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Abstract

Objective. EEG artifacts of non-neural origin can be separated from neural signals by
independent component analysis (ICA). It is unclear (1) how robustly recently proposed
artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2)
how artifact cleaning by a machine learning classifier impacts the performance of
brain—computer interfaces (BCIs). Approach. Addressing (1), the robustness of different
strategies with respect to the transfer between paradigms and electrode setups of a recently
proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which
contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing
(2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials
from 101 users and 3 paradigms. Main results. We show that (1) the proposed artifact classifier
generalizes to completely different EEG paradigms. To obtain similar results under massively
reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing
(2), ICA artifact cleaning has little influence on average BCI performance when analyzed by
state-of-the-art BCI methods. When slow motor-related features are exploited, performance
varies strongly between individuals, as artifacts may obstruct relevant neural activity or are
inadvertently used for BCI control. Significance. Robustness of the proposed strategies can be
reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.

Keywords: EEG, artifact removal, independent component analysis (ICA), blind source

separation (BSS), brain—computer interface (BCI)

(Some figures may appear in colour only in the online journal)

1. Introduction

Artifacts are omnipresent in recordings of the
electroencephalogram (EEG) and other brain signals.
For neuroscientific or clinical purposes the interpretation of
EEG signals depends on relatively clean recordings. Thus,
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title of the work, journal citation and DOI.
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artifact avoidance during measurement and post-hoc artifact
removal are important steps to enhance the signal-to-noise
ratio (SNR) before scientific interpretation of the data. While
task-independent artifacts may mask an existing effect,
artifacts systematically locked to an experimental task are
even more problematic: they may lead to misinterpretation of
the data and spurious results.

The field of the brain—computer interface (BCI) not only
makes use of offline analyses, but strives to interpret mental
states on a single-trial basis in real-time and in closed-
loop scenarios [1]. BCI research is especially sensitive to

© 2014 0P Publishing Ltd  Printed in the UK


http://dx.doi.org/10.1088/1741-2560/11/3/035013
mailto:irene.winkler@tu-berlin.de
http://creativecommons.org/licenses/by/3.0

J. Neural Eng. 11 (2014) 035013

| Winkler et al

task-locked artifacts, as the decoding of a user’s intent by
a BCI system should not rely on task-related non-neural
signals. This requirement is most important when conducting
research with healthy study participants on a novel paradigm
or analysis method which should be transferable to severely
motor-impaired patients, because they may not be physically
capable of producing those artifacts [2—4]. Understandably,
the role of artifacts is thus scrutinized during peer-reviewed
publication processes.

The exclusive use of brain signals in BCI must typically
be dropped when it comes to practical tests with end-users in
need, as hybrid BCI approaches [5, 6] provide a richer and
more reliable control than pure BCIs. Additionally, interest in
novel types of studies is growing amongst EEG researchers.
Such studies include users (inter-)acting in space [7-9] like
in collaborative and social paradigms (for a review see [10]),
the interaction between users and machines [11] and the non-
medical use of BCI methods [12, 13].

From an EEG practitioner’s point of view, a fully
automatic algorithmic solution for the treatment of artifacts
is desirable. It would put him or her in control of artifacts
and enable him or her to either remove them or check
their influence. Ideally, this would be realized by a global
classifier which could be trained once and then reliably
separates multiple types of artifactual components from
neural components. The classifier should work robustly across
data from different users and across domains. The latter
includes changing experimental paradigms and tasks, different
preprocessing methods and varying EEG electrode setups. It
should do so without any need of re-training, and it should not
require separate artifact recordings before it can be applied to
novel scenarios.

1.1. State-of-the-art IC artifact classification

For an extensive review of artifact reduction techniques
in the context of BCI-systems, we refer the reader to
[14]. In our work, we concentrate on a class of popular
artifact rejection approaches, which decompose the original
EEG into independent source components (ICs) using
independent component analysis (ICA). This method exploits
the assumption that artifactual signal components and neural
activity are generated independently. Artifactual ICs are hand-
selected and then discarded. The remaining neural components
are used to reconstruct the EEG [15, 16].

