271,976 research outputs found

    Role of homeostasis in learning sparse representations

    Full text link
    Neurons in the input layer of primary visual cortex in primates develop edge-like receptive fields. One approach to understanding the emergence of this response is to state that neural activity has to efficiently represent sensory data with respect to the statistics of natural scenes. Furthermore, it is believed that such an efficient coding is achieved using a competition across neurons so as to generate a sparse representation, that is, where a relatively small number of neurons are simultaneously active. Indeed, different models of sparse coding, coupled with Hebbian learning and homeostasis, have been proposed that successfully match the observed emergent response. However, the specific role of homeostasis in learning such sparse representations is still largely unknown. By quantitatively assessing the efficiency of the neural representation during learning, we derive a cooperative homeostasis mechanism that optimally tunes the competition between neurons within the sparse coding algorithm. We apply this homeostasis while learning small patches taken from natural images and compare its efficiency with state-of-the-art algorithms. Results show that while different sparse coding algorithms give similar coding results, the homeostasis provides an optimal balance for the representation of natural images within the population of neurons. Competition in sparse coding is optimized when it is fair. By contributing to optimizing statistical competition across neurons, homeostasis is crucial in providing a more efficient solution to the emergence of independent components

    Redistribution of Synaptic Efficacy Supports Stable Pattern Learning in Neural Networks

    Full text link
    Markram and Tsodyks, by showing that the elevated synaptic efficacy observed with single-pulse LTP measurements disappears with higher-frequency test pulses, have critically challenged the conventional assumption that LTP reflects a general gain increase. Redistribution of synaptic efficacy (RSE) is here seen as the local realization of a global design principle in a neural network for pattern coding. As is typical of many coding systems, the network learns by dynamically balancing a pattern-independent increase in strength against a pattern-specific increase in selectivity. This computation is implemented by a monotonic long-term memory process which has a bidirectional effect on the postsynaptic potential via functionally complementary signal components. These frequency-dependent and frequency-independent components realize the balance between specific and nonspecific functions at each synapse. This synaptic balance suggests a functional purpose for RSE which, by dynamically bounding total memory change, implements a distributed coding scheme which is stable with fast as well as slow learning. Although RSE would seem to make it impossible to code high-frequency input features, a network preprocessing step called complement coding symmetrizes the input representation, which allows the system to encode high-frequency as well as low-frequency features in an input pattern. A possible physical model interprets the two synaptic signal components in terms of ligand-gated and voltage-gated receptors, where learning converts channels from one type to another.Office of Naval Research and the Defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657

    Machine learning methods for genomic high-content screen data analysis applied to deduce organization of endocytic network

    Get PDF
    High-content screens are widely used to get insight on mechanistic organization of biological systems. Chemical and/or genomic interferences are used to modulate molecular machinery, then light microscopy and quantitative image analysis yield a large number of parameters describing phenotype. However, extracting functional information from such high-content datasets (e.g. links between cellular processes or functions of unknown genes) remains challenging. This work is devoted to the analysis of a multi-parametric image-based genomic screen of endocytosis, the process whereby cells uptake cargoes (signals and nutrients) and distribute them into different subcellular compartments. The complexity of the quantitative endocytic data was approached using different Machine Learning techniques, namely, Clustering methods, Bayesian networks, Principal and Independent component analysis, Artificial neural networks. The main goal of such an analysis is to predict possible modes of action of screened genes and also to find candidate genes that can be involved in a process of interest. The degree of freedom for the multidimensional phenotypic space was identified using the data distributions, and then the high-content data were deconvolved into separate signals from different cellular modules. Some of those basic signals (phenotypic traits) were straightforward to interpret in terms of known molecular processes; the other components gave insight into interesting directions for further research. The phenotypic profile of perturbation of individual genes are sparse in coordinates of the basic signals, and, therefore, intrinsically suggest their functional roles in cellular processes. Being a very fundamental process, endocytosis is specifically modulated by a variety of different pathways in the cell; therefore, endocytic phenotyping can be used for analysis of non-endocytic modules in the cell. Proposed approach can be also generalized for analysis of other high-content screens.:Contents Objectives Chapter 1 Introduction 1.1 High-content biological data 1.1.1 Different perturbation types for HCS 1.1.2 Types of observations in HTS 1.1.3 Goals and outcomes of MP HTS 1.1.4 An overview of the classical methods of analysis of biological HT- and HCS data 1.2 Machine learning for systems biology 1.2.1 Feature selection 1.2.2 Unsupervised learning 1.2.3 Supervised learning 1.2.4 Artificial neural networks 1.3 Endocytosis as a system process 1.3.1 Endocytic compartments and main players 1.3.2 Relation to other cellular processes Chapter 2 Experimental and analytical techniques 2.1 Experimental methods 2.1.1 RNA interference 2.1.2 Quantitative multiparametric image analysis 2.2 Detailed description of the endocytic HCS dataset 2.2.1 Basic properties of the endocytic dataset 2.2.2 Control subset of genes 2.3 Machine learning methods 2.3.1 Latent variables models 2.3.2 Clustering 2.3.3 Bayesian networks 2.3.4 Neural networks Chapter 3 Results 3.1 Selection of labeled data for training and validation based on KEGG information about genes pathways 3.2 Clustering of genes 3.2.1 Comparison of clustering techniques on control dataset 3.2.2 Clustering results 3.3 Independent components as basic phenotypes 3.3.1 Algorithm for identification of the best number of independent components 3.3.2 Application of ICA on the full dataset and on separate assays of the screen 3.3.3 Gene annotation based on revealed phenotypes 3.3.4 Searching for genes with target function 3.4 Bayesian network on endocytic parameters 3.4.1 Prediction of pathway based on parameters values using Naïve Bayesian Classifier 3.4.2 General Bayesian Networks 3.5 Neural networks 3.5.1 Autoencoders as nonlinear ICA 3.5.2 siRNA sequence motives discovery with deep NN 3.6 Biological results 3.6.1 Rab11 ZNF-specific phenotype found by ICA 3.6.2 Structure of BN revealed dependency between endocytosis and cell adhesion Chapter 4 Discussion 4.1 Machine learning approaches for discovery of phenotypic patterns 4.1.1 Functional annotation of unknown genes based on phenotypic profiles 4.1.2 Candidate genes search 4.2 Adaptation to other HCS data and generalization Chapter 5 Outlook and future perspectives 5.1 Handling sequence-dependent off-target effects with neural networks 5.2 Transition between machine learning and systems biology models Acknowledgements References Appendix A.1 Full list of cellular and endocytic parameters A.2 Description of independent components of the full dataset A.3 Description of independent components extracted from separate assays of the HC

    Robust artifactual independent component classification for BCI practitioners

    Get PDF
    Objective. EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain–computer interfaces (BCIs). Approach. Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. Main results. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Significance. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.EC/FP7/224631/EU/Tools for Brain-Computer Interaction/TOBIBMBF, 01GQ0850, Verbundprojekt: Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine Interaktion - Teilprojekte A1, A3, A4, B4, W3, ZentrumDFG, 194657344, EXC 1086: BrainLinks-BrainTool
    • …
    corecore