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Abstract. Public key broadcast encryption enables computations of ci-
phertexts, in which a single ciphertext is encrypted with regard to a set of
recipients, and only the intended recipients can decrypt that ciphertext
independently of each other and without interactions. A significant short-
coming of existing broadcast encryption schemes are long decryption keys
comprising the public keys of pertaining recipients. Decryption there-
fore necessitates access to public keys, which requires key management
and impacts computational and transmission overhead, accessibility, and
storage. Moreover, a user description list referencing the pertaining recip-
ients and their public keys must be appended to each ciphertext, which
leads to the privacy implication of disclosing user/content-relations. Pre-
dominantly all broadcast encryption schemes are based on bilinear pair-
ings. In this paper, we propose a collusion-resistant broadcast encryption
scheme that is the first broadcast encryption scheme based on the fac-
torization problem and hidden RSA subgroups. A novel feature is that
the decryption key consists of a single element only, which leads to sig-
nificantly reduced key management, improved computational efficiency,
and elimination of the mentioned privacy issue.

1 Introduction

Broadcast encryption allows a sender to securely share a message to multiple re-
cipients using a single ciphertext, in contrast to conventional encryption where
the sender needs to compute a single ciphertext for every recipient. The sender
specifies a subset of recipients T ⊆ U , and computes a ciphertext that can only
be decrypted by that subset T . A significant feature of broadcast encryption
are no synchronisms and no interactions between the sender and recipients, nor
among the recipients. Performance goals include minimum transmission over-
head, computational effort, storage size, and key management.

Stateful broadcast encryption schemes maintain a state according to changes
in group membership, in which the broadcast key must be updated to maintain
forward and backward secrecy. With regard to performance, only those key ele-
ments that are affected by a user change should be updated, meaning that key
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updates depend on previous states in group membership. For this reason, state-
ful schemes tend therefore to have a better scalability than stateless broadcast
encryption. An inherent disadvantage is that if a user misses an update message,
he or she will be left out from subsequent sessions.

In stateless broadcast encryption, ciphertexts are computed for arbitrary
composed groups of recipients T ⊆ U , independently of previous broadcasts
as there is no updating of key material due to changes of group memberships.
Early approaches were variations on combinatorial tree-based schemes, such as
the subset cover framework [23], incurring complex key management and mul-
tiple encryptions in accordance with the pertaining user subsets. From 2005
and onwards, bilinear pairs are the predominant basis for stateless broadcast
encryption [3, 8, 9, 11, 13, 18–21, 25–27, 29], where usually a single ciphertext
header element is computed for a group T (or a complementary “revoked” subset
R = U\T ), while the decryption algorithm requires application of the private
key xi of a user Pi in the target subset T ⊆ U , the public key yj of each of the
other users Pj in T , and some system parameters B:

Dec(xi, {yj | Pj ∈ (T\{Pi})}, B)

where the decryption key is composed of (xi, {yj | Pj ∈ (T\{Pi})}), in which
the number of elements equals the size of T . This brings about the following
issues:

1. Complex decryption keys and key management. Since decryption is only pos-
sible with a complete decryption key, all pertaining public keys must be
accessible in order to decrypt. This necessity may be inconvenient and im-
practical in some settings, in particular if one or more such keys are not
available at the time of decryption.

2. Computational overhead. The decryption key size is linear to the size of T .
This increases the storage and computational overhead accordingly.

3. Transmission overhead. Due to the complex decryption key, the encryption
header must contain a list specifying the recipients T (or the revoked re-
cipients R) and their public keys. This increases the transmission overhead
accordingly.

4. Privacy issues. The list of recipients discloses to both intended and non-
intended recipients all intended recipients. This may be just as sensitive
information as the encrypted information itself, in particular if the sensitivity
of the encrypted content is high.

To illustrate the last point; suppose a secure TV broadcasting scenario where
each customer has access to a certain channel using his private key. The problem
is that in order to decrypt the customers would have to know who else has paid
for the specific subscription, which conflicts with the privacy of the individual
subscribers.

Anonymous broadcast encryption. A variant of broadcast encryption is anony-
mous broadcast encryption of which there exist two subcategories: 1) Fully



anonymous broadcast encryption, where the intended recipients are not iden-
tifiable by anyone, including intended and non-intended recipients [12]. 2) So-
called outsider anonymous broadcast encryption, where the intended recipients
are identifiable by intended recipients, but not identifiable by non-intended re-
cipients or someone else. Anonymous broadcast encryption schemes are inflicted
with efficiency issues, and in some with long ciphertexts whose number of ele-
ments is linear to T (e.g., [17]).

