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A B S T R A C T

Automatic lip-reading (ALR) is a challenging task because the visual speech signal is known to be missing
some important information, such as voicing. We propose an approach to ALR that acknowledges that this
information is missing but assumes that it is substituted or deleted in a systematic way that can be modelled.
We describe a system that learns such a model and then incorporates it into decoding, which is realised as a
cascade of weighted finite-state transducers. Our results show a small but statistically significant improve-
ment in recognition accuracy. We also investigate the issue of suitable visual units for ALR, and show that
visemes are sub-optimal, not but because they introduce lexical ambiguity, but because the reduction in
modelling units entailed by their use reduces accuracy.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the past thirty years, the development of automatic speech
recognition (ASR) has received enormous attention to the point
where ASR is now a useful and reliable technology. By contrast, auto-
matic lip-reading (ALR) has received very little attention. This is not
surprising, since lip-reading is used by only a very small propor-
tion of the population who have hearing difficulties, and although
some of these users can apparently lip-read with high accuracy, it
is an imperfect form of communication. Audiovisual speech recogni-
tion (AVSR) is now gaining in importance as attention turns towards
making ASR more robust to interfering noise. A number of different
techniques have been proposed for AVSR, but all of them would ben-
efit from higher accuracy when decoding speech purely from a visual
signal. Although this is the most significant motivation for research-
ing ALR, it also has a number of possible applications in its own right
in areas such as provision of automatic training systems for teaching
lip-reading, as an aid for people who are able to make speech ges-
tures but whose voice function has been removed, and in fighting
crime, as well as being an interesting topic in speech communication.

Speech is primarily an audio form of communication, and a con-
siderable amount of information about speech sounds is missing
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from the visual speech signal [1]. The approach taken in this paper is
to acknowledge that errors will occur in ALR because of this missing
information, and to model and compensate for them, an approach
which was inspired by previous work on dysarthric speech [2].
Dysarthric speakers have poor control over their articulators because
of medical conditions (such as cerebral palsy, stroke, brain tumour
etc.) that affect their motor functions. This leads to a reduced phone-
mic repertoire and poor quality articulation, and hence to speech that
has low intelligibility and is difficult for ASR systems to recognise.
Similarly, in visual speech, certain speech sounds cannot be distin-
guished because they differ in a feature that is not present in the
visual signal (e.g. voicing, place of articulation when it is in the rear of
the vocal tract). In previous work on dysarthric speech recognition,
patterns of phonemic confusions made by a talker were learnt by the
system, and when these confusions were compensated at recogni-
tion time, recognition accuracy increased [2]. In this work, we take a
similar approach to lip-reading: we model visual speech as if it were
a speech signal produced by a speaker who has a limited phone-
mic repertoire, and learn the resulting patterns of phoneme confu-
sion by comparing the ground-truth phoneme sequences with the
recognised sequences. At recognition time, we find the most likely
interpretation (word-sequence) of the distorted phoneme output
sequence in the light of these patterns. The approach is conveniently
realised as a cascade of weighted finite-state transducers (WFSTs),
one of which implements the confusion modelling, whilst the others
implement familiar speech recognition tasks such as a pronunciation
dictionary and language modelling. We compare this approach with
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the standard speech recognition approach in which no knowledge of
confusions is used.

Until recently, the ALR community has concentrated (with a few
exceptions) on small and restricted lip-reading tasks, usually isolated
letters and/or digits, as this kind of task is appropriate in the ini-
tial stages of developing a technology. Here, we report ALR results
on continuous speech utterances that have a medium-size (∼1000
words) vocabulary. We use a specially-recorded dataset consisting of
videos of 3000 sentences spoken by a single speaker.

This unusually large corpus enables us to investigate a funda-
mental question in ALR, which is whether the use of phoneme-to-
viseme mappings is effective. Visemes (discussed more thoroughly
in Section 4) are claimed to be the visual equivalent of phonemes
i.e. they are units of visual speech. It is common practice to employ
a phoneme-to-viseme mapping (several are available) in ALR on
the grounds that there are many phonemes that cannot be distin-
guished visually, and indistinguishable phonemes should logically
be grouped together as a single unit for purposes of recognition.
Although there has been some work on testing these mappings [3,4],
it is not conclusive, and we investigate this in the first part of this
paper.

The paper is organised as follows: in Section 2, we set the scene
for our work by reviewing the state-of-the-art in ALR. Section 3
describes the two databases that we recorded for these experiments,
and Section 4 describes our work in exploring the mapping between
phonemes to visemes. Section 5 gives a brief background to WFSTs
and describes our new approach in detail. Results based on the two
databases used are described in Sections 6 and 7 respectively. We
conclude with a discussion in Section 8.

2. Previous work

The first attempts to automatically recognise speech from a visual
signal date back to the 1980s and the work of Petajan [5,6]. Even
from that date, the focus was on using the visual signal to enhance
audio ASR, and most work since then has concentrated on such
integration rather than lip-reading per se. However, this work was
important in laying the foundations for techniques of deriving fea-
tures suitable for speech recognition from visual images. These early
systems tended to use very small vocabularies, such as a subset of
the alphabet or the ten digits, uttered by a single speaker [7,8], and
used classification techniques such as hidden Markov models [9],
neural networks [10] or hybrid models [11,12]. Work on continu-
ous speech began about 2000 with continuously spoken digits [13].
A summer workshop at Johns Hopkins in 2000 [14] enabled major
advances in AVSR by recording a very large database of 290 speakers
speaking material with a vocabulary of 10,500 words (unfortunately
it is unavailable). It pioneered the use of active appearance mod-
els (AAMs, [15]) as visual features and produced some of the first
sets of speaker-independent ALR and AVSR results. Since then, there
have been many different approaches to AVSR [16] including coupled
HMMs [17], dynamic Bayesian networks [18], use of articulatory-
based features [19], segment-based approaches [20,21] and more
recently, deep neural networks [22,23]. A recent review of AVSR
research that considers especially the selection of visual features for
visual speech is [24].