While assumptions for the application of ICA methods
are only approximately met in practice (no systematic co-
activation of artifactual and neural activity, linear mixture
of independent components (ICs), stationarity of the sources
and the mixture, prior knowledge about the number of
components), their application usually leads to a good, albeit
not perfect separation for common artifacts such as blinks, eye
movements or scalp muscles [17-20]. ICA has successfully
been applied to the removal of cochlea implant artifacts [21].
However, gait-related artifacts are reported to remain in most
of the ICs in EEG recorded during mobile activities [9, 22].

Because a thorough analysis of the achievable separation
performance is out of the scope of this paper, we refer the

reader to [17, 23, 24] on the question of which ICA variants are
well-suited for artifact rejection. Instead, we focus on practical
tools which avoid the time-consuming hand-rating process
of ICs by classifying ICs with the help of machine learning
methods into artifactual and non-artifactual components. Most
approaches concentrate on eye artifacts [25-31], but automatic
classification has also been successful for heart-beat artifacts
[28, 31], generic discontinuities [29], muscle artifacts [31-34]
and even very specialized artifacts such as cochlear implants
[21]. As most of these methods have a supervised basis, to
some degree they reflect the specific conditions of the training
set. The EEG practitioner is now faced with the question of
how well supervised methods generalize to his or her data
acquired under novel experimental conditions with different
preprocessing.

Unsupervised methods successfully circumvent this
problem for example by reverting to automatic thresholding
strategies [29]. However, these methods are often limited to
the use of one or two features and detect only certain types of
artifacts. It is unclear how to extend them to more complex
artifacts with a varying physiological fingerprint, such as
muscle artifacts. For supervised or template-based approaches,
first studies suggest that generalization to novel paradigms is
possible [28, 30, 31, 34]; however, efforts have concentrated
on eye artifacts [28, 30].

1.2. Robustness under novel paradigms and electrode setups

In this paper, we take a step forward by analyzing the
generalization ability of a state-of-the-art supervised IC
classification algorithm which we have recently proposed [34].
Itis notrestricted to the classification of eye or muscle artifacts,
but is equally well suited to detect other artifacts such as
loose electrodes. By comparing three strategies, we investigate
this multi-artifact classifier wrt. new electrode setups and
paradigms. We ask the following questions: How does a
change of the electrode setup impact the IC classification
performance? Is it necessary to hand-label components of the
new data set and retrain the classifier based on those? How
strong is the deterioration of IC classification performance
without re-training? We investigate these questions for three
data sets of 6303 labeled ICs from 35 participants in 3
experimental studies: a reaction time (RT) task embedded in
a simulated-driving task, an auditory event-related potential
study (ERP-BCI) and a study analyzing continuous EEG data
(CNT) of subjects instructed to listen to short stories.

1.3. Effect on BCI performance

After having demonstrated the robustness properties of the
IC classification, we are interested in the effects of automatic
ICA artifact cleaning on the classification of EEG trials in
BCI systems. As a first proof-of-concept, Halder ef al [33]
applied artifact cleaning to data from three participants who
performed motor imagery. Depending on whether artifacts
were systematically co-activated with the task or not, opposite
effects of artifact cleaning on BCI classification performance
were demonstrated. To the best of our knowledge, only small
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data sets of one or two participants have been analyzed since
then [35, 36].

To fill this gap, we extend our analysis from [34] by
investigating the overall effect of ICA artifact cleaning on
BCI performance to data of 101 participants wrt. 3 BCI
paradigms: auditory event-related potentials, event-related
(de-)synchronization and slow motor-related potentials due
to motor imagery tasks.

1.4. Software for the EEG practitioner

Last but not least, we make our IC classification software
available as an EEGLAB plug-in ‘MARA’ (Multiple Artifact
Rejection Algorithm). EEGLAB [37] is a popular, Matlab-
based open-source tool and used by a growing community of
EEG researchers. As existing ICA-based plug-ins primarily
focus on the detection of eye artifacts [27-29], we hope this
will deliver a substantial contribution to the community by
assisting EEG practitioners with the rejection of multiple type
of artifacts.

