30,289 research outputs found

    Harnessing AI for Speech Reconstruction using Multi-view Silent Video Feed

    Full text link
    Speechreading or lipreading is the technique of understanding and getting phonetic features from a speaker's visual features such as movement of lips, face, teeth and tongue. It has a wide range of multimedia applications such as in surveillance, Internet telephony, and as an aid to a person with hearing impairments. However, most of the work in speechreading has been limited to text generation from silent videos. Recently, research has started venturing into generating (audio) speech from silent video sequences but there have been no developments thus far in dealing with divergent views and poses of a speaker. Thus although, we have multiple camera feeds for the speech of a user, but we have failed in using these multiple video feeds for dealing with the different poses. To this end, this paper presents the world's first ever multi-view speech reading and reconstruction system. This work encompasses the boundaries of multimedia research by putting forth a model which leverages silent video feeds from multiple cameras recording the same subject to generate intelligent speech for a speaker. Initial results confirm the usefulness of exploiting multiple camera views in building an efficient speech reading and reconstruction system. It further shows the optimal placement of cameras which would lead to the maximum intelligibility of speech. Next, it lays out various innovative applications for the proposed system focusing on its potential prodigious impact in not just security arena but in many other multimedia analytics problems.Comment: 2018 ACM Multimedia Conference (MM '18), October 22--26, 2018, Seoul, Republic of Kore

    A survey on mouth modeling and analysis for Sign Language recognition

    Get PDF
    © 2015 IEEE.Around 70 million Deaf worldwide use Sign Languages (SLs) as their native languages. At the same time, they have limited reading/writing skills in the spoken language. This puts them at a severe disadvantage in many contexts, including education, work, usage of computers and the Internet. Automatic Sign Language Recognition (ASLR) can support the Deaf in many ways, e.g. by enabling the development of systems for Human-Computer Interaction in SL and translation between sign and spoken language. Research in ASLR usually revolves around automatic understanding of manual signs. Recently, ASLR research community has started to appreciate the importance of non-manuals, since they are related to the lexical meaning of a sign, the syntax and the prosody. Nonmanuals include body and head pose, movement of the eyebrows and the eyes, as well as blinks and squints. Arguably, the mouth is one of the most involved parts of the face in non-manuals. Mouth actions related to ASLR can be either mouthings, i.e. visual syllables with the mouth while signing, or non-verbal mouth gestures. Both are very important in ASLR. In this paper, we present the first survey on mouth non-manuals in ASLR. We start by showing why mouth motion is important in SL and the relevant techniques that exist within ASLR. Since limited research has been conducted regarding automatic analysis of mouth motion in the context of ALSR, we proceed by surveying relevant techniques from the areas of automatic mouth expression and visual speech recognition which can be applied to the task. Finally, we conclude by presenting the challenges and potentials of automatic analysis of mouth motion in the context of ASLR

    Combining Multiple Views for Visual Speech Recognition

    Get PDF
    Visual speech recognition is a challenging research problem with a particular practical application of aiding audio speech recognition in noisy scenarios. Multiple camera setups can be beneficial for the visual speech recognition systems in terms of improved performance and robustness. In this paper, we explore this aspect and provide a comprehensive study on combining multiple views for visual speech recognition. The thorough analysis covers fusion of all possible view angle combinations both at feature level and decision level. The employed visual speech recognition system in this study extracts features through a PCA-based convolutional neural network, followed by an LSTM network. Finally, these features are processed in a tandem system, being fed into a GMM-HMM scheme. The decision fusion acts after this point by combining the Viterbi path log-likelihoods. The results show that the complementary information contained in recordings from different view angles improves the results significantly. For example, the sentence correctness on the test set is increased from 76% for the highest performing single view (30∘30^\circ) to up to 83% when combining this view with the frontal and 60∘60^\circ view angles

    Language Identification Using Visual Features

    Get PDF
    Automatic visual language identification (VLID) is the technology of using information derived from the visual appearance and movement of the speech articulators to iden- tify the language being spoken, without the use of any audio information. This technique for language identification (LID) is useful in situations in which conventional audio processing is ineffective (very noisy environments), or impossible (no audio signal is available). Research in this field is also beneficial in the related field of automatic lip-reading. This paper introduces several methods for visual language identification (VLID). They are based upon audio LID techniques, which exploit language phonology and phonotactics to discriminate languages. We show that VLID is possible in a speaker-dependent mode by discrimi- nating different languages spoken by an individual, and we then extend the technique to speaker-independent operation, taking pains to ensure that discrimination is not due to artefacts, either visual (e.g. skin-tone) or audio (e.g. rate of speaking). Although the low accuracy of visual speech recognition currently limits the performance of VLID, we can obtain an error-rate of < 10% in discriminating between Arabic and English on 19 speakers and using about 30s of visual speech

    Visual units and confusion modelling for automatic lip-reading

    Get PDF
    Automatic lip-reading (ALR) is a challenging task because the visual speech signal is known to be missing some important information, such as voicing. We propose an approach to ALR that acknowledges that this information is missing but assumes that it is substituted or deleted in a systematic way that can be modelled. We describe a system that learns such a model and then incorporates it into decoding, which is realised as a cascade of weighted finite-state transducers. Our results show a small but statistically significant improvement in recognition accuracy. We also investigate the issue of suitable visual units for ALR, and show that visemes are sub-optimal, not but because they introduce lexical ambiguity, but because the reduction in modelling units entailed by their use reduces accuracy
    • …
    corecore