123 research outputs found

    From Outage Probability to ALOHA MAC Layer Performance Analysis in Distributed WSNs

    Get PDF
    International audienceIn this paper we develop an explicit formula of outage probability in a distributed wireless sensor network (WSN), assuming the MAC layer protocol being a slotted-ALOHA. And adopting a Markovian approach, we develop a model that analyses the performance of the slotted-ALOHA in order to improve these performances, in particular, by adding a preliminary stage of channel reservation, we show that this modification is important to have a high performance distributed wireless sensor network

    Game-Theoretic Relay Selection and Power Control in Fading Wireless Body Area Networks

    Get PDF
    The trend towards personalized ubiquitous computing has led to the advent of a new generation of wireless technologies, namely wireless body area networks (WBANs), which connect the wearable devices into the Internet-of-Things. This thesis considers the problems of relay selection and power control in fading WBANs with energy-efficiency and security considerations. The main body of the thesis is formed by two papers. Ideas from probability theory are used, in the first paper, to construct a performance measure signifying the energy efficiency of transmission, while in the second paper, information-theoretic principles are leveraged to characterize the transmission secrecy at the wireless physical layer (PHY). The hypothesis is that exploiting spatial diversity through multi-hop relaying is an effective strategy in a WBAN to combat fading and enhance communication throughput. In order to analytically explore the problems of optimal relay selection and power control, proper tools from game theory are employed. In particular, non-cooperative game-theoretic frameworks are developed to model and analyze the strategic interactions among sensor nodes in a WBAN when seeking to optimize their transmissions in the uplink. Quality-of-service requirements are also incorporated into the game frameworks, in terms of upper bounds on the end-to-end delay and jitter incurred by multi-hop transmission, by borrowing relevant tools from queuing theory. The proposed game frameworks are proved to admit Nash equilibria, and distributed algorithms are devised that converge to stable Nash solutions. The frameworks are then evaluated using numerical simulations in conditions approximating actual deployment of WBANs. Performance behavior trade-offs are investigated in an IEEE 802.15.6-based ultra wideband WBAN considering various scenarios. The frameworks show remarkable promise in improving the energy efficiency and PHY secrecy of transmission, at the expense of an admissible increase in the end-to-end latency

    Wireless sensor networks for pervasive health applications

    Get PDF

    Cooperative diversity architecture for wireless networks

    Get PDF
    The burgeoning demand for wireless networks necessitates reliable and energy-efficient communication architectures that are robust to the impairments of the wireless medium. Cooperative communication emerges as an appropriate technique that mitigates the severe effects of channel impairments through the use of cooperative diversity. Notwithstanding the fact that cooperative diversity is a very suitable technique to provide robust and reliable communication, the realization of cooperation idea precipitates many technical challenges that are associated with the overhaul of the wireless network design. This dissertation proposes a cooperative diversity architecture for wireless networks, that spans the physical, medium access and routing layers with parameters (jointly) optimized for overall system performance, taking into account the cost of cooperation in each layer. First, we present a new cooperative MAC protocol, COMAC, that enables cooperation of multiple relays in a distributed fashion. Through the proposed protocol, we investigate and demonstrate at what rate and for which scenarios cooperation brings benefits in terms of throughput and energy-efficiency. Our results demonstrate that cooperation initiation has a significant cost on both the throughput and energy-efficiency, which have been often disregarded in the literature. We next study the energy minimal joint cooperator selection and power assignment problem under transmit power constraints such that the cooperative transmissions satisfy an average bit error rate (BER) target. We derive the average BER of the cooperative system and we propose a simple yet close approximation to facilitate cooperator selection methods with closed form power assignment solutions. We formulate the joint cooperator selection and power assignment problem, we present the optimal solution (O-CSPA) and we also propose a distributed implementation (D-CSPA). Our results demonstrate that smart cooperator selection is essential, as it provides efficient resource allocation with reduced overhead leading to improved system performance. Our implementation and simulations of D-CSPA algorithm in COMAC protocol demonstrate that our distributed algorithm causes minimal overhead, yields improved throughput and reduced delay, while reducing the energy consumption. Finally, we propose a cooperative routing framework and a cross-layer architecture, RECOMAC, for wireless ad hoc networks. The RECOMAC architecture facilitates formation of cooperative sets on the fly in a decentralized and distributed fashion, requiring no overhead for relay selection and actuation, and resulting in opportunistically formed cooperative links that provide robust and reliable end-to-end communication, without the need for establishing a prior non-cooperative route, unlike existing schemes. The results demonstrate that under wireless channel impairments, such as fading and path loss, our cooperative forwarding framework and cross-layer architecture, RECOMAC significantly improve the system performance, in terms of throughput and delay, as compared to non-cooperative conventional layered network architecture with AODV routing over IEEE 802.11 MAC

