untrusted servers but also to all the users. The second part presents our ABE-based secure data sharing solutions for two specific applications -- Cloud Computing and Wireless Sensor Networks (WSNs). In Cloud Computing cloud servers are usually operated by third-party providers, which are almost certain to be outside the trust domain of cloud users. To secure data storage and sharing for cloud users, our proposed scheme lets the data owner (also a cloud user) generate her own ABE keys for data encryption and take the full control on key distribution/revocation. The main challenge in this work is to make the computation load affordable to the data owner and data consumers (both are cloud users). We address this challenge by uniquely combining various computation delegation techniques with ABE and allow both the data owner and data consumers to securely mitigate most computation-intensive tasks to cloud servers which are envisaged to have unlimited resources. In WSNs, wireless sensor nodes are often unattendedly deployed in the field and vulnerable to strong attacks such as memory breach. For securing storage and sharing of data on distributed storage sensor nodes while retaining data confidentiality, sensor nodes encrypt their collected data using ABE public keys and store encrypted data on storage nodes. Authorized users are given corresponding decryption keys to read data. The main challenge in this case is that sensor nodes are extremely resource-constrained and can just afford limited computation/communication load. Taking this into account we divide the lifetime of sensor nodes into phases and distribute the computation tasks into each phase. We also revised the original ABE scheme to make the overhead pertained to user revocation minimal for sensor nodes. Feasibility of the scheme is demonstrated by experiments on real sensor platforms

    Collusion-resistant broadcast encryption based on hidden RSA subgroups

    Get PDF
    Public key broadcast encryption enables computations of ciphertexts, in which a single ciphertext is encrypted with regard to a set of recipients, and only the intended recipients can decrypt that ciphertext independently of each other and without interactions. A significant shortcoming of existing broadcast encryption schemes are long decryption keys comprising the public keys of pertaining recipients. Decryption therefore necessitates access to public keys, which requires key management and impacts computational and transmission overhead, accessibility, and storage. Moreover, a user description list referencing the pertaining recipients and their public keys must be appended to each ciphertext, which leads to the privacy implication of disclosing user/content-relations. Predominantly all broadcast encryption schemes are based on bilinear pairings. In this paper, we propose a collusion-resistant broadcast encryption scheme that is the first broadcast encryption scheme based on the factorization problem and hidden RSA subgroups. A novel feature is that the decryption key consists of a single element only, which leads to significantly reduced key management, improved computational efficiency, and elimination of the mentioned privacy issue

    Attribute-Based Encryption Optimized for Cloud Computing

    Get PDF
    Abstract. In this work, we aim to make attribute-based encryption (ABE) more suitable for access control to data stored in the cloud. For this purpose, we concentrate on giving to the encryptor full control over the access rights, providing feasible key management even in case of multiple independent authorities, and enabling viable user revocation, which is essential in practice. Our main result is an extension of the decentralized CP-ABE scheme of Lewko and Waters [LW11] with identity-based user revocation. Our revocation system is made feasible by removing the computational burden of a revocation event from the cloud service provider, at the expense of some permanent, yet acceptable overhead of the encryption and decryption algorithms run by the users. Thus, the computation overhead is distributed over a potentially large number of users, instead of putting it on a single party (e.g., a proxy server), which would easily lead to a performance bottleneck. Besides describing our scheme, we also give a formal proof of its security in the generic bilinear group and random oracle models.

    Dynamic Threshold Public-Key Encryption

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceThis paper deals with threshold public-key encryption which allows a pool of players to decrypt a ciphertext if a given threshold of authorized players cooperate. We generalize this primitive to the dynamic setting, where any user can dynamically join the system, as a possible recipient; the sender can dynamically choose the authorized set of recipients, for each ciphertext; and the sender can dynamically set the threshold t for decryption capability among the authorized set. We first give a formal security model, which includes strong robustness notions, and then we propose a candidate achieving all the above dynamic properties, that is semantically secure in the standard model, under a new non-interactive assumption, that fits into the general Diffie-Hellman exponent framework on groups with a bilinear map. It furthermore compares favorably with previous proposals, a.k.a. threshold broadcast encryption, since this is the first threshold public-key encryption, with dynamic authorized set of recipients and dynamic threshold that provides constant-size ciphertexts

    Fine-Grained Access Control Systems Suitable for Resource-Constrained Users in Cloud Computing

    Get PDF
    For the sake of practicability of cloud computing, fine-grained data access is frequently required in the sense that users with different attributes should be granted different levels of access privileges. However, most of existing access control solutions are not suitable for resource-constrained users because of large computation costs, which linearly increase with the complexity of access policies. In this paper, we present an access control system based on ciphertext-policy attribute-based encryption. The proposed access control system enjoys constant computation cost and is proven secure in the random oracle model under the decision Bilinear Diffie-Hellman Exponent assumption. Our access control system supports AND-gate access policies with multiple values and wildcards, and it can efficiently support direct user revocation. Performance comparisons indicate that the proposed solution is suitable for resource-constrained environment
    • …
    corecore