Work in ALR itself has grown significantly in the last ten years,
although many authors use the term “lip reading” to describe work in
AVSR rather than ALR. The work has covered essentially three areas:
development of new visual features [25-28], research into suitable
units for lip reading [29-31] and exploration of new classification
techniques [26,32,33]. Much of this work still uses small datasets of
isolated words from a single speaker but a recent paper [34] presents
speaker-independent results on a 1000 word connected speech task.

Table 1
Statistics of the ISO-211 and RM-3000 corpora.

ISO-211 RM-3000

Total number of sentences – 3000
Total number of unique words 211 979
Total number of unique phonemes 45 45
Total number of word tokens 1255 26,114
Total number of phoneme tokens 7040 105,561
Average number of words per sentence – 8.70
Average number of phonemes per sentence – 35.19
Average number of phonemes per word 5.61 4.04

3. Data and visual features

We recorded two datasets for the experiments in this work.
A single speaker was recorded in each to eliminate the varia-
tion in visual features between speakers. We consider that this
is a good strategy when exploring an innovative technique such
as the one proposed here. In other recent work using multiple
speakers from the large LiLiR dataset [35], we have shown how to
compensate (to some extent) for speaker variation by using tech-
niques such as speaker adaptive training and deep neural networks,
and these techniques can be added later to the work described
here.

The first dataset, called ISO-211, was an audio–visual database
of 211 isolated words. It was designed for rapid experimentation
in developing WFSTs for lip-reading. ISO-211 has a vocabulary of
211 phonetically rich words which were chosen to give maximum
bigram coverage. The data were captured in a specialised record-
ing environment using a Sanyo Xacti camera in portrait orientation
at 1080 × 1920 pixel resolution using progressive scan at a sam-
pling frequency of 59.94 frames per second. Audio was captured
using a clip microphone at a sampling frequency of 48 kHz. A single
native English speaking female speaker spoke six repetitions of each
word.

The second dataset, called RM-3000, consists of audio–visual
recordings of 3000 sentences spoken by a single native English-
speaking male speaker. The sentences were randomly selected from
the 8000 sentences in the Resource Management (RM) Corpus [36].
The motivation for recording RM-3000 was to obtain a large database
of continuous visual speech that had a medium size vocabulary and
that was spoken by a single speaker. Sentences from the RM Cor-
pus were chosen because its format (sentences of varying length
whose grammar can be well-modelled with a language model) and
its vocabulary size (1000 words) are ideal for research into lip-
reading in its current state of development. The recording setup was
the same as for the ISO-211 dataset.

Phoneme transcriptions of the sentences were derived from the
BEEP Dictionary [37]. Some statistics about the two databases are
shown in Table 1.

3.1. Features for lip-reading

In [38], three video resolutions (640 × 360, 1080 × 720 and
1920 × 1080) were compared in a visual-phone lip-reading recogni-
tion task, and it was found that there was no significant difference
in the accuracy obtained. Therefore, to improve the efficiency of the
feature extraction and modelling processes, all videos were down-
sampled to a third of their original resolution to 360 × 640 pixels.
Between 20 and 30 frames from each recording session were selected
for hand-labelling: we labelled frames that described the extrem-
ities of mouth movements to capture as much variance of shape
and appearance possibilities as possible. In each selected frame, 111
points were labelled over the whole face to ensure stability when
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Fig. 1. An example frame from the isolated-word dataset. Landmarks are hand-
labelled on 20 to 30 images of the face to aid tracking. Points on other parts of the face
are discarded for feature extraction.

tracking, which was done using the inverse compositional project-
out AAM algorithm [39]. An example frame is shown in Fig. 1 with
landmark points on the face: eight points on each eyebrow, 12 points
on each eye, 2 points per nostril, 19 points around the chin and up
the edge of the head to eye-level, 28 points on the outer lip contour,
and 20 on the inner lip contour.

After tracking the complete datasets, only the inner and outer lip
contour points were retained prior to the AAM feature extraction
process.

It seemed possible that the RM-3000 database (recorded by a
male speaker) might be “noiser” than the ISO-211 database (recorded
by a female speaker) because of the presence of facial hair and the
lack of makeup (particularly lipstick) on the former recording. In
practice, these differences did not seem to affect tracking or accuracy
of segmentation in the feature extraction process.

AAMs encode the shape and appearance information of the lips.
The shape, s, of an AAM is described by the x and y-coordinates of a
set of n vertices that delineate the lips: s = (x1, y1, . . . , xn, yn)T,. These
points are obtained using the tracking method described above. A
compact model that allows a linear variation in the shape is given by:

s = s0 +
m∑

i=1

pisi, (1)

where s0 is the mean shape and si are the eigenvectors corresponding
to the m largest eigenvectors of the covariance matrix—these vectors
accounted for 95% of variation in the shape mode and 90% variation
in the appearance mode. The coefficients pi are the shape parameters
that define the contribution of each eigenvector in the representa-
tion of s. Such a model can be computed using Principal Component
Analysis (PCA).

The appearance, A, of an AAM is defined by the pixels that lie
inside the base shape s0. AAMs allow linear appearance variation, so

Table 2
Description of the Fisher phoneme-to-viseme mappings to collapse
45 phoneme classes into 14 viseme classes. A viseme is reserved for
the silence model (/sil/).