2. Methods and materials

2.1. Processing chain for ICA artifact rejection

The typical process chain for artifact rejection with ICA
consists of the following steps: first, a rough pre-cleaning
of the data by channel rejection and trial rejection based on
variance criteria may be performed. Second, a dimensionality
reduction may help to avoid an unnatural splitting of (neural)
sources. Unfortunately, the optimal number of components
to extract remains unknown and has to be determined either
by visual inspection or by a heuristic, such as retaining 99%
of the explained variance or a fixed number of components.
Third, ICA methods decompose the observed EEG data x
into unknown source components s assumed to be mutually
independent and following the generative linear model
x = A - 5. Finally, artifactual source components are identified
which allows the EEG signals to be reconstructed without
them.

In manual classification of ICs, experts ratings are
based on a component’s time series, its power spectrum
and spatial pattern (given by the respective column of A).
Unfortunately, ICA frequently results in mixed components
containing aspects of both neural and artifactual activity
which cannot be rated unambiguously [38]. Consequently,
such mixed components tend to be either retained or rejected
depending on the specific application. The subjective nature
of such expert decisions is reflected by the fact that experts
disagree with each other as well as with themselves over time
[39]. Nevertheless, the reliability of component classification
is often not reported, and if it is, researchers use one of many
metrics of inter-rater reliability statistics which are difficult
to compare directly (e.g. Krippendorff’s alpha in [20], inter-
class correlation coefficient in [40], degree of association phi
in [28], mean-squared error (MSE) or average agreement in
[34, 39]).

Automatic classification of ICs based on Machine
Learning methods offers a well-described algorithm which

rates consistently over time. However, this algorithm, too,
is of subjective nature in the sense that it is optimized to
predict labels similar to those labeling strategies applied by
human raters. The performance of the algorithm thus crucially
depends on the quality of the training set and its labels. For all
our IC data sets, experts were instructed to identify components
which are predominantly driven by artifacts.

In this paper, automatic IC classification is realized by
a linear pre-trained classifier. It is based on the following
six features which were determined in a feature selection
procedure described in [34]. One feature aims to detect outliers
in the time series of an IC, three features are extracted from
the spectrum, and two features extract information from the
scalp pattern of an IC—the latter depending directly on the
electrode layout.

(1) Current density norm. ICA itself does not provide
information about the locations of the sources s. However,
ICA patterns can be interpreted as EEG potentials for
which the location of the sources can be estimated. We
considered 2142 locations arranged in a 1 cm spaced
3D-grid, formulated the forward problem according to
[41-43] and sought the source distribution with minimal
I,-norm (i.e. the ‘simplest’ solution) [44, 45]. Since this
source distribution can model cerebral sources only, it
is natural that artifactual signals originating outside the
brain can only be modeled by rather complicated sources.
Those are characterized by a large 1,-norm, which we use
as a feature.

(i) Range within pattern. The logarithm of the difference
between the minimal and the maximal activation in a
pattern.

(iii) Mean local skewness. The mean absolute local skewness
of time intervals of 15 s duration. This feature aims to
detect outliers in the time series.

(iv) A and fit error. These two features describe the deviation
of a component’s spectrum from a prototypical 1/f curve
and its shape. The parameters ki, A, k; > O of the curve

ky
I
are determined by six points of the log spectrum: (1) the
log power at 2 Hz, (2) the log power at 3 Hz, (3) the
point of the local minimum in the band 5-13 Hz, (4)
the point 1 Hz below the third point of support, (5) the
point of the local minimum in the band 33-39 Hz, and (6)
the point 1 Hz below the fifth point of support. Finally,
the logarithm of A and of the MSE of the approximation
of f to the real spectrum in the 8—15 Hz range are used as
features for the classifier.

(v) 8-13 Hz. The average log band power of the « band
(8-13 Hz).

fe -k ey

2.2. Data sets and experimental paradigms

Data sets of four experimental EEG paradigms (named RT,
CNT, MI-BCI, ERP-BCI) were available for this study. For
three of them, RT, CNT and ERP-BCI, expert-labeled ICs
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(artifacts versus neural sources) were available. Two data sets
(MI-BCI, ERP-BCI) stem from BCI experiments. As the trial-
wise BCI tasks are known, the estimated single-trial BCI-
classification performance provides a metric for the influence
of a preceding artifact treatment.