Cryptographic primitives. Broadcast encryption is predominantly based on bi-
linear pairings and elliptic curve cryptography due to that bilinear pairings
have computational properties consistent with multi-party computations. Bi-
linear pairings has some disadvantages that are often overlooked. Cao et al. [5]
note that bilinear pairings require working parameters in the order of 1024 bits
to offer 80 bits security, in contrast to pure elliptic curve-based cryptographic
schemes, where such parameters are typically 160 bits. Bilinear pairings also
have a high computational load that reduces the advantages gained from the
smaller key sizes. There are furthermore some practical difficulties. Pairing-based
cryptography is considered hard to understand for most engineers and difficult
to implement. Hajny et al. [16] note that there are very few libraries available
supporting pairing-based cryptography, and that papers addressing implementa-
tion aspects of pairing-based cryptography are very rare. In addition to bilinear
mappings, lattices have been proposed as a cryptographic primitive for broad-
cast encryption [14, 28]. However, these schemes produce variable header sizes
and may not be practical. It is thus of great interest to explore the applica-
bility of other cryptographic primitives for broadcast encryption, in particular
well-known number-theoretic primitives. However, number-theoretic primitives
such as discrete logarithms and RSA assumptions have so far been considered
inapplicable to broadcast encryption.

Contributions. In this paper, we propose a fully collusion-resistant public key
broadcast encryption scheme with the following attractive features:

– Simplified key management. Decryption requires a single fixed-size private
key-element only. This eliminates complex key management, since there is
no need for other recipients’ public keys in order to decrypt, as is the case
for previous stateless broadcast encryption schemes.

– Transmission efficiency. Since decryption requires only a single private key-
element and no complex decryption key, the need for ciphertexts having an
accompanying recipient list specifying the pertaining recipients and their
public keys is eliminated. This reduces the transmission overhead accord-
ingly. Compared to the RSA cryptosystem by having multiple encryptions
for N recipients, the reduced transmission overhead is in the order of 10-25
times (Table 1).

– Anonymity. Since there is no explicit need for recipient lists, the proposed
scheme provides user anonymity.



– Well-understood security assumption. The proposed broadcast encryption
scheme is the first to be based on the factorization problem and hidden RSA
subgroups.

– Computational efficiency. Decryption requires just a single exponential mod-
ular operation.

To the best of our knowledge, our construction is the first collusion-resistant
broadcast encryption scheme that is based on RSA subgroup security assump-
tion. This cryptographic primitive is simpler and easier to implement than those
based on bilinear pairings. Furthermore, the single-element decryption key is a
great improvement compared to other broadcast encryption schemes, avoiding
complex key management.

2 Related work

Earlier approaches to stateless broadcast encryption assume tree-based struc-
tures. Such an approach utilizing secret user keys is the “subset-cover” frame-
work proposed by Naor et al. [23] in 2001, in which keys of user subsets are
derived from a virtual tree structure. In 2002 Dodis et al. [10] proposed a public
key broadcast encryption (PKBE) scheme building on [23]. Such solutions have
complex key management and requires multiple encryptions for a single message,
with one encryption for each relevant user subset.

Boneh, Gentry and Waters [3] proposed the first stateless and fully collusion
resistant PKBE scheme that was the first of many subsequent PKBE schemes
to rely on bilinear pairings, in which computations are in cyclic groups of fixed
order that determines the ciphertext (header) size. The authors proposed a “ba-
sic” scheme (BGW1) having a decryption key size linear to the number of re-
cipients n and constant-size ciphertext of one header element, and a generalized
variant BGW2 consisting of parallel instances of BGW1 achieving a tradeoff of
O(
√
n) decryption key size and O(

√
n) ciphertext size. Identity-based variants

of (BGW1), having user identities as public keys, were proposed by Delerablée et
al. [8] and Sakai [27] with the same performance properties as (BGW1), except
shorter public key length due to the identity-orientation. In 2007, Delerablée et
al. [9] proposed a dynamic PKBE scheme that allows joining of new users without
updating the group keys. The first adaptively secure PKBE scheme was proposed
by Gentry and Waters [13], and later schemes are found in [18,20,21,26,29]. Some
other PKBE schemes are found in [11,19,25].