Viseme class Mapped phonemes

V1 /b/ /p/ /m/
V2 /f/ /v/
V3 /t/ /d/ /s/ /z/ /th/ /dh/
V4 /w/ /r/
V5 /k/ /g/ /n/ /l/ /ng/ /hh/ /y/
V6 /ch/ /jh/ /sh/ /zh/
V7 /eh /ey/ /ae/ /aw/ /er/ /ea/
V8 /uh/ /uw/
V9 /iy/ /ih/ /ia/
V10 /ah/ /ax/ /ay/
V11 /ao/ /oy/ /ow/ /ua/
V12 /aa/
V13 /oh/
V14 /sil/

A can be expressed as a base appearance A0 plus a linear combination
of l appearance images Ai:

A = A0 +
l∑

i=1

kiAi, (2)

where ki are the appearance parameters. The mean appearance A0

and basis appearance images Ai can be computed by applying PCA to
the images after warping to the mean shape, s0 [15]. Although sep-
arate shape and the appearance components of an AAM can be used
as features for lipreading, combined AAM features [15] are more dis-
criminative [40], and we used these. Velocity (D) and acceleration
(DD) features are added, and we apply a per-speaker z-score nor-
malisation to the features to remove the mean and normalise the
standard deviation.

4. Recognition units for lip-reading

A phoneme can be defined as ‘The smallest contrastive linguis-
tic unit which may bring about a change of meaning’ [41]. A speaker
must be capable of producing sounds that are recognisable as distinct
phonemes for their speech to be understood. However, there is no
requirement for a speaker’s visual signals (e.g. mouth shapes) to form
contrastive patterns, and hence there is no precise visual equivalent
of the phoneme. The term viseme is loosely defined [42] to mean a
visually indistinguishable unit of speech, and a set of visemes is usu-
ally defined by grouping together a number of phonemes that have a
(supposedly) indistinguishable visual appearance. Several many-to-
one mappings from phonemes to visemes have been proposed and
investigated [4] [42-44]].

For visual speech recognition, it seems intuitive that the units of
recognition to be modelled should be visemes rather than phonemes,
since the phonemes that are mapped to a single viseme are (suppos-
edly) not visually distinguishable. However, because of the many-to-
one mapping of phonemes to visemes, two words that have distinct
phonemic transcriptions may have identical visemic transcriptions.
These words are termed homophenous words—they sound different
but look identical (e.g. ‘bat’, ‘pat’ and ‘mat’). So it seems that for visual
speech recognition, we are faced with a choice: model visemes, and
deal with ambiguous word transcriptions; or model phonemes, and
thus attempt to model events that are apparently indistinguishable.
Here, we investigate the results from these two approaches.

Some studies have calculated that as many as 40%–60% of English
spoken words could be homophenous, something that poses a sig-
nificant problem for visual speech recognition [45]. Here, we define
a set of words to be homophenous if they all have the same viseme
transcription in whatever phoneme/viseme mapping we are using.
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Fig. 2. Unit recognition accuracy on 3000 speaker-dependent sentences from the Resource Management Corpus (RM). See Table 3 for an explanation of the units used. Error bars
(a result of testing on different folds) have been omitted because they are too small to discern.

Of the 979 different words spoken in our database, 106 (10.83%) are
homophenous when the Fisher phoneme-to-viseme mapping ([42],
Table 2) is used. However, because of the uneven distribution of
words in the 3000 sentences, these homophenous words account
for 8988 (34.42%) of all word tokens out of a total of 26,114 tokens.
Therefore, even with perfect viseme recognition, the recogniser’s
performance could be as low as 65.58% if it were always to make the
wrong.1

4.1. Experiments

For our recognition experiments, we used a conventional
HMM/GMM system, an approach that has been successful for auto-
mated lip-reading [46-48]. We trained monophone models of recog-
nition units using 20 iterations of the embedded Baum–Welch
re-estimation algorithm. An exhaustive search was performed to find
the optimum number of states (three) and mixture components (19
per state). A short-pause model (sp) was tied to the centre state of
the HMM that modelled silence to allow a short-duration silence
between words. Ten-fold cross-validation was used, so that 2700
sentences of the RM-3000 dataset were used for training and the
other 300 for testing. We built word, viseme and phoneme bigram
language models (as required for a particular experiment) from the
transcriptions of the 5000 RM sentences not used to make the RM-
3000 dataset. The grammar-scale factor was optimised to give the
best results.

Fig. 2 shows the results obtained for audio and visual recogni-
tion as a function of the number of sentences used as training data.
Note that the accuracy here is the accuracy of the recognition unit
used, not word accuracy. We used phoneme and viseme units for
both audio and visual data. As the terms used to describe the units
used might be confusing, Table 3 clarifies their meaning.

Fig. 2 shows that, as expected, we can achieve very good phoneme
recognition accuracy on single-speaker audio data. It is interesting
to note that viseme recognition accuracy is actually a little lower
(about 2%) than phoneme accuracy when using audio data, despite
the number of viseme classes being less than one third of the num-
ber of phoneme classes. We can attribute this to the fact that the

1 Homophones share the same phonetic transcription e.g. ‘for’ and ‘four’. Although
these are a nuisance in speech recognition, they make up a tiny proportion of all words,
unlike homophenous words.

phoneme-to-viseme mapping of Table 2 groups together phonemes
that have very different acoustic features, and so the variation in
the features within the classes is high, and therefore difficult to
model. Using visual data, the situation is reversed: we obtain bet-
ter accuracy (near 10% better) using visemes rather than phonemes,
which is what we would expect from using the phoneme-to-viseme
mapping, which is designed to combine visually similar phonemes
into a lower number of relatively homogeneous classes. However,
the accuracy is significantly lower than that obtained with audio
data.

But unit recognition accuracy is not of great interest [3]—we could
reduce the number of units to two and get probably near 100% unit
accuracy, but word accuracy would be very low. Fig. 3 shows what
happens when we use either phoneme or viseme units to recognise
words. For audio data, the best performance (about 96% accuracy)
is obtained when the units used are phonemes, and when viseme
units are used with audio data, performance suffers considerably
(about 15% lower), because one is combining sounds that may be
quite different into a single unit. This effect is even more pronounced
when using visual data: word recognition accuracy is about 23%
worse when using viseme rather than phoneme units. Given that the
viseme recognition rate is higher than the phoneme recognition rate,
it is tempting to attribute this result to the presence of homophe-
nous words. In other words, the decoded viseme strings may actually
be more accurate than the decoded phoneme strings, but because
there are often two or more words that share the same viseme tran-
scription, performance is low because of the difficulty of selecting the
correct word. In the next section, we demonstrate that this expla-
nation is wrong, and give an alternative explanation for the drop in
performance.

