18 research outputs found

    User-Oriented Enterprise Process Modeling Language

    Get PDF
    Enterprise process modeling has been an emerging topic of interest since the early nineties. The research in this area has been driven by the vision of process improvement. There are two key steps in applying process modeling tools and techniques to support process improvement initiatives. These are (i) the correct representation of the processes in the form of a process model, and (ii) the analysis of the processes to identify improvement opportunities. Process modeling is representing processes and the relevant details usually in a graphical language. These details are the inputs to and the outputs from a process, the description of the resources used or consumed by a process, and the relationship of the subjects involved in the process with respect to each other. The literature contains many process modeling tools and techniques. A technique typically involves graphical symbols with their semantics and syntax to capture process details. This thesis presents a brief review of several enterprise process modeling languages that have been developed so far. The strengths and the limitations of these languages are also presented. These form the basis for the requirements of a new enterprise process modeling language. The proposed enterprise process modeling language exploits the strengths of existing process modeling languages. The proposed language is user friendly, yet rigorous in the definition of its constructs. It emphasizes control flow, which is an essential aspect of any process model. Emphasis on control flow is-useful for analyzing a process description by using formal tools such as Petri nets. A comprehensive example is represented in the existing languages and in the proposed language to illustrate the advantage~ of the proposed language

    Reusability in manufacturing, supported by value net and patterns approaches

    Get PDF
    The concept of manufacturing and the need or desire to create artefacts or products is very, very old, yet it is still an essential component of all modem economies. Indeed, manufacturing is one of the few ways that wealth is created. The creation or identification of good quality, sustainable product designs is fundamental to the success of any manufacturing enterprise. Increasingly, there is also a requirement for the manufacturing system which will be used to manufacture the product, to be designed (or redesigned) in parallel with the product design. Many different types of manufacturing knowledge and information will contribute to these designs. A key question therefore for manufacturing companies to address is how to make the very best use of their existing, valuable, knowledge resources. […] The research reported in this thesis examines ways of reusing existing manufacturing knowledge of many types, particularly in the area of manufacturing systems design. The successes and failures of reported reuse programmes are examined, and lessons learnt from their experiences. This research is therefore focused on identifying solutions that address both technical and non-technical requirements simultaneously, to determine ways to facilitate and increase the reuse of manufacturing knowledge in manufacturing system design. [Continues.

    An enterprise engineering approach for the alignment of business and information technology strategy