All the mentioned schemes (other than tree subset-cover type schemes) are
based on bilinear pairings. In addition to bilinear pairings, lattices is another
cryptographic primitive that has been proposed for realizing PKBE [14,28].

As a sidenote, multi-receiver encryption (MRE) is different from Broadcast
encryption, in which the sender encrypts n individual plaintexts, one for each
recipient, resulting in n ciphertexts. MRE is probabilistic and its motivation
is computational efficiency by reusing the same element of randomness for all
ciphertexts [2] instead of generating unique random integers for each ciphertext.



3 Preliminaries

The proposed scheme assumes hidden RSA subgroups, which are realized by the
following parameters.

– Let n = pq be the product of two large secret primes

p = 2p0

⌈N/2⌉∏
j=1

pj + 1 and q = 2q0

N∏
j=⌈N/2⌉+1

pj + 1 (1)

where N is the number of recipients, P = {p0, q0, pj | 1 ≤ j ≤ N} are distinct
large secret primes of approximately the same size, and (rp, rq) are optional
arbitrary integers. The security level λ is determined by λ = ||p0|| = ||q0|| =
||pj ||.

– Let g = α2 mod n, where α is a generator (i.e., primitive element) for a cyclic
group in Z∗

p and in Z∗
q .

– Let gi, 1 ≤ i ≤ N , denote a generator for the subgroup Gi of order p0q0pi,
where

gi = gp̄i mod n and p̄i =

N∏
j=1,i̸=j

pj (2)

The order of Gi is hidden, since P are secret.
– Select a large random secret integer γ, whose bitsize is at least that of n.

Next we present the relevant computational hardness assumptions.

3.1 Security assumptions

Background on subgroups on hidden orders. Groth [15] proposed using small sub-
groups in Z∗

n of hidden orders. The purported motivation was efficiency purposes
provided by the smaller subgroups for signature-, commitment- and encryption
cryptosystems. In this regard, Groth proposed the decisional RSA security as-
sumption, whose hardness is the difficulty to determine if an element pertains to
a subgroup G < Z∗

n or to Z∗
n. A similar decisional RSA subgroup assumption is

formulated by Bourse et al. [4]. These assumptions are similar to high-residuosity
assumptions, such as [22], and the composite residuosity assumption of the Pail-
lier cryptosystem [24].

Secret subgroups can for instance be useful and convenient when designing
cryptosystems and cryptographic protocols that are using secret encryption fac-
tors (or blinding factors), since knowing the subgroup order allows elimination of
those encryption factors. This is seen in the mentioned Paillier cryptosystem, in
which using the private key λ as an exponent to the ciphertext eliminates the en-
cryption factor rn, due to that its subgroup order is λ, i.e., (rn)λ mod n2 = 1. In
our cryptosystem, subgroups of hidden orders are used for preventing disclosure
of the secret integer γ, as discussed below.



The DDH assumption. In addition to the factorization problem, the security also
relies on the decisional Diffie-Hellmann assumption. Let g be a generator for a
sufficiently large subgroup G of order q. Let (a, b, c) be randomly selected large
integers in [1, . . . , q]. Given the triplet

(
g, ga, gb, zb

)
, where b is a uniform random

bit. Let zb = gab and z1−b = gc. The probability that b is correctly determined
is at least 1

2 + ε for some value ε. If gab and gc are indistinguishable, so that
b cannot be determined w.r.t. zb = gab, then ε is negligible, meaning that the
DDH assumption holds.

Congruences and subgroups of hidden orders. Consider the modular residue γi =
γ mod p0q0p̄i, where p̄i is defined in Eq. (2). The prime pk divides p̄i if i ̸= k.
This implies the congruences γi ≡ γj (mod pk), 1 ≤ i, j, k ≤ N , i ̸= j ̸= k, since

γi mod pk = (γ mod p0q1p̄i) mod pk

= γj mod pk = (γ mod p0q1p̄j) mod pk = γ mod pk

For the group Gk of order pk generated by gk, we have likewise

gγi

k ≡ g
γj

k ≡ gγk (mod n) for 1 ≤ i, j, k ≤ N, i ̸= j ̸= k (3)

where gk generates a RSA subgroup Gk. The congruences hold since the order
of Gk is p0q0pk, which divides the moduli of γi and γj , i ̸= j ̸= k.