For phoneme, viseme or word recognition, Fig. 2 and Fig. 3 show
that with audio data, optimum recognition performance is obtained

Table 3
Clarification of the terms used in the experimental results.

Term Description

Audio phoneme Results obtained on audio data using 45 monophone units.
Audio viseme Results obtained on audio data using 14 viseme units

(mapping as per Table 2.)
Visual phoneme Results obtained on visual data using 45 monophone units.
Visual viseme Results obtained on visual data using 14 viseme units

(mapping as per Table 2.)
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Fig. 3. Word recognition performance on 3000 speaker-dependent sentences from the Resource Management Corpus (RM). See Table 3 for an explanation of the units used. Error
bars on points omitted because they are too small to discern.

with about 600 training sentences, whereas for visual data, per-
formance is still increasing when the full set of 2700 sentences
has been used for training. This implies that lip-reading requires
considerably more data to reach optimum performance than audio
ASR. It is also interesting to note that word recognition perfor-
mance is about the same using both viseme and phoneme units
when only 200 sentences are used for training, but performance
using phonemes outstrips performance using visemes as more train-
ing sentences are added. This may be explained by the fact that
phonemes require more training to achieve maximum performance
because there are three times as many phoneme classes as viseme
classes.

4.1.1. Analysis of the effect of homophonous words on recognition
performance

We expected to get increased word accuracy for visual speech
by combining ‘indistinguishable’ visemes into the same class, but
performance was actually considerably lower using visemes than
using standard phoneme units. Was this due to the formation of
homophenous words, which now constituted 34% of the spoken
vocabulary? We devised an experiment to see how well a word
bigram language model was able to disambiguate the correct word
from a set of homophenous words within a given context in a sen-
tence. During decoding, the relative influence of the acoustic and
language models on word selection is controlled by the grammar
scale factor (GSF). The higher the GSF, the more weight is placed on
word sequences that are a priori likely (i.e. trained by the language
model) rather than ones suggested by the evidence from the viseme
models.

We synthesised a set of ‘perfect’ features for a number of sen-
tences in our corpus in the following way. Firstly, each sentence was
transcribed as a sequence of visemes. The resulting viseme sequence
was replaced by the corresponding sequence of concatenated HMMs,
S , and the viseme feature vectors corresponding to the sentence
were force Viterbi-aligned to S . Suppose Ni feature vectors had been
Viterbi-aligned to state si of S . Then the mean vector of the most-
frequently used mixture component of state si was duplicated Ni

times, and the resulting vector sequence added on to the end of a
store. This resulted in a sequence of synthetic feature vectors of the
same length as the original utterance that matched perfectly to the
sequence of viseme HMMs corresponding to the sequence of words

in the sentence. However, when decoding this sequence to a word
sequence, two ambiguities must be resolved:

1. different possible segmentations of the viseme string into
words;

2. homophenous words.

These ambiguities are resolved by the language model. Fig. 4
shows the effect on the word accuracy of increasing the GSF when
the ‘perfect’ features were decoded by the recogniser. When the GSF
is 0 the language model has no effect, and the word accuracy is rather
low (92%) because of the above ambiguities. If the GSF is increased to
1, the language model now chooses more correctly from the possible
segmentations and from the sets of homophenous words, and accu-
racy increases to about 98%. However, if the GSF is further increased,
accuracy falls, because the recogniser now places too much weight
on high-probability word sequences that it has learnt from the train-
ing data at the expense of likelihood information from the viseme
HMMs.

An analysis of the remaining 2% errors showed that they were
indeed caused by the ambiguity of homophenous words. A pair
of confused words usually had the same viseme transcription and
could plausibly appear in the same position in the decoded sen-
tence i.e. the associated bigrams with the surrounding words pre-
sumably had similar probabilities. Examples are the pairs ‘hep-
burn/campbell’, ‘westpac/rathburn’, ‘mind/miles’, ‘sensors/texas’,
‘barge/march’, ‘six/since’ etc. Another common error was a confu-
sion of plural/singular versions of a word that ends with a phoneme
in the same viseme group as the phoneme /s/ e.g. ‘threat/threats’,
‘speed/speeds’, ‘length/lengths’. The final /s/ of of these words is the
same viseme (V3) as the preceding phoneme. So our conclusion is
that, providing that a suitable language model is used to resolve
ambiguity, the presence of homophenous words adds only a small
error to performance.

This result implies that the deterioration in performance when
visemes rather than phonemes are used is due to deficiencies in
modelling of visual features rather than language issues. This is not
surprising when one considers that audio ASR accuracy is increased
if contextual modelling is performed by the use of triphones and
quinphones. In practice, many phonemes have one or more allo-
phones, different sounds that are perceived as the same phoneme,
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and coarticulation, which depends on context, alters the realisation
of phonemes. So we should not be surprised if the same is true of
visemes, especially as co-articulation is even more pronounced in
visual speech. Because different phonemes occur in different con-
texts, by modelling phonemes in visual speech, one is, in effect,
modelling different contexts of a viseme.

The issue of units for audio–visual speech recognition has been
investigated by others e.g. [49,50], most notably by Hazen [21].
Although he did not consider the effect of homophenous words, he
also came to the conclusion that a viseme representation was not
beneficial for recognition (in fact he used tri-visemes). The work
described here was performed on data from a single speaker and so
the conclusion that visemes are sub-optimal units should be treated
with caution. However, recent work by Hassanat [51] showed that
visemes were sub-optimal recognition units for each of 27 male
and female speakers and Yu [52] also made a similar finding using
different data from two different speakers.

