69 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    A Lightweight Secure and Resilient Transmission Scheme for the Internet of Things in the Presence of a Hostile Jammer

    Get PDF
    In this article, we propose a lightweight security scheme for ensuring both information confidentiality and transmission resiliency in the Internet-of-Things (IoT) communication. A single-Antenna transmitter communicates with a half-duplex single-Antenna receiver in the presence of a sophisticated multiple-Antenna-Aided passive eavesdropper and a multiple-Antenna-Assisted hostile jammer (HJ). A low-complexity artificial noise (AN) injection scheme is proposed for drowning out the eavesdropper. Furthermore, for enhancing the resilience against HJ attacks, the legitimate nodes exploit their own local observations of the wireless channel as the source of randomness to agree on shared secret keys. The secret key is utilized for the frequency hopping (FH) sequence of the proposed communication system. We then proceed to derive a new closed-form expression for the achievable secret key rate (SKR) and the ergodic secrecy rate (ESR) for characterizing the secrecy benefits of our proposed scheme, in terms of both information secrecy and transmission resiliency. Moreover, the optimal power sharing between the AN and the message signal is investigated with the objective of enhancing the secrecy rate. Finally, through extensive simulations, we demonstrate that our proposed system model outperforms the state-of-The-Art transmission schemes in terms of secrecy and resiliency. Several numerical examples and discussions are also provided to offer further engineering insights

    Securing Downlink Massive MIMO-NOMA Networks with Artificial Noise

    Full text link
    In this paper, we focus on securing the confidential information of massive multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) networks by exploiting artificial noise (AN). An uplink training scheme is first proposed with minimum mean squared error estimation at the base station. Based on the estimated channel state information, the base station precodes the confidential information and injects the AN. Following this, the ergodic secrecy rate is derived for downlink transmission. An asymptotic secrecy performance analysis is also carried out for a large number of transmit antennas and high transmit power at the base station, respectively, to highlight the effects of key parameters on the secrecy performance of the considered system. Based on the derived ergodic secrecy rate, we propose the joint power allocation of the uplink training phase and downlink transmission phase to maximize the sum secrecy rates of the system. Besides, from the perspective of security, another optimization algorithm is proposed to maximize the energy efficiency. The results show that the combination of massive MIMO technique and AN greatly benefits NOMA networks in term of the secrecy performance. In addition, the effects of the uplink training phase and clustering process on the secrecy performance are revealed. Besides, the proposed optimization algorithms are compared with other baseline algorithms through simulations, and their superiority is validated. Finally, it is shown that the proposed system outperforms the conventional massive MIMO orthogonal multiple access in terms of the secrecy performance

    Russia's war on Ukraine : strategic and operational designs and implementation

    Get PDF
    This publication consists primarily of articles presented in the 5th annual Russia Seminar 2023 organised by the Department of warfare of the Finnish National Defence University (FNDU) and titled as “Russia’s war on Ukraine – strategic and operational designs and implementation”. The purpose of the Russia Seminar was “to increase discussion on the Russian war on Ukraine and produce new knowledge on Russia’s military policy and power. Furthermore, the Russia seminar offers a meeting forum for Finnish and international researchers in pursuit of establishing a research forum on Russian Art of War in the light of the future membership of Finland in NATO”. It should be noted that the publication is neither a complete collection of all the presentations given in the seminar nor a comprehensive source of information what comes to Russian war agaist Ukraine. In each article there is a clock time showing the beginning of the presentation in question. All presentations and discussion can be found on the FNDU YouTube-channel

    Resource allocation for NOMA wireless systems

    Get PDF
    Power-domain non-orthogonal multiple access (NOMA) has been widely recognized as a promising candidate for the next generation of wireless communication systems. By applying superposition coding at the transmitter and successive interference cancellation at the receiver, NOMA allows multiple users to access the same time-frequency resource in power domain. This way, NOMA not only increases the system’s spectral and energy efficiencies, but also supports more users when compared with the conventional orthogonal multiple access (OMA). Meanwhile, improved user fairness can be achieved by NOMA. Nonetheless, the promised advantages of NOMA cannot be realized without proper resource allocation. The main resources in wireless communication systems include time, frequency, space, code and power. In NOMA systems, multiple users are accommodated in each time/frequency/code resource block (RB), forming a NOMA cluster. As a result, how to group the users into NOMA clusters and allocate the power is of significance. A large number of studies have been carried out for developing efficient power allocation (PA) algorithms in single-input single-output (SISO) scenarios with fixed user clustering. To fully reap the gain of NOMA, the design of joint PA and user clustering is required. Moreover, the study of PA under multiple-input multiple-output (MIMO) systems still remains at an incipient stage. In this dissertation, we develop novel algorithms to allocate resource for both SISO-NOMA and MIMO-NOMA systems. More specifically, Chapter 2 compares the system capacity of MIMO-NOMA with MIMO-OMA. It is proved analytically that MIMO-NOMA outperforms MIMO-OMA in terms of both sum channel capacity and ergodic sum capacity when there are multiple users in a cluster. Furthermore, it is demonstrated that the more users are admitted to a cluster, the lower is the achieved sum rate, which illustrates the tradeoff between the sum rate and maximum number of admitted users. Chapter 3 addresses the PA problem for a general multi-cluster multi-user MIMONOMA system to maximize the system energy efficiency (EE). First, a closed-form solution is derived for the corresponding sum rate (SE) maximization problem. Then, the EE maximization problem is solved by applying non-convex fractional programming. Chapter 4 investigates the energy-efficient joint user-RB association and PA problem for an uplink hybrid NOMA-OMA system. The considered problem requires to jointly optimize the user clustering, channel assignment and power allocation. To address this hard problem, a many-to-one bipartite graph is first constructed considering the users and RBs as the two sets of nodes. Based on swap matching, a joint user-RB association and power allocation scheme is proposed, which converges within a limited number of iterations. Moreover, for the power allocation under a given user-RB association, a low complexity optimal PA algorithm is proposed. Furthermore, Chapter 5 focuses on securing the confidential information of massive MIMO-NOMA networks by exploiting artificial noise (AN). An uplink training scheme is first proposed, and on this basis, the base station precodes the confidential information and injects the AN. Following this, the ergodic secrecy rate is derived for downlink transmission. Additionally, PA algorithms are proposed to maximize the SE and EE of the system. Finally, conclusions are drawn and possible extensions to resource allocation in NOMA systems are discussed in Chapter 6

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Cyber Ethics 4.0 : Serving Humanity with Values

    Get PDF
    Cyber space influences all sectors of life and society: Artificial Intelligence, Robots, Blockchain, Self-Driving Cars and Autonomous Weapons, Cyberbullying, telemedicine and cyber health, new methods in food production, destruction and conservation of the environment, Big Data as a new religion, the role of education and citizens’ rights, the need for legal regulations and international conventions. The 25 articles in this book cover the wide range of hot topics. Authors from many countries and positions of international (UN) organisations look for solutions from an ethical perspective. Cyber Ethics aims to provide orientation on what is right and wrong, good and bad, related to the cyber space. The authors apply and modify fundamental values and virtues to specific, new challenges arising from cyber technology and cyber society. The book serves as reading material for teachers, students, policy makers, politicians, businesses, hospitals, NGOs and religious organisations alike. It is an invitation for dialogue, debate and solution
    • …
    corecore