In the proposed scheme γ is a secret integer. This means that for any two
residues γi = γ mod p0q0p̄i and γj = γ mod p0q0p̄j , γ can be disclosed by means
of the Chinese remainder theorem:

γ ≡

{
γi (mod p0q0p̄i)

γj (mod pi)
(4)

if and only if (p0, q0, p̄i, pi) are known. To prevent disclosure of γ, we use sub-
groups of hidden orders, in which all primes in P are secret. This ensures collusion
resistance, preventing any subset of colluding users R from establishing γ.

On the special RSA moduli and the necessity of (p0, q0). The composite modulus
n can be factorized more efficiently by utilizing the smaller search space of the
subgroup Gi < Z∗

n in conjunction with gi than by factoring methods such as
general number field sieves [7]. The secret primes (p0, q0), cf. Eq. (1), are nec-
essary to prevent factorization of n in conjunction with gi, since the absence of
these primes would allow trivial factorization.

Euler’s theorem states that aϕ(n) ≡ 1 (mod n), where a is an arbitrary in-
teger. Recall that gi is a generator of Gi of order p0q0pi. Accordingly, gp0q0pi

i ≡
αϕ(n) ≡ 1 (mod n), and gp0q0pi

i = kn+ 1, where k is a positive integer. Because
of the composition of the RSA factor p, cf. Eq. (1), none of the primes composing
q, i.e., (q0, {, pi |

⌈
N
2

⌉
+1 ≤ i ≤ N}), divide p− 1. Thus

gp0pi

i = α2p̄ip0pi = k′p+ 1, where

⌈
N

2

⌉
+1 ≤ i ≤ N



Table 1: Parameter and header sizes

λ N ||c|| δ

80 10 1120 9,1
80 20 1920 10,7
80 50 4320 11,9
80 100 4320 12,3

112 10 2048∗ 13,1
112 20 2688 15,2
112 50 6048 16,9
112 100 6048 17,6
128 10 3072∗ 17,1
128 20 3072 20,0
128 50 6912 22,2
128 100 6912 23,1

and k′ is a positive integer. Using this fact, p can be found if p0 is known by

p = gcd
(
(gp0

i mod n)− 1, n
)

The RSA security strength λ (in number of bits) is therefore essentially equiva-
lent to the size of (p0, q0), i.e., λ = ||p0|| = ||q0||. However, consideration has to be
taken when selecting an RSA modulus whose prime factors have a unusual com-
position. For example, the attack of Coron et al. [6] has a computational time
and space complexity of O(√p0), which gives the bound ||p0|| = ||q0|| ≥ 2λ.
However, this attack imposes a vast space complexity for moderate security
levels. For λ = 100 bits, the memory requirements amounts to the order of
250 ≈ 1, 125 · 1015, which is insurmountable for any practical realizations of the
attack.

3.2 Parameter selection and header size

Taking into account the mentioned attack of Coron et al. [6], we suggest that
||p0|| = ||q0|| = 2λ, and similarly ||pj || = λ, 1 ≤ j ≤ N , to ensure a sufficiently
large distribution of subgroups and private keys. The header size ||c|| is confined
by the RSA modulus size ||n|| and proportional the number of recipients N and
the security level λ, so that ||c|| = ||n|| = 4λ+Nλ. Table 1 shows header size as

a function of n and λ, where δ = N ||c∗||
||c|| is the transmission efficiency compared

to the RSA cryptosystem, i.e., the ratio between the size of N RSA encryptions
||c∗|| and the header size ||c|| w.r.t. N recipients for the same λ.

The number of recipients for an broadcast encryption and an RSA ciphertext
for the same security level NIST suggests RSA modulus sizes of 1024 bits for
80 bits security level, 2048 bits for 112 bits security level, and 3072 bits for 128
bits security [1]. The asterisk indicates that the RSA modulus is incremented to
match the NIST recommendations for those cases.



3.3 Broadcast encryption algorithms

A trusted authority is necessary for setting up an instance of the proposed scheme
by computing long-term user keys. Let U = {P1, . . . , PN} denote a set ofN users.
The scheme proposed consists of the following algorithms:

Setup The algorithm (pk, sk) ← Setup(N,λ) inputs a security parameter λ
and the number of users N , and outputs pk = ({gi, yi | 0 ≤ i ≤ N}, n) and
sk = {γi | 1 ≤ i ≤ N}.

Encryption For any subset T ⊆ U , where R = U\T is the corresponding set of
excluded (or revoked) users, the encryption algorithm (kT , z)← Enc({gj , yj |
Pj ∈ R}, n) takes the public keys of the revoked users as input, and outputs
a broadcast key kT and an encryption header z.