RT. For this data set, labeled ICs were available. In a
simulated-driving study, participants performed a forced-
choice left or right key press RT task upon two auditory stimuli
in an oddball paradigm [34]. EEG data was recorded from
121 approx. equidistant sensors and high-noise channels were
rejected based on a variance criterion. We selected 43 runs of
10 min duration from eight participants that had 104 electrodes
in common. Prior to the IC computation via TDSEP [46], a
2 Hz high-pass filter was applied, and dimensionality was
reduced to 30 PCA components. Two experts hand-labeled the
resulting 30 ICs per run into artifactual and neural components
(1290 labeled ICs altogether).

Of these, 840 ICs (28 runs from 5 participants) were
used to train a linear classifier Cgry to discriminate artifactual
from neural components. Another 450 ICs (15 runs from
3 remaining subjects) were available for estimating the
generalization performance of Cgry. The training set contained
52% of artifactual ICs, the test set contained 59%.

CNT. For this data set, labeled ICs were available. Nine
participants continuously listened to audio—visual stories
during short runs of an average duration of 3.77 min [40]. The
resulting 71 recordings contained 62 EEG channels plus one
EOG channel. The recording of each run was appended with
a short eyes-closed and eyes-open recording and high-pass
filtered at 0.16 Hz. No dimensionality reduction was applied,
before ICs were estimated by FastICA [47] on the full set
of electrodes. This decomposition yielded 63 x 71 = 4473
components, which were hand-rated by three experts into 47%
artifactual and 53% neural source components.

ERP-BCI. For this data set, labeled ICs as well as
labeled BCl-trials were available. In a spatial auditory BCI
study which made use of auditory event-related potentials,
participants underwent a calibration run of approx. 30 min
duration and an online spelling run [48]. In the online run,
subjects were asked to write a sentence while auditory and
visual feedback was provided. EEG was recorded from 61
electrodes while the participants listened to a rapid sequence
of 6 auditory stimuli and were instructed to silently count the
number of appearances of a rare target tone.

For the classification of artifacts, data of 18 participants
was analyzed. Their EEG signals were band-pass filtered
between 0.1 and 40 Hz and the dimensionality was reduced
to 30 PCA channels. Subsequently 30 ICs were computed
per run using TDSEP. The resulting 540 source components
were hand-labeled into 72% artifactual and 31% neural source
components.

To assess the influence of artifact correction onto the
BCI classification performance, data of the 21 BCI novices
participating in the first session of the auditory ERP speller

study of Schreuder et al [48] was re-analyzed. Their calibration
measurement is used to train a shrinkage regularized linear
classifier based on spatio-temporal ERP features [48, 49]. BCI
performance evaluations are based on the re-analyzed online
data of these participants.

MI-BCI. For this data set, labeled BCl-trials were available,
but no labeled ICs. This data set was recorded with 119 EEG
channels from 80 healthy BCI novices, who first performed
motor imagery tasks (left hand, right hand and both feet)
in a calibration run (i.e. without feedback). Every 8 s, the
requested BCI task of the current trial was indicated by
a visual cue. A CSP-based BCl-classifier (see below) was
trained on the labeled calibration trials using the pair of classes
which provided best discrimination. During the three online
runs of 100 trials each participant controlled an application
which provided continuous visual feedback in the form of a
horizontally moving cursor [50].

Motor imagery data can be exploited by two different
types of EEG features.

(i) CSP-MI-BCI: the most common strategy makes use of
oscillatory features which describe event-related (de)-
synchronization (ERD/ERS) in the alpha- and beta band
of the EEG. After enhancing the SNR of these effects
by individual data-driven spatial filters, which are derived
by the common spatial patterns (CSP) analysis [51], CSP-
features can be classified by a shrinkage-regularized linear
classifier.

(i) LRP-MI-BCI: the second strategy is based on slow motor-
related potentials (e.g. the lateralized readiness potential
(LRP)). Different classes of imagined movements are
distinguished with an ERP-type analysis [49, 52]: EEG
is band-pass filtered between 4 and 8 Hz, before a small
number of class-discriminative intervals is determined
on the calibration data. The average activity per interval
and channel is used as features for a binary shrinkage-
regularized linear classifier.

While the original online runs were performed with the
CSP-MI-BCI classifier, without artifact rejection, the offline
re-analysis makes use of both types of features in order to
assess the influence of a preceding artifact removal.