5. A weighted finite state transducers model

A finite-state automaton (FSA) is a mathematical model of a
sequence of events. An FSA is defined by a finite set of states which
are connected using transitions. Weighted finite-state transducers
(WFSTs) are similar to FSAs, except that every transition also has
an associated transduction between an input and an output symbol.
Additionally, the transitions have weights associated with them that
can be used to favour certain paths though the automaton over oth-
ers. Fig. 5 shows a very simple 3-state WFST. States are depicted by
circles and transitions by arrowed lines. Starting states are defined
by a bold outline surrounding the state (state 0 in Fig. 5) and final
states are defined by double-line borders around the state (state 3 in
Fig. 5). This transducer has the sole function of converting the input
string abc to the output string xyz, and simultaneously producing an
associated weighting of 1.2 + 3.2 + 3.3 = 7.7.

The composition operation provides the ability to combine multi-
ple transducers using the binary relationship between the input and
output symbol domains. If the transduction x → y is performed by
transducer T1 and the transduction y → z is performed by transducer
T2, then T1 ◦ T2 (i.e. the transducer built from the composition of T1

and T2) models the transitive transduction x → z. If several trans-
ducers are composed one after the other in this way, the resulting

Fig. 5. A example of a weighted finite-state transducer that translates the string ‘abc′

to ‘xyz′ .

system is known as a transducer cascade, and this has been found
to be very useful in both speech and language processing [53-56]. A
comprehensive introduction to WFSTs would go on to describe the
operations of Union, Epsilon Removal, Closure, Determinization and
Minimization as applied to WFSTs. Space does not allow us to do this
here, so we refer the interested reader to articles by Mohri and Riley
which give detailed descriptions of the underlying theory of WFSTs
and their application to speech recognition problems [56–58].

Fig. 6 gives an overview of the architecture of our WFST-based
system. On the left-hand side, an N-best list of phoneme sequences
is output from a visual phoneme recogniser controlled by a phoneme
bigram language model. One or more of these sequences are fed
to a cascade of four WFSTs, marked ‘P∗′, ‘C’, ‘L’ and ‘G’ in the dia-
gram, whose function we describe below. The construction of the ‘C’
transducer is also shown on this diagram: note that it is built from
a dataset that is independent of the sets used to train or test the
phoneme recogniser. The output text is produced by an algorithm
that finds the ‘best’ path through the transducer cascade, where ‘best’
means the path that produces the minimum summed transducer
weights.

5.1. The input transducer (P*)

The input transducer has the function of converting output from
the phoneme recogniser into the form of a transducer so that it can
subsequently be composed with the rest of the transducer cascade.
This transducer can represent the 1-best decoding of the phoneme
recogniser, the N-best-decodings, or a phoneme lattice. In the case
of the 1-best decoding, the transducer is a finite-state automaton
with no transduction i.e. the output sequence is identical to the input
sequence. For N-best-decodings, we build a WFST for each of the N
decodings and then form the union of these WFSTs. The resulting
transducer is determinized and minimized to enhance performance.
However, this approach (which we term N-Best-1 for future refer-
ence) restricts us to processing a single one of the N-best decodings
at any time, and it seems plausible that a closer approximation to
the correct phoneme sequence could be found by taking a route
through several of the N-best decodings. Suppose the longest decod-
ing DL consists of NL words. We use dynamic programming to align
each decoding D1, D2, . . . , DN, to DL so that our decodings can now
be represented by an N × NL matrix. In columns (time slots) of this
matrix where all the decodings agree with each other, the same
decoded phoneme label occurs in every row. Where decodings do not
agree, there are multiple phoneme labels present in a column. It is
straightforward to construct a WFST that is capable of traversing all
possible paths through this matrix. A typical example of the resulting
transducer is shown in Fig. 7.
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Fig. 6. Our proposed WFST lip-reading system.

Fig. 7. An example P* transducer. This transducer models the N-best output from the phoneme recogniser in response to the visual features for the word ‘Machine’.

This technique produces more compact WFSTs than the first tech-
nique which enables faster computation, although the increase in
out-degree (the number of arcs exiting from a state) has the oppo-
site effect. This way of expressing hypotheses has been termed a
confusion-network (or ‘sausage’) [59] and was first proposed in a
different context in [60]. We term it N-Best-2.

5.2. The confusion transducer (C)

This transducer models the observed pattern of errors (substi-
tutions, deletions and insertions) made by the phone recogniser.
Its function is to input a set of errorful phoneme strings from the
phone recogniser, and, using the observed error patterns, process
these into a rich set of output strings that can then be processed
into word sequences by the lexicon and language model transduc-
ers. The transducer is built by forming a confusion-matrix from the
phone recogniser output and then converting this matrix into a
transducer. The confusion-matrix is in turn built by aligning (using
dynamic programming) the output of the phoneme recogniser to the
ground-truth phoneme string and processing each pair of aligned
symbols in turn. An example aligned phoneme string and the result-
ing confusion-matrix are illustrated in Fig. 8.

Note that the values shown in this confusion-matrix are counts,
and these can easily be converted to probabilities Pr(pj|pi) (the prob-
ability that phoneme pj is recognised when the ground truth is
phoneme pi) by normalising across a row.

The WFST shown in Fig. 9 illustrates a key concept in our sys-
tem, namely how a WFST can correct a phoneme string that contains
errors.