Decryption The decryption algorithm kT ← Dec(γi, z, n) takes the private key
γi (of which Pi ∈ T ) and the encryption header z as input, and outputs the
broadcast key kT .

The correctness property is met if for any subset T ⊆ U the broadcast keys
(k′T , z)← Enc({gj , yj | Pj∈R}, n) and k′′T ← Dec(γi, z, n) match, i.e., k′T = k′′T .

3.4 Security model

The security of the proposed scheme can be defined using a game between an
adversary A and a challenger C. The security model model lets the adversary
define an arbitrary set of compromised users S∗ that is consistent with a set
of revoked users R = U\T , in which the adversary is permitted to obtain the
private keys of a S∗, thus modelling a colluding set of user R.

Setup. The challenger computes (pk, sk) ← Setup(N,λ) and obtains N user
keys. It then submits PK to the adversary A.

Key query. The adversary queries the private keys for a subset S∗ ⊂ S, where
S = {1, . . . , N}. The challenger submits {γi | i ∈ S∗} to A.

Challenge. The challenger invokes (kS , z)← Enc(gj , yj | j ∈ S∗, n). The chal-
lenger randomly pick a bit b ∈ {0, 1}, and sets kb = kS and randomly
sets k1−b in the space of possible session keys. It then submits the triplet
(z, k0, k1) to the adversary.

Output. The adversary outputs a bit b′. The adversary succeeds if b = b′.

The game can be conducted for any subset S∗ ⊆ S. Let Pr(b′ = b) − 1
2 be

the probability that the adversary correctly outputs b = b′ after the game. We
say that the broadcast encryption scheme is key indistinguishable if |Pr(b′ =
b)− 1

2 | ≤ ε, where ε is negligible due to the difficulty of correctly distinguishing
keys.



4 Public key broadcast encryption

A trusted authority (TA) is necessary for setting up system parameters and
long-term user keys.

Setup. The TA conducts the following tasks to set up an instance of the system.

1. Compute n = pq, where p and q are two large random secret primes se-
lected in agreement with Eq. (1). The security parameter λ determines the
minimum subgroup order λ = min(p ∈ P).

2. Select a large random secret integer γ whose size is larger than n.

3. The private keys for Pi ∈ U are computed as

γi = γ mod p0q0p̄i, where p̄i =

N∏
j=1
i ̸=j

pj

4. Let g be a generator of the multiplicative groups modulo p and q. The
corresponding public keys are computed as

gi = gp̄i mod n, yi = gγi mod n, 0 ≤ i ≤ N

Each user Pi ∈ U is assigned the key tuple (γi, gi, yi). Note that (g0, y0) are
generic and to be applied for the special case R = ∅.

Encryption. Select a set of recipients T ⊆ U that is the target for a secure
broadcast, in which R = U\T denotes a set of so-called revoked users. Generate
a random secret integer r ∈ Z∗

n, and compute the encryption key

kT =
( ∏

j∈R
yj

)r

mod n

and the encryption header

z =
( ∏

j∈R
gj

)r

mod n

For the special case R = ∅ then kT = kU = yr0 and z = gr0. Then the plaintext
is encrypted using kT .

Decryption. At the receipt of z, each user Pi ∈ T is able to restore kT by the
modular exponentiation

kT = zγi mod n

Note that there is only one public key element and private key element (for

each user), and the header is only element.



4.1 Correctness

The following shows that the output of decryption algorithm (Eq. (5a)) is con-
sistent with the output of the encryption algorithm (Eq. (5d)):

kT,i ≡ zγi ≡
(
(
∏
k∈R

gk)
r
)γi

(mod n) (5a)

≡
∏
k∈R

grp̄k(γ mod p0q0pk) (mod n) (5b)

≡
( ∏
k∈R

gk
)rγ

(mod n) (5c)

≡
( ∏
k∈R

yk
)r

(mod n) = kT (5d)

for γi, i /∈ R, in agreement with Eq. (3). The congruences hold since the order
of the subgroup Gk generated by gk is p0q0pk, and p0q0pk divides the modulus
p0q0p̄i of γi for i ̸= k. Therefore, two users Pi, Pj ∈ T , holding two distinct
private keys (γi, γj), will compute the same key kT .

