121,998 research outputs found

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Solving the tasks of subsurface resources management in GIS RAPID environment

    Get PDF
    Purpose. Solving the tasks of subsurface resources management based on the created GIS RAPID geoinformation technology. Methods. Close spatial relationships of lineament network characteristics and earthquake epicenters were detected in 3 seismically active areas located in the mountainous regions of Central Europe. Digital elevation models (DEM) based on ASTER satellite surveys and earthquake epicenter data were used. The nature of spatial relationship of lineament network and vein ore objects was studied in the territory of Congo DR, in the Lake Kivu area using space imagery. Gold ore objects were searched and forecasted in Uzbekistan in the site of Jamansai Mountains. High- resolution imagery from QuickBird 2 satellite, geophysical field surveys, geological and geochemical data were used. Findings. It was found that a significant number of epicenters are located in areas of high concentration of “non-standard” azimuths lineaments – from 27 to 34% of the total number of lineaments. It was revealed that 59.6% of the epicenters are located within 10% of sites with the highest values of complex deformation maps; 50% of the areas with the highest values of these maps contain, on average, 89% of all earthquake epicenters. It was found that satellite image lineament concentration maps with “non-standard” azimuths reflect the spatial relationship with known deposits much better than the concentration map of all lineaments. It was detected that the total area of gold ore objects perspective sites is about 20 km2. Originality. The use of GIS RAPID in a number of earth’s crust areas has allowed to establish new regularities linking the networks of physical field and landscape lineament characteristics with ore bodies and earthquake epicenters localization. Practical implications. A new technology has been developed for solving geological forecasting and prospecting problems. The technology can be used to solve a wide range of practical problems, especially in difficult geological conditions when searching for deep objects weakly presented in external fields and landscape.Мета. Рішення задач надрокористування на базі створеної геоінформаційної технології ГІС РАПІД. Методика. Виявлення тісних просторових взаємозв’язків різноманітних характеристик мереж лінеаментів і епіцентрів землетрусів проводилося у 3 сейсмоактивних ділянках, розташованих в гірських районах Центральної Європи. Використовувалися цифрові моделі рельєфу (DEM), побудовані за зйомками зі супутника ASTER і дані по епіцентрах землетрусів. Дослідження характеру просторового взаємозв’язку мережі лінеаментів і жильних рудних об’єктів проводилися на території Демократичної Республіки Конго, в районі озера Ківу із використанням космічних зйомок. Дослідження пошуку та прогнозу золоторудних об’єктів виконувалися в Узбекистані на ділянці Джамансайскіх гір. Використовувалися високоточні космічні зйомки зі супутника QuickBird 2, зйомки геофізичних полів, геологічні та геохімічні дані. Результати. Виявлено, що значна частина епіцентрів приурочена саме до ділянок підвищеної концентрації лінеаментів “нестандартних” азимутів, складаючи від 27 до 34% загального числа лінеаментів. Встановлено, що 59.6% епіцентрів знаходяться всередині 10% території ділянок, що володіють найвищими значеннями комплексних карт деформацій; 50% території з найвищими значеннями цих карт вміщають, в середньому, 89% усіх епіцентрів землетрусів. Визначено, що карти концентрації лінеаментів космознімків з “нестанартними” азимутами значно краще відображають просторовий взаємозв’язок з відомими родовищами у порівнянні з картою концентрації всіх лінеаментів. Встановлено, що сумарна площа перспективних ділянок золоторудних об’єктів склала близько 20 км2. Наукова новизна. Застосування ГІС РАПІД на ряді ділянок земної кори дозволило встановити нові закономірності, що зв’язують характеристики мережі лінеаментів фізичних полів і ландшафту з локалізацією рудних тіл та епіцентрів землетрусів. Практична значимість. Розроблено нову технологію рішення прогнозних і пошукових геологічних завдань, яка може застосовуватися для вирішення широкого кола практичних задач, особливо у складних геологічних умовах при пошуках глибокозалягаючих об’єктів, що слабо виявляються в зовнішніх полях і ландшафті.Цель. Решения задач недропользования на базе созданной геоинформационной технологии ГИС РАПИД. Методика. Выявление тесных пространственных взаимосвязей разнообразных характеристик сетей линеаментов и эпицентров землетрясений проводилось в 3 сейсмоактивных участках, расположенных в горных районах Центральной Европы. Использовались цифровые модели рельефа (DEM), построенные по съемкам со спутника ASTER, и данные об эпицентрах землетрясений. Исследования характера пространственной взаимосвязи сети линеаментов и жильных рудных объектов проводились на территории Демократической Республики Конго, в районе озера Киву с использованием космических съемок. Исследования поиска и прогноза золоторудных объектов выполнялись в Узбекистане на участке Джамансайских гор. Использовались высокоточные космические съемки со спутника QuickBird 2, съемки геофизических полей, геологические и геохимические данные. Результаты. Выявлено, что значительная часть эпицентров приурочена именно к участкам повышенной концентрации линеаментов “нестандартных” азимутов, составляя от 27 до 34% общего числа линеаментов. Установлено, что 59.6% эпицентров находятся внутри 10% территории участков, обладающих наивысшими значениями комплексных карт деформаций; 50% территории с наивысшими значениями этих карт вмещают, в среднем, 89% всех эпицентров землетрясений. Определено, что карты концентрации линеаментов космоснимков с “нестанартными” азимутами значительно лучше отражают пространственную взаимосвязь с известными месторождениями по сравнению с картой концентрации всех линеаментов. Установлено, что суммарная площадь перспективных участков золоторудных объектов составила около 20 км2. Научная новизна. Применение ГИС РАПИД на ряде участков земной коры позволило установить новые закономерности, связывающие характеристики сети линеаментов физических полей и ландшафта с локализацией рудных тел и эпицентров землетрясений. Практическая значимость. Разработана новая технология решения прогнозных и поисковых геологических задач, которая может применяться для решения широкого круга практических задач, особенно в сложных геологических условиях при поисках глубокозалегающих объектов, слабо проявляющихся во внешних полях и ландшафте.The work is performed as a part of planned research of the geoinformation systems department of the Dnipro University of Technology. The results are obtained without any financial support of grants and research projects. The authors express appreciation to reviewers and editors for their valuable comments, recommendations, and attention to the work