The transducer shown is a very specific one that corrects the
string ‘t ih f v r n t’ to ‘d ih f r ax n t’ (‘different’). The weights shown
in this case are illustrative only. Where no errors were made, the
transducer’s input and output symbols are the same i.e. ‘t/t’, ‘n/n’,
‘r/r’, ‘f/f’, ‘ih/ih’. The deleted phoneme ‘ax’ is re-inserted by means of

the transduction ‘–/ax’ and the inserted phoneme ‘v’ is deleted by
the transduction ‘v/–’. The phoneme ‘t’ appears twice in the input.
On the first occasion, it is correct, but on the second, it is an error
and should be corrected to ‘d’. Hence there are two entries with ‘t’ as
the first phoneme, one that maps it to ‘t’ and another that maps it to
‘d’. The entries have different weights, and these weights are actually
the negative log probability values in the confusion-matrix: hence
the higher the probability value, the lower the weight. In this case,
the lower weight associated with the transduction ‘t/t’ makes it more

Fig. 8. An example alignment between the ground-truth and recognised sequences
using dynamic programming for the phonetic transcription of the word different (top)
and the resulting confusion-matrix (bottom).
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Fig. 9. A cyclic confusion weighted finite-state transducer to correct the hypothe-
sised sequence produced by the recogniser in Fig. 8. The deletion of the phoneme ax in
the hypothesised sequence is modelled in the confusion transducer using the epsilon
symbol (-) to reverse the error and insert a phoneme into the hypothesised sequence.
This epsilon symbol is reserved to allow ‘free’ transitions between states and is used
to model both insertions and deletions.

likely that this transduction will be preferred in a situation where
‘t’ and ‘d’ are both possible responses to an input ‘t’. In practice, we
know neither what the input sequence will be nor what the ground-
truth should be, so the confusion WFST has an arc for every single
non-zero entry in the confusion-matrix and hence produces a very
large number of possible strings in response to an input sequence.

5.2.1. Estimation of the probabilities in the confusion transducer
Experimentally, we have found that for the transducers to func-

tion well at correcting the strings, we need to distribute some of the
probability mass from the diagonal of the confusion-matrix to off-
diagonal elements. We term the simplest method of doing this base
smoothing[61]. Here, each off-diagonal element in a row receives the
same proportion of the diagonal element from that row:

S(i, j) =

{
C(i, j) + gC(i, i) if i �= j

C(i, j)(1 − (N − 1)g) if i = j.
(3)

In Eq. (3), C(i, j) is the original confusion matrix i.e. the estimated
probability that phoneme pi was misrecognised as phoneme pj, S is
a smoothed version of C, N is the number of phonemes, and g (> 0)
is a constant that controls what proportion of the diagonal of C is re-
distributed along the row. g must clearly be sufficiently small that
0 ≤ S(i, j) ≤ 1.

A variant on base smoothing is Exponential Smoothing[61] in
which

S(i, j) =
eaC(i,j)∑
keaC(i,k)

, (4)

where a is a constant that controls the degree of smoothing applied.
When a = 0, S(i, j) = 1/N∀i, j i.e. the probability mass of row i is

equally distributed over the columns of the row. As a → ∞, the prob-
ability mass concentrates in the largest element of the row (which is
generally the element on the diagonal).

One problem encountered when building these matrices is the
very large number of deletions in the output of the phoneme recog-
niser when visual features are input to it. These deletions can
lead to spurious alignments between the ground-truth phoneme
sequences and the decoded sequence, which in turn lead to
poorly-estimated confusion-matrices. Consider the example shown
in Fig. 10, which compares the purely symbolic alignment of the
ground-truth phoneme sequence (top) with a timing diagram that
shows where the phonemes start and end in the speech (bottom).
The alignment of /ea/ and /sil/ is evidently correct, but the deletion of
the phonemes /b/ and /th/ has led to the alignment of /ih/ with /aa/.
These two events are a long way apart in time, and hence /ih/ and
/aa/ are unlikely to be a genuine ‘confusion-pair’—it is more likely
that they are an artefact of the alignment process.

To alleviate this problem, we only accepted confusion-pairs if
both members of the pair occurred within a certain time of each
other in the speech stream. We noted that some phonemes were
more prone to mis-alignment than others, and so made the thresh-
old for acceptance of a confusion-pair different for each phoneme.
This threshold was estimated by performing a symbolic alignment
using the training-data whilst simultaneously recording the differ-
ence between the start-times of the ground-truth and recognised
phonemes. For each ground-truth phoneme class pi, the mean differ-
ence, l i, and the standard deviation, s i, of this difference was then
estimated. A confusion-pair was only accepted for inclusion in the
confusion-matrix if the difference between the start-times of each
phoneme lay with the range l i ± bs i, where b was a positive con-
stant. The effect of b on the number of accepted pairs is shown in
Fig. 11.

Fig. 11 shows that using a threshold window whose width is
±3s reduces the number of observed confusion pairs from 85,000 to
76,200 (11.8%) compared with using no window.

5.2.2. Bigram confusion transducer
It is beneficial in language modelling to employ higher-order N-

gram modelling if sufficient data are available to train such models,
and we expected that the extra contextual information introduced by
modelling confusions between pairs of symbols would aid recogni-
tion performance. Conventional N-gram language models employ a
back-off procedure to revert to the unigram model when a previously
unseen word bigram is encountered at test time. In the same way, we
maintain the unigram confusion matrix described in Section 5.2.1 as
a back-off model. The bigram confusion matrix is populated using the
same alignment procedure as described in Section 5.2.1 but with a
window covering two phonemes instead of one. For unseen bigrams,
the confusion model allows for back-off to the unigram confusion
probability. An example of a bigram confusion model is shown in
Fig. 12. This model has been constructed using a vocabulary of three
symbols: a, b, and c. Arc weights are defined using the negative loga-
rithm of the entries in the bigram and unigram probability matrices.
Owing to the strong influence of the unigram confusion matrix, a
back-off weight b is applied to each unigram probability (where
0 < b < 1), and the bigram probabilities are weighted by (1 − b).
Experiments were conducted using a b value with a 0.1 increment
from 0.1 to 0.9 with best accuracy achieved when b = 0.7.

The extension of the confusion model came at little computa-
tional cost. Only 6785 unique bigram confusions were observed
during training and they increase the size of the transducer by only
about 35%.

