9,394 research outputs found

    MoVAL: Towards a Multi-views/Multi-hierarchy Software Architecture

    Get PDF
    This paper was published in the 20th LAAS International Science Conference Advanced Research for Better TomorrowIn order to manage software systems' life cycle and complexities, software development communities has recognized the needs to invest in software architectures. Despite numerous research and industrial works established in software engineering domain, there are always many significant limitations in current software architecture approaches, like the lack of relations definition among different architectural components on the one hand, and the lack of multi-hierarchy definition for each architectural component on the other hand. This paper presents MoVAL, a multi-views/multi-hierarchy software architecture which complies with the IEEE recommended practice for architectural description (ISO/IEC/IEEE standard 42010-2011)

    Impact estimation: IT priority decisions

    Get PDF
    Given resource constraints, prioritization is a fundamental process within systems engineering to decide what to implement. However, there is little guidance about this process and existing IT prioritization methods have several problems, including failing to adequately cater for stakeholder value. In response to these issues, this research proposes an extension to an existing prioritization method, Impact Estimation (IE) to create Value Impact Estimation (VIE). VIE extends IE to cater for multiple stakeholder viewpoints and to move towards better capture of explicit stakeholder value. The use of metrics offers VIE the means of expressing stakeholder value that relates directly to real world data and so is informative to stakeholders and decision makers. Having been derived from prioritization factors found in the literature, stakeholder value has been developed into a multi-dimensional, composite concept, associated with other fundamental system concepts: objectives, requirements, designs, increment plans, increment deliverables and system contexts. VIE supports the prioritization process by showing where the stakeholder value resides for the proposed system changes. The prioritization method was proven to work by exposing it to three live projects, which served as case studies to this research. The use of the extended prioritization method was seen as very beneficial. Based on the three case studies, it is possible to say that the method produces two major benefits: the calculation of the stakeholder value to cost ratios (a form of ROI) and the system understanding gained through creating the VIE table

    Systemic classification of concern-based design methods in the context of enterprise architecture

    Get PDF
    Enterprise Architecture (EA) is a relatively new domain that is rapidly developing. "The primary reason for developing EA is to support business by providing the fundamental technology and process structure for an IT strategy” [TOGAF]. EA models have to model enterprises facets that span from marketing to IT. As a result, EA models tend to become large. Large EA models create a problem for model management. Concern-based design methods (CBDMs) aim to solve this problem by considering EA models as a composition of smaller, manageable parts—concerns. There are dozens of different CBDMs that can be used in the context of EA: from very generic methods to specific methods for business modeling or IT implementations. This variety of methods can cause two problems for those who develop and use innovative CBDMs in the field of Enterprise Architecture (EA). The first problem is to choose specific CBDMs that can be used in a given EA methodology: this is a problem for researchers who develop their own EA methodology. The second problem is to find similar methods (with the same problem domain or with similar frameworks) in order to make a comparative analysis with these methods: this is a problem of researchers who develop their own CBDMs related to a specific problem domain in EA (such as business process modeling or aspect oriented programming). We aim to address both of these problems by means of a definition of generic Requirements for CBDMs based on the system inquiry. We use these requirements to classify twenty CBDMs in the context of EA. We conclude with a short discussion about trends that we have observed in the field of concern-based design and modelin

    Competences of IT Architects

    Get PDF
    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognises a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use the same term, they may mean something different. This makes it hard for customers to know what competences an architect can be expected to have.\ud \ud This book combines competence profiles of the NGI Platform for IT Professionals, The Open Group Architecture Framework (TOGAF), as well as a number of Dutch IT service providers in a comprehensive framework. Using this framework, the book shows that notwithstanding a large variety in terminology, there is convergence towards a common set of competence profiles. In other words, when looking beyond terminological differences by using the framework, one sees that organizations recognize similar types of architects, and that similar architects in different organisations have similar competence profiles. The framework presented in this book thus provides an instrument to position architecture services as offered by IT service providers and as used by their customers.\ud \ud The framework and the competence profiles presented in this book are the main results of the special interest group “Professionalisation” of the Netherlands Architecture Forum for the Digital World (NAF). Members of this group, as well as students of the universities of Twente and Nijmegen have contributed to the research on which this book is based