Example. LetN = 3 and n = (2p0p1+1)(2q0p2p3+1). Then γ1 = γ mod p0q0p2p3
and γ2 = γ mod p0q0p1p3. Let P3 ∈ R be a revoked user realized by means of g3
in the encryption step. The following expressions are in Z∗

n, and show that

gγ1

3 = gp̄3γ1 = gp1p2γ1 = gp1p2(γ mod p0q0p2p3) ≡ gp1p2γ mod p0q0p1p2p3 ≡ gp̄3γ

and

gγ2

3 = gp̄3γ2 = gp1p2γ2 = gp1p2(γ mod p0q0p1p3) ≡ gp1p2γ mod p0q0p1p2p3 ≡ gp̄3γ

are hence equivalent. However, gγ3

3 results in the incongruence

gγ3

3 = gp1p2γ3 = gp1p2(γ mod p0q0p1p2) ̸≡ gp̄3γ

This prevents P3 ∈ R from computing the broadcast key.

5 Security analysis

In this section, we provide a security proof in the standard model.

Theorem 1. The proposed scheme is secure assuming that λ is sufficiently
large.

Proof. The proof models interaction between an adversary A and a challenger
C, and proves collusion resistance concerning revoked users R = U\T .
Setup. A challenger C sets up an instance of the cryptosystem, and computes
the public keys PK = ({gi, yi | 0 ≤ i ≤ N}, n) and private keys {γi | 0 ≤ i ≤ N}
by invoking Setup(N,λ). Since the random values (γ,P) are chosen uniformly,



the keys have a distribution to that of an actual construction. C submits PK
to A.
Key query. A queries private user keys for a subset S∗ ⊂ {1, . . . , N}. C submits
{γi | i ∈ S∗} to A.
Challenge. Let ĝ =

∏
∀j∈S∗ gj . The challenger invokes (kS , z) ← Enc(gj , yj |

j ∈ S∗, n), where kS = ĝγr and z = ĝr.
The challenger randomly picks a bit b ∈ {0, 1}, and sets kb = kS and k1−b =

ĝc, where c is a large secret integer. It then submits the triplet (z, k0, k1) to the
adversary. This agree with the DDH challenge(

ĝ, ĝγ , ĝr, ĝγr, ĝc
)

where ĝγ =
∏

∀j∈S∗ yj , and ĝγr is a valid encryption key and ĝr is a valid header.

Output. Given (
ĝ, ĝγ , z = ĝr, kb = ĝγr, kb−1 = ĝc

)
where ĝγ =

∏
∀j∈S∗ yj . The computational problem of A is to determine if kS is

k0 or k1 with more than 1
1 + ϵ probability, where ϵ is a negligible probability. If

the adversary succeeds at this, it is equivalent to that the adversary can solve
the DDH problem in polynomial time. If the subgroups is sufficiently, this is
known to be a computationally intractable problem.

Otherwise, given (ĝ, γ) the adversary can compute ĝγ . But since γ is se-
cret and not known by the adversary, he can compute γ using the private
keys/residues (yi, yj | i, j ∈ S) according to

γ ≡

{
γi (mod p0q0p̄i)

γj (mod pi)

in agreement with Eq. (4) and the Chinese remainder theorem. Since this requires
(p0, q0, p̄i, pi), which are secret and unknown to the adversary. This requires
that the adversary finds the exact subgroup orders and/or decomposes the the
secret primes (p, q), which means that the adversary will be able to solve the
factorization problem. Assuming that λ and n are sufficiently large, this is known
to be a computationally intractable problem. The adversary output a bit b′,
where the probability that b = b′ is 1

1 + ϵ. Thus, the proposed scheme is secure
assuming that λ is sufficiently large. □

6 Conclusion

Existing stateless broadcast encryption schemes have some shortcomings, such
as complex decryption keys, privacy issues, key management, and some trans-
mission overhead. In this paper, we have proposed a novel broadcast encryption
scheme that is based on the factorization problem and hidden RSA subgroups.
The proposed scheme has some unique features. The decryption key consists only
of a single-private key element, and no public keys of other recipients are needed



for decryption. An implication of the single-element decryption key is anonymity,
since there is no need to attach a recipient list referencing their public keys to
the ciphertexts, as is the case for schemes based on bilinear pairings. Hence, key
management is utterly simplified, and transmission overhead is in this regard
reduced. Future work includes to consider how other privacy-preserving group-
oriented security applications can be built on hidden RSA subgroups, such as
attribute-based broadcast encryption and group authentication.
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