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure

    GMES-service for assessing and monitoring subsidence hazards in coastal lowland areas around Europe. SubCoast D3.5.1

    Get PDF
    This document is version two of the user requirements for SubCoast work package 3.5, it is SubCoast deliverable 3.5.1. Work package 3.5 aims to provide a European integrated GIS product on subsidence and relative sea level rise. The first step of this process was to contact the European Environment Agency as the main user to discover their user requirements. This document presents these requirments, the outline methodology that will be used to carry out the integration and the datasets that will be used. In outline the main user requirements of the EEA are: 1. Gridded approach using an Inspire compliant grid 2. The grid would hold data on: a. Likely rate of subsidence b. RSLR c. Impact (Vulnerability) d. Certainty (confidence map) e. Contribution of ground motion to RSLR f. A measure of certainty in the data provided g. Metadata 3. Spatial Coverage - Ideally entire coastline of all 37 member states a. Spatial resolution - 1km 4. Provide a measure of the degree of contribution of ground motion to RSLR The European integration will be based around a GIS methodology. Datasets will be integrated and interpreted to provide information on data vlues above. The main value being a likelyhood of Subsidence. This product will initially be developed at it’s lowest level of detail for the London area. BGS have a wealth of data for london this will enable this less detialed product to be validated and also enable the generation of a more detailed product usig the best data availible. One the methodology has been developed it will be pushed out to other areas of the ewuropean coastline. The initial input data that have been reviewed for their suitability for the European integration are listed below. Thesea re the datasets that have European wide availibility, It is expected that more detailed datasets will be used in areas where they are avaiilble. 1. Terrafirma Data 2. One Geology 3. One Geology Europe 4. Population Density (Geoland2) 5. The Urban Atlas (Geoland2) 6. Elevation Data a. SRTM b. GDEM c. GTOPO 30 d. NextMap Europe 7. MyOceans Sea Level Data 8. Storm Surge Locations 9. European Environment Agencya. Elevation breakdown 1km b. Corine Land Cover 2000 (CLC2000) coastline c. Sediment Discharges d. Shoreline e. Maritime Boundaries f. Hydrodynamics and Sea Level Rise g. Geomorphology, Geology, Erosion Trends and Coastal Defence Works h. Corine land cover 1990 i. Five metre elevation contour line 10. FutureCoas
    corecore