2.3. Robustness under novel paradigms and electrode setups

For the classification of artifactual IC components, three
classification strategies—fixed, adapted and study-specific—
were compared on the ERP-BCI and the CNT data set. Figure 1
visualizes the strategies. In the fixed scenario, classifier Crr is
trained once on features of labeled ICs of the RT data set,
and furthermore applied to ICs of any other data set. Neither
hand-labeling of novel ICs nor re-calculation of features or
any re-training of the classifier is necessary in this simplest
scenario. While hand-labeling of novel ICs is also avoided
successfully in the adapted strategy, a channel adaptation on
the RT-data is performed by cutting the training patterns to
the specific electrode layout of the test data set. Features then
need to be re-calculated based on the reduced patterns and a
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fixed:
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Figure 1. Schematic plot of the three transfer strategies fixed, adapted and study-specific. Expensive hand-labeling steps of ICs are marked

with red arrows, cheap channel reduction and classifier training steps in

green and black. Note that any self-application of classifiers in the

study-specific strategy was performed exclusively in a leave-one-subject-out validation scenario.

re-training yields the adapted classifier Crr_a. All steps can
be performed automatically and do not require user input.
The third strategy, study-specific, requires the effort of experts
every time a novel study is performed. The ICs of at least
some subjects need to be hand-labeled, before a study-specific
classifier (e.g. Cont Or Cgrp) can be trained and applied to
novel subjects. It’s performance was evaluated by leave-one-
subject-out cross-validation.

To explore the robustness of the artifact classifier against
reduced EEG channel sets, we compared the fixed IC-classifier
Crr with the adapted 1C-classifier Crr—a on the RT and
ERP-BCI test data sets with reduced setups (varying from
16 to 104 resp. 61 EEG channels). All electrode setups were
approximately equidistant and covered the whole scalp.

2.4. Effect on BCI performance

This offline re-analysis of three BCI paradigms described in
section 2.2 compares standard BCI performance with and
without a preceding ICA artifact cleaning. In both cases,
artifactual channel and trial rejection based on a variance
criterion was performed prior to BCI training. Training of
the BClI-classifiers is based on the calibration runs only, and
BCI performance tests are performed with the online runs of
the participants.

ICA artifact cleaning is included in a manner that
allows for real-time BCI applications. Prior to TDSEP, we
estimated whether a PCA pre-processing to 99% explained
variance would be useful via cross-validation on the calibration

data. This was the case only for the LRP-MI paradigm. IC
components were then derived by TDSEP and classified with
the adapted classifier Crr—a on the calibration data. The BCI
is set up on the remaining ICs. On the online runs, un-mixing
and component rejection is performed according to the de-
mixing determined on the calibration data. The BCI classifier
is applied to features extracted from the remaining components
of the online runs.

3. Results

3.1. Robustness under novel electrode setups

Figure 2 shows the classification error for the fixed classifier
Crr and the adapted classifier Crr_5 for different channel
setups on both the RT and the ERP-BCI test sets. On the RT
test data with the full 104 channel setup, a classifier using
all six features achieves a MSE of 9.3% only, which slightly
outperforms the use of only four pattern-independent features
(12.4% MSE). While Cgrt generalizes robustly over the range
of 104 to 48 electrodes in the RT test sets, its error increases up
to 31.8% for the smallest set of 16 electrodes. On the ERP-BCI
data set, the use of only four pattern-independent features is
already outperforming the fixed classifier Cgy on the full 61
electrode setup. Classification performance of Crr then breaks
down to 50% on the smallest set of 16 electrodes. In both the
RT and the ERP-BCI data set, the drop in overall performance
is due to the bad performance of both pattern-based features
of over 50%.
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Figure 2. Mean classification error £ standard error estimated on (a) the RT and (b) the ERP-BCI test sets for different channel setups. The
left plot shows the results for a fixed classifier, the right plot for a classifier adapted to each channel setup.

For the adapted strategy (i.e. re-training the classifier on
the patterns cut to the specific electrode setup), the error of
the pattern features (range within pattern and current density
norm) was much less pronounced in both data sets. The overall
error of Crr_a for 16 electrodes remained at 11.3% on the
RT data set (compared with 9.3% on 104 channels) and at
15.9% for the ERP-BCI data set (compared with 13.3% on 61
channels). In both data sets, we slightly gain from using the
pattern features. On the reduced electrode setup, the classifier
weight of the range in pattern dropped, while the weight for
current density norm remained stable.