    Reference Models for Digital Manufacturing Platforms

    Full text link
    [EN] This paper presents an integrated reference model for digital manufacturing platforms, based on cutting edge reference models for the Industrial Internet of Things (IIoT) systems. Digital manufacturing platforms use IIoT systems in combination with other added-value services to support manufacturing processes at different levels (e.g., design, engineering, operations planning, and execution). Digital manufacturing platforms form complex multi-sided ecosystems, involving different stakeholders ranging from supply chain collaborators to Information Technology (IT) providers. This research analyses prominent reference models for IIoT systems to align the definitions they contain and determine to what extent they are complementary and applicable to digital manufacturing platforms. Based on this analysis, the Industrial Internet Integrated Reference Model (I3RM) for digital manufacturing platforms is presented, together with general recommendations that can be applied to the architectural definition of any digital manufacturing platform.This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825631 and from the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 IDIFEDER/2018/025.Fraile Gil, F.; Sanchis, R.; Poler, R.; Ortiz Bas, Á. (2019). Reference Models for Digital Manufacturing Platforms. Applied Sciences. 9(20):1-25. https://doi.org/10.3390/app9204433S125920Pedone, G., & MezgĂĄr, I. (2018). Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Computers in Industry, 100, 278-286. doi:10.1016/j.compind.2018.05.003Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review. Applied Sciences, 9(18), 3865. doi:10.3390/app9183865Tran, Park, Nguyen, & Hoang. (2019). Development of a Smart Cyber-Physical Manufacturing System in the Industry 4.0 Context. Applied Sciences, 9(16), 3325. doi:10.3390/app9163325Fernandez-Carames, T. M., & Fraga-Lamas, P. (2019). A Review on the Application of Blockchain to the Next Generation of Cybersecure Industry 4.0 Smart Factories. IEEE Access, 7, 45201-45218. doi:10.1109/access.2019.2908780Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference architectures for smart manufacturing: A critical review. Journal of Manufacturing Systems, 49, 215-225. doi:10.1016/j.jmsy.2018.10.006Sutherland, W., & Jarrahi, M. H. (2018). The sharing economy and digital platforms: A review and research agenda. International Journal of Information Management, 43, 328-341. doi:10.1016/j.ijinfomgt.2018.07.004Corradi, A., Foschini, L., Giannelli, C., Lazzarini, R., Stefanelli, C., Tortonesi, M., & Virgilli, G. (2019). Smart Appliances and RAMI 4.0: Management and Servitization of Ice Cream Machines. IEEE Transactions on Industrial Informatics, 15(2), 1007-1016. doi:10.1109/tii.2018.2867643Gerrikagoitia, J. K., Unamuno, G., Urkia, E., & Serna, A. (2019). Digital Manufacturing Platforms in the Industry 4.0 from Private and Public Perspectives. Applied Sciences, 9(14), 2934. doi:10.3390/app9142934Digital Manufacturing Platforms, Factories 4.0 and beyondhttps://www.effra.eu/digital-manufacturing-platformsZero Defect Manufacturing Platform Project 2019https://www.zdmp.eu/Zezulka, F., Marcon, P., Vesely, I., & Sajdl, O. (2016). Industry 4.0 – An Introduction in the phenomenon. IFAC-PapersOnLine, 49(25), 8-12. doi:10.1016/j.ifacol.2016.12.002Announcing the IoT Industrie 4.0 Reference Architecturehttps://www.ibm.com/cloud/blog/announcements/iot-industrie-40-reference-architectureVelĂĄsquez, N., Estevez, E., & Pesado, P. (2018). Cloud Computing, Big Data and the Industry 4.0 Reference Architectures. Journal of Computer Science and Technology, 18(03), e29. doi:10.24215/16666038.18.e29Pisching, M. A., Pessoa, M. A. O., Junqueira, F., dos Santos Filho, D. J., & Miyagi, P. E. (2018). An architecture based on RAMI 4.0 to discover equipment to process operations required by products. Computers & Industrial Engineering, 125, 574-591. doi:10.1016/j.cie.2017.12.029Calvin, T. (1983). Quality Control Techniques for «Zero Defects». IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 6(3), 323-328. doi:10.1109/tchmt.1983.113617

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated
    • 

    corecore