Finally, the lexicon transducer (L) is an inverse pronunciation dic-
tionary i.e. it maps sequences of phonemes to whole words. The
language model transducer (G) implements a word bigram language
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Fig. 10. Top: the purely symbolic alignment between the ground-truth phoneme sequence and the output of the phoneme recogniser. Bottom: the relative timing of the two
phoneme strings. The timing diagram shows that the alignment of /ea/ and /sil/ is correct. However, the deletion of the phonemes /b/ and /th/ has led to the alignment of /ih/ with
/aa/, but these events are a long way apart in time and this is unlikely to be a genuine confusion-pair.

model with backoff to unigram. These transducers are standard and
are described in detail in e.g. [57].

6. Results on the ISO-211 dataset

For the baseline ‘standard’ system, the 1256 words were split into
six folds. Words were randomised between folds such that no word
appeared in the same fold more than once. The six folds were then
split into a training set consisting of five folds and a testing set con-
sisting of the remaining fold. Cross-fold validation was performed
with each fold used in turn for testing. For the WFST approach, the
additional confusion model also requires training using a further
held-out segment of the data. Therefore, the dataset was divided
into three segments: a model training set (four folds), a fold used to
train the confusion model and a validation fold to produce results.
Table 4 summarises the results of our approach on the isolated word
database. Results for two baseline systems are shown here. These
are:

1. Baseline 1: A ‘standard’ HMM system. This used five-state
monophone HMMs of each of the 44 phonemes (plus Silence),
with eleven component Gaussian mixture models (GMMs)
associated with each state and with a bigram phoneme lan-
guage model. The parameters five states and eleven compo-
nents were determined after an exhaustive search over the
parameter space.

2. Baseline 2: A system that took the 1-best phoneme output from
the phoneme recogniser and found the lowest alignment cost

(using dynamic programming) to the phoneme transcriptions
of each of the vocabulary words.

Table 4 gives a comparison of the results of the experiments on
isolated word recognition. Baseline 1 (result A), a standard HMM
approach, achieved nearly 60% word accuracy. The system of Base-
line 2 is essentially unconstrained phoneme recognition, and its low
performance shows that the visual phoneme recognition rate is low.
Compare this result with system C, which uses a confusion WFST fol-
lowed by a lexicon WFST. The confusion WFST was not estimated
from data, but built by taking an identity matrix and redistribut-
ing a small amount of the diagonal element of a row equally to all
other elements on the row. This creates a confusion-matrix that gives
a high weight to mapping an input phoneme symbol to itself, but
allows mapping to any other symbol, albeit with a low weight. The
result, 35.36%, is considerably better than Baseline 2, and interest-
ingly, considerably better than system D, in which the confusion-
matrix was formed by purely symbolic alignment of the phoneme
recogniser output and the ground-truth phoneme strings. In fact sys-
tem D is almost no better than Baseline 2, which shows how poor
the symbolic alignment process is. But when the confusion-matrix is
formed from data with a timing constraint (system E), performance
increases to over 46%. Using N-best decodings rather than just the
top decoding is not beneficial if they are combined using N-best-1
(system F, i.e. we are effectively allowed to process all N decodings
in parallel but not combine them). However, using N-best-2 (system
G), in which decodings can be combined, leads to a further increase
in performance to 49.7%. We found that base smoothing was always
better than exponential smoothing: e.g. for system G, the difference
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Fig. 11. Analysis of the number of confusion patterns that are accepted as a function of the timing window. Error bars are not shown here because they are too small.
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Fig. 12. An illustration of a bigram confusion model with backoff weights. The vocab-
ulary consists of three symbols: a, b, and c. The unigram backoff arcs (above the state
marked ‘0’) are derived from the unigram confusion matrix, which contains fifteen
entries. Four possible bigram arcs have been added. A backoff weight, b, is applied to
the unigram probabilities and a weight (1 − b) is applied to the bigram probabilities.

is 49.70% versus 42.68%. Finally, using a bigram confusion-matrix
adds another 3% to accuracy. However, the best result using WFSTs
is still 7% worse than the standard approach. It seemed that the spar-
sity of data available to estimate the confusion-matrix entries was a
problem when using the ISO-211 dataset: it was useful in develop-
ing the WFST techniques initially, but was too small to enable the
full potential of the technique to be realised. In the next section, we
report results on the RM-3000 dataset.

7. Results on the RM-3000 dataset

In these experiments, the data were divided into ten folds, six
of which were used for training the models, two for training the
confusion-model, and two for testing. The folds were rotated to give
cross-validation results.

The problem of deletions of phonemes in visual speech (men-
tioned in Section 5.2.1) becomes more acute when continuous
speech rather than isolated words is recognised. If the phoneme
recogniser is run to maximise phoneme accuracy (defined as (N−D−
S − I)/N, where N is the total number of symbols in the ground-truth
strings, D the number of deletions, S the number of substitutions

and I the number of insertions), deletions account for over one quar-
ter of the errors, and sequences of up to six deleted phonemes are
sometimes seen: it seems very unlikely that any system could cor-
rect such a large gap in the output. By altering the ‘insertion penalty’
of the decoder, deletions can be traded to some extent for insertions,
and these are easier for our system to correct. However, the over-
all accuracy figure goes down when the insertion penalty is altered
to a non-optimal setting. We ran our WFST system on the RM-3000
data with the phoneme recogniser optimised to reduce deletions at
the expense of extra insertions. The results were disappointing: a
word accuracy of just 12.8% compared with an accuracy of 66.3%
for a conventional HMM system that used monophone models with
GMMs.

7.1. Enhancing the performance of a conventional word decoder

Our essential approach in this work consists of phoneme recog-
nition, followed by generation of a set of string hypotheses using
the confusion transducer, followed by decoding using a network of
legal words whose sequences are constrained by a language model.
It seemed likely at this point that this approach might not be as suc-
cessful as the conventional approach of allowing only legal words to
be decoded from the outset by using a network of words, because the
raw visual phoneme recognition accuracy was too low.