3.2. Robustness under novel paradigms

The results for the three proposed classification strategies on
the three labeled IC data sets are summarized in table 1. The
adapted classifier Crr_a (trained on the RT data set cut to the
specific electrode montage of the ERP-BCI or CNT data set)
achieves an error of 13.3% on the ERP-BCI data and an error
of 14.0% on the CNT data set.

The classification performance can be improved by a re-
training on labeled data from the same study, but the effect is

small. We observe an error of 9.3% on the RT data set, an error
of 9.6% on the ERP-BCI data set and an error of 13.1% on the
CNT data set. This improved performance is due to two effects:
first, adjusting feature thresholds for the specific study may
improve the performance of each feature. For example, a re-
training of the 8—13 Hz feature of the CNT data set decreased
its error from 33.3% to 18.0%. Second, feature weights adjust
such that more discriminative features obtain a higher weight.
Interestingly, after re-training both Cgrp and Cent primarily
use one of the two pattern features—Cgrp focuses mostly on
the current density norm feature, while Cenr is strongly based
on the range within pattern feature.

3.3. Effect on BCI performance

The upper plots of figure 3 show scatter plots of BCI
performance with and without preceding ICA artifact cleaning
for the three analyzed BCI paradigms. For ERP-BCI, BCI
performance decreased slightly from 69.4% to 68.3% (¢(20) =
—2.43, p=0.03,d = 0.21). On average, 44 components were
retained and 16 artifactual components were removed. There
was no significant change in overall MI-CSP performance
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Figure 3. Upper plots: effect of artifact correction for three BCI paradigms. Dots over the diagonal indicate participants, whose data
improved in classification performance (in per cent correct trials), dots below indicate participants whose performance decreased by the
correction. Changes are strongest for the paradigm MI-LRP, which is most sensitive to eye artifacts. For this paradigm, participants (A) and
(B) are highlighted, which undergo relatively strong changes. Lower plots: effect of artifact cleaning for participants (A) and (B). Top row:
average activity of selected channels for left trials (blue) and right trials (green). The four upper scalp plots indicate the spatial distribution
of average activity (in uV) for one or two time intervals (in columns) and for left and right trials (upper and lower scalp plots). Lowest scalp
plots indicate the spatial distribution of class-discriminative information (as signed 7> values) per interval. For participant A, a dominating
eye artifact could be removed, which lead to an increase in the SNR and of classification performance. For participant B, very little
class-discriminant signal remained after artifact cleaning.

Table 1. Feature weight vectors w and test errors (MSE) for three data sets (RT, ERP-BCI and CNT) and three classification strategies (fixed
classifier Crr, adapted classifier Crr—a and study-specific classifiers Cerp, Cont). Test errors are reported for the 6 single features and for the
combined classification. The fixed classifier is trained on the RT train data set. The adapted classifier is trained on the RT train data set cut to
the specific electrode montage. The study-specific classifiers are trained on data from the same study and evaluated with
leave-one-subject-out CV.

Current density  Range within ~ Local

norm pattern skewness A 8-13 Hz FitError Combined

RT Crr w 0.485 0.511 0.404 0.155 —0.522 —0.210

MSE 0.144 0.151 0.355 0.158 0.171 0.173 0.093

ERP-BCI  Cgr MSE 0.296 0.289 0.459 0.244 0.154 0.357 0.185
Crr-A W 0.454 0.463 0.384 0.235 —0.563 —0.247

MSE 0.178 0.259 0.459 0.244 0.154 0.357 0.133
Cgrp w 0.533 0.085 0.363 0.359 —0.650 —0.009

MSE 0.244 0.289 0.376 0.237 0.150 0.298 0.096

CNT Crr MSE 0.421 0.198 0.275 0.190 0.323 0.489 0.167
Crr-A W 0.341 0.498 0.417 0.234 —0.587 —0.251

MSE 0.265 0.214 0.275 0.190 0.323 0.489 0.140
Cenr w 0.035 0.589 0.459 0.259 —0.602 —0.010