    Cross-layer Dynamic Admission Control for Cloud-based Multimedia Sensor Networks

    Full text link
    Publisher copyright and source must be acknowledged with citation. Must link to publisher version with DOICloud-based communications system is now widely used in many application fields such as medicine, security, environment protection, etc. Its use is being extended to the most demanding services like multimedia delivery. However, there are a lot of constraints when cloud-based sensor networks use the standard IEEE 802.15.3 or IEEE 802.15.4 technologies. This paper proposes a channel characterization scheme combined to a cross-layer admission control in dynamic cloud-based multimedia sensor networks to share the network resources among any two nodes. The analysis shows the behavior of two nodes using different network access technologies and the channel effects for each technology. Moreover, the existence of optimal node arrival rates in order to improve the usage of dynamic admission control when network resources are used is also shown. An extensive simulation study was performed to evaluate and validate the efficiency of the proposed dynamic admission control for cloud-based multimedia sensor networks.This work has been supported in part by Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, and in part by National Funding from the Fundacao para a Ciencia e Tecnologia through the Pest-OE/EEI/LA0008/2011.Mendes, LDP.; Rodrigues, JJPC.; Lloret, J.; Sendra Compte, S. (2014). Cross-layer Dynamic Admission Control for Cloud-based Multimedia Sensor Networks. IEEE Systems Journal. 8(1):235-246. doi:10.1109/JSYST.2013.2260653S2352468

    Performance Modelling and Network Monitoring for Internet of Things (IoT) Connectivity

    Get PDF

    Distributed detection, localization, and estimation in time-critical wireless sensor networks

    Get PDF
    In this thesis the problem of distributed detection, localization, and estimation (DDLE) of a stationary target in a fusion center (FC) based wireless sensor network (WSN) is considered. The communication process is subject to time-critical operation, restricted power and bandwidth (BW) resources operating over a shared communication channel Buffering from Rayleigh fading and phase noise. A novel algorithm is proposed to solve the DDLE problem consisting of two dependent stages: distributed detection and distributed estimation. The WSN performs distributed detection first and based on the global detection decision the distributed estimation stage is performed. The communication between the SNs and the FC occurs over a shared channel via a slotted Aloha MAC protocol to conserve BW. In distributed detection, hard decision fusion is adopted, using the counting rule (CR), and sensor censoring in order to save power and BW. The effect of Rayleigh fading on distributed detection is also considered and accounted for by using distributed diversity combining techniques where the diversity combining is among the sensor nodes (SNs) in lieu of having the processing done at the FC. Two distributed techniques are proposed: the distributed maximum ratio combining (dMRC) and the distributed Equal Gain Combining (dEGC). Both techniques show superior detection performance when compared to conventional diversity combining procedures that take place at the FC. In distributed estimation, the segmented distributed localization and estimation (SDLE) framework is proposed. The SDLE enables efficient power and BW processing. The SOLE hinges on the idea of introducing intermediate parameters that are estimated locally by the SNs and transmitted to the FC instead of the actual measurements. This concept decouples the main problem into a simpler set of local estimation problems solved at the SNs and a global estimation problem solved at the FC. Two algorithms are proposed for solving the local problem: a nonlinear least squares (NLS) algorithm using the variable projection (VP) method and a simpler gird search (GS) method. Also, Four algorithms are proposed to solve the global problem: NLS, GS, hyperspherical intersection method (HSI), and robust hyperspherical intersection (RHSI) method. Thus, the SDLE can be solved through local and global algorithm combinations. Five combinations are tied: NLS2 (NLS-NLS), NLS-HSI, NLS-RHSI, GS2, and GS-N LS. It turns out that the last algorithm combination delivers the best localization and estimation performance. In fact , the target can be localized with less than one meter error. The SNs send their local estimates to the FC over a shared channel using the slotted-Aloha MAC protocol, which suits WSNs since it requires only one channel. However, Aloha is known for its relatively high medium access or contention delay given the medium access probability is poorly chosen. This fact significantly hinders the time-critical operation of the system. Hence, multi-packet reception (MPR) is used with slotted Aloha protocol, in which several channels are used for contention. The contention delay is analyzed for slotted Aloha with and without MPR. More specifically, the mean and variance have been analytically computed and the contention delay distribution is approximated. Having theoretical expressions for the contention delay statistics enables optimizing both the medium access probability and the number of MPR channels in order to strike a trade-off between delay performance and complexity
    corecore