However, our conventional word decoder provided fairly accurate
sets of word hypotheses from visual speech, and it seemed to us that
these could be enriched by the phonetic confusion transducer by first
converting them into phoneme hypotheses. The enriched phoneme
hypotheses can then be converted back to word hypotheses using
the lexicon and language model transducers. The advantage of this
approach is that hypotheses that may not have been considered or
have been rejected early on by the conventional word decoder can
be re-instated by the phonetic confusion transducer on the basis of
possible phonetic confusions.

Fig. 13 shows the architecture of our proposed system. The
confusion transducer here is built by aligning phoneme strings
that are transcriptions of the recognised word strings to phoneme
strings formed by writing the ground-truth word strings as phoneme
strings. In fact, we force-align the ground truth word strings to the
appropriate model sequences in order to get timing information
for both the aligned phoneme strings so that we can use timing
restrictions to select confusion pairs as described in Section 5.2.1.

The RM-3000 dataset was split into ten folds, each containing 300
sentences. From these folds, three sets were formed: a training set
(consisting of eight folds) which was used to train the triphone word
recogniser, a testing set (one of the two remaining folds) which was
used to train the confusion model, and a validation set (the final fold)
which was used as test data. Cross-fold validation was performed
with each validation set used as unseen test data. A comparison of
the performance of this system with the conventional word decoder
is given in Table 5.

Table 5 shows that the proposed system achieves a small gain in
accuracy (0.58% absolute) over the conventional system. McNemars

Table 4
Isolated word recognition accuracy results obtained on the ISO-211 dataset.

System % word accuracy (std. deviation)

A ‘Standard’ HMM System (Baseline 1) 59.9 (4.19)
B Phone decoding followed by string-matching (Baseline 2) 20.1 (1.43)
C WFSTs with a near-identity confusion matrix to avoid −∞ log probabilities on off-diagonal elements: a small probability mass is

added to every element. Uses top decoding only.
35.4 (2.27)

D WFSTs with confusion-matrix formed from purely symbolic alignment using top decoding only and base smoothing 21.4 (3.30)
E WFSTs with confusion-matrix formed using timing information, using top decoding only and base smoothing 46.1 (1.03)
F WFSTs with confusion-matrix formed using timing information combined using algorithm N-best-1 and base smoothing. 36.0 (0.88)
G As above, but combined using algorithm N-best-2. 49.7 (1.60)
H WFSTs using a bigram confusion matrix with timing, with the backoff weight (b) set to 0.7 52.9 (3.31)
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Fig. 13. The architecture of a system that enriches phoneme hypotheses. The word hypotheses obtained from a conventional word decoder are converted to a set of phoneme
strings which are input to our transducer cascade to be converted back to word hypotheses.

test [62] shows that the difference between the two systems is sta-
tistically significant with p < 0.001. Interestingly, most of this gain
seems to have come from reducing the number of inserted words.

8. Discussion

This paper has (a) discussed the issue of the choice of units
for automatic lip-reading (ALR) and (b) proposed novel systems
based around the use of a phonetic confusion model to enhance the
recognition accuracy of ALR.

Our experiments with units showed firstly that the introduction
of homophenous words into the lexicon (caused by mapping from
phonemes to a smaller set of visemes) led to a decrease in accuracy
of ALR. However, this decrease was small compared with the loss in
accuracy incurred by using visemes rather than phonemes, and so
we conclude that the use of visemes is not beneficial for ALR. We
say ‘unlikely’ because we investigated only one viseme mapping, but
it seems clear that provided enough data is available, modelling the
context of visual speech is beneficial. This confirms the result that
Hazen found for audio–visual speech recognition units [21].

We then proposed a new architecture for ALR that was based on
the idea that visual speech has similarities with dysarthric speech,
in that its phonemic repertoire is limited because some acous-
tic features are invisible. The technique learns the probabilities of
phoneme confusions and incorporates them into its estimation of

Table 5
Comparison of the word recognition statistics between the standard approach triphone
system and the WFST confusion modelling system using the triphone decodings.

Conventional HMM triphone
word decoder

Addition of
WFSTs

No. of correct words 20,500 20,477
No. of deleted words 2308 2363
No. of substituted words 3306 3274
No. of inserted words 763 596
Total no. of words 26,114 26,710
Word accuracy (%) 75.58 76.14

word hypotheses. This is all done within the framework of a cas-
cade of weighted finite-state transducers (WFSTs), which makes it
fast and efficient. We demonstrated that this architecture operated
successfully on a small dataset of isolated words. However, its per-
formance was slightly lower than a conventional system, which we
attributed to the lack of data available to estimate the confusions reli-
ably. We therefore recorded a large database of continuously spoken
audio–visual speech consisting of 3000 sentences from the Resource
Management (RM) dataset, spoken by a single male speaker. Contin-
uous speech exposed the poor quality of visual phonetic recognition,
and we found that our system worked best by enhancing the out-
put from a conventional word decoder, where it achieved a modest
improvement in word accuracy. We achieved a single-speaker word
accuracy of over 76% on this 1000-word task.

Although the improvement in accuracy obtained thus far is small,
these are our first results using this architecture for lip-reading and
we believe that it holds promise. Firstly, an obvious way of increas-
ing accuracy is to combine results from the word decoder and the
confusion system in a ROVER-like [63] confidence-measure based
system — an analysis of our results showed that accuracy would
rise by nearly 10% if the correct decision was chosen when the
two systems disagreed. Secondly, there are still aspects of our post
word-decoder system that need to be explored, such as higher-order
confusion models, the relative weightings of the phonetic confusion
and the language model probabilities and the use of techniques such
as conditional random fields (which are good at utilising context) for
prediction of substituted/inserted/deleted phones. Finally, we need
to confirm that the system is effective in a speaker-independent
environment and this will depend on whether confusion-matrices
are similar across different speakers.
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