MSE 0.234 0.196 0.232 0.163 0.180 0.569 0.131

(79) = —0.50, p = 0.62, d = 0.04) which remained constant The strongest changes were observed for the MI-LRP

at x72% after the removal of on average 18 artifactual paradigm, which is most prone to eye artifacts due to the
components (69 components were kept). In both BCI systems, focus on low-frequency signal components. Note that as
the effect per subject was small. feedback was provided with a moving cursor, eye activity
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Figure 4. Screen shot of the MARA plug-in applied to EEGLAB sample data.

may be correlated with the two classes. On average, nine
components were retained and ten artifactual components were
removed. While the mean BCI accuracy remained constant at
~60% (¢(79) = 0.23, p = 0.82, d = 0.03), the performance
of each participant varied considerably. The lower plots
of figure 3 exemplarily highlight the effect of the artifact
rejection for two participants. Without artifact rejection, both
participants mainly use eye artifacts for BCI control (frontal
class-discriminative activation). The effect of artifact removal
can be twofold. For participant A, eye artifacts obstruct
the underlying neural activity, and the system’s accuracy
improved upon artifact cleaning from 66.3% to 73.6% due to
an improved signal-to-noise level. In participant B, very little
class-discriminant activity remained after the eye activity was
removed. BCI classification dropped considerably from 91.3%
to 64.0%.

4. Discussion

To summarize, we have analyzed the robustness properties
of our recently proposed artifact classification method and
proposed a strategy to handle a wide range of electrode
setups. The proposed adapted strategy fully automates the
time-consuming rating of artifactual ICs and reliably identified
multiple types of artifacts from 35 participants and 3 EEG
paradigms.

IC classification performance of three strategies was
evaluated against expert ratings. We showed that our simplest
automatic fixed strategy (train the classifier once, then apply
to other setups) exhibits sensitivity to drastically reduced
electrode setups. As a solution, we proposed the adapted

strategy which recomputes the training features based on the
specific electrode montage of the test sets. Using this relatively
inexpensive strategy—no hand-labeling is involved—artifact
classification generalizes well even on very reduced electrode
setups.

For comparison reasons, a re-training of the classifier
using labor-intensively gained hand-labeled ICs from every
new study was analyzed (strategy study-specific). While
avoiding some generalization issues in theory, it is
prohibitively expensive in most practical situations and only
achieved a performance gain of a few per cent compared with
the adapted strategy.

We therefore recommend the adapted strategy for artifact
classification. It generalized robustly even to completely novel
EEG paradigms, with its IC classification performance (13.3%
MSE on auditory ERP data and 14.0% MSE on auditory
listening data) staying on a similar level as inter-expert
disagreements (often above 10% [34, 39]). This classification
error is remarkably low given that the studies have been
recorded with half the number of electrodes, used different
ICA methods and contained different proportions of artifactual
components.

We provide the ready-to-use artifact classifier to the
community as an open-source EEGLAB plug-in called MARA
(multiple artifact rejection algorithm). MARA automatically
adapts to novel channel setups and its output is designed
to support the experimenter in his or her decisions:
a semi-automatic mode allows for visual inspection of
components and for changing the classifier’s proposed
ratings. Figure 4 shows an example screen shot of the
visual inspection menu. The plug-in is published under the
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General Public License (GPL) and can be downloaded from
www.user.tu-berlin.de/irene.winkler/artifacts/.

BCI practitioners may find the application of MARA on
BCI data sets of particular interest. We used the adapted
strategy to analyze how ICA artifact cleaning impacts on
single-trial BCI performance of three different BCI paradigms.
In all three paradigms, we were able to remove artifactual
activity while maintaining the average BCI performance.

On the single subject level the effect of artifact cleaning
depends on whether artifacts mask the relevant neural activity
or serve as a control signal for BCI. While artifact cleaning had
little influence on an auditory ERP speller and on oscillatory
motor imagery data analyzed with CSP, we observed strong
effects for a paradigm known to be heavily affected by eye
artifacts, the use of slow motor-related potentials. Here our
analysis suggests that artifact removal by MARA or similar
tools may drastically improve the safety and reliability of
results, as they guarantee that rejected artifacts are not utilized
mistakenly to control the BCI system.
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