    Full text link
    Information systems and information technology (IS/IT, hereafter just IT) strategies usually depend on a business strategy. The alignment of both strategies improves their strategic plans. From an external perspective, business and IT alignment is the extent to which the IT strategy enables and drives the business strategy. This article reviews strategic alignment between business and IT, and proposes the use of enterprise engineering (EE) to achieve this alignment. The EE approach facilitates the definition of a formal dialog in the alignment design. In relation to this, new building blocks and life-cycle phases have been defined for their use in an enterprise architecture context. This proposal has been adopted in a critical process of a ceramic tile company for the purpose of aligning a strategic business plan and IT strategy, which are essential to support this process. © 2011 Taylor & Francis.Cuenca, L.; Boza, A.; Ortiz, A. (2011). An enterprise engineering approach for the alignment of business and information technology strategy. International Journal of Computer Integrated Manufacturing. 24(11):974-992. https://doi.org/10.1080/0951192X.2011.579172S9749922411(1993). CIMOSA: Open System Architecture for CIM. doi:10.1007/978-3-642-58064-2Ang, J., Shaw, N., & Pavri, F. (1995). Identifying strategic management information systems planning parameters using case studies. International Journal of Information Management, 15(6), 463-474. doi:10.1016/0268-4012(95)00049-dAvison, D., Jones, J., Powell, P., & Wilson, D. (2004). Using and validating the strategic alignment model. The Journal of Strategic Information Systems, 13(3), 223-246. doi:10.1016/j.jsis.2004.08.002Avgerou, & McGrath. (2007). Power, Rationality, and the Art of Living through Socio-Technical Change. MIS Quarterly, 31(2), 295. doi:10.2307/25148792Bergeron, F., Raymond, L., & Rivard, S. (2004). Ideal patterns of strategic alignment and business performance. Information & Management, 41(8), 1003-1020. doi:10.1016/j.im.2003.10.004Bernus, P., Nemes, L., & Schmidt, G. (Eds.). (2003). Handbook on Enterprise Architecture. doi:10.1007/978-3-540-24744-9Bleistein, S. J., Cox, K., Verner, J., & Phalp, K. T. (2006). B-SCP: A requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process. Information and Software Technology, 48(9), 846-868. doi:10.1016/j.infsof.2005.12.001Buchanan, S., & Gibb, F. (1998). The information audit: An integrated strategic approach. International Journal of Information Management, 18(1), 29-47. doi:10.1016/s0268-4012(97)00038-8Buchanan, S., & Gibb, F. (2007). The information audit: Role and scope. International Journal of Information Management, 27(3), 159-172. doi:10.1016/j.ijinfomgt.2007.01.002Chen, D., & Vernadat, F. (2004). Standards on enterprise integration and engineering—state of the art. International Journal of Computer Integrated Manufacturing, 17(3), 235-253. doi:10.1080/09511920310001607087Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Chen, H.-M., Kazman, R., & Garg, A. (2005). BITAM: An engineering-principled method for managing misalignments between business and IT architectures. Science of Computer Programming, 57(1), 5-26. doi:10.1016/j.scico.2004.10.002Cuenca, L., Ortiz, A., & Vernadat, F. (2006). From UML or DFD models to CIMOSA partial models and enterprise components. International Journal of Computer Integrated Manufacturing, 19(3), 248-263. doi:10.1080/03081070500065841Davis, G. B. (2000). Information Systems Conceptual Foundations: Looking Backward and Forward. IFIP Advances in Information and Communication Technology, 61-82. doi:10.1007/978-0-387-35505-4_5Gindy, N., Morcos, M., Cerit, B., & Hodgson, A. (2008). Strategic technology alignment roadmapping STAR® aligning R&D investments with business needs. International Journal of Computer Integrated Manufacturing, 21(8), 957-970. doi:10.1080/09511920801927148Goethals, F. G., Lemahieu, W., Snoeck, M., & Vandenbulcke, J. A. (2007). The data building blocks of the enterprise architect. Future Generation Computer Systems, 23(2), 269-274. doi:10.1016/j.future.2006.05.004Greefhorst, D., Koning, H., & Vliet, H. van. (2006). The many faces of architectural descriptions. Information Systems Frontiers, 8(2), 103-113. doi:10.1007/s10796-006-7975-xGregor, S., Hart, D., & Martin, N. (2007). Enterprise architectures: enablers of business strategy and IS/IT alignment in government. Information Technology & People, 20(2), 96-120. doi:10.1108/09593840710758031Hartono, E., Lederer, A. L., Sethi, V., & Zhuang, Y. (2003). Key predictors of the implementation of strategic information systems plans. ACM SIGMIS Database, 34(3), 41-53. doi:10.1145/937742.937747Henderson, J. C., & Venkatraman, H. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 472-484. doi:10.1147/sj.382.0472Hirschheim, R., & Sabherwal, R. (2001). Detours in the Path toward Strategic Information Systems Alignment. California Management Review, 44(1), 87-108. doi:10.2307/41166112Hoogervorst, J. A. P. (2009). Enterprise Governance and Enterprise Engineering. doi:10.1007/978-3-540-92671-9Johnson, A. M., & Lederer, A. L. (2010). CEO/CIO mutual understanding, strategic alignment, and the contribution of IS to the organization. Information & Management, 47(3), 138-149. doi:10.1016/j.im.2010.01.002JONKERS, H., LANKHORST, M., VAN BUUREN, R., HOPPENBROUWERS, S., BONSANGUE, M., & VAN DER TORRE, L. (2004). CONCEPTS FOR MODELING ENTERPRISE ARCHITECTURES. International Journal of Cooperative Information Systems, 13(03), 257-287. doi:10.1142/s0218843004000985King, W. R. (1978). Strategic Planning for Management Information Systems. MIS Quarterly, 2(1), 27. doi:10.2307/249104Leonard, J. (2007). Sharing a Vision: comparing business and IS managers’ perceptions of strategic alignment issues. Australasian Journal of Information Systems, 15(1). doi:10.3127/ajis.v15i1.299Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise: The alignment of business and information technology strategies. IBM Systems Journal, 32(1), 198-221. doi:10.1147/sj.321.0198Luftman, J., Ben-Zvi, T., Dwivedi, R., & Rigoni, E. H. (2010). IT Governance. International Journal of IT/Business Alignment and Governance, 1(2), 13-25. doi:10.4018/jitbag.2010040102Melville, Kraemer, & Gurbaxani. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283. doi:10.2307/25148636Newkirk, H. E., & Lederer, A. L. (2006). Incremental and Comprehensive Strategic Information Systems Planning in an Uncertain Environment. IEEE Transactions on Engineering Management, 53(3), 380-394. doi:10.1109/tem.2006.877446Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Noran, O. (2005). A systematic evaluation of the C4ISR AF using ISO15704 Annex A (GERAM). Computers in Industry, 56(5), 407-427. doi:10.1016/j.compind.2004.12.005Ortiz, A., Lario, F., & Ros, L. (1999). Enterprise Integration—Business Processes Integrated Management: a proposal for a methodology to develop Enterprise Integration Programs. Computers in Industry, 40(2-3), 155-171. doi:10.1016/s0166-3615(99)00021-4Panetto, H., Baïna, S., & Morel, G. (2007). Mapping the IEC 62264 models onto the Zachman framework for analysing products information traceability: a case study. Journal of Intelligent Manufacturing, 18(6), 679-698. doi:10.1007/s10845-007-0040-xPapp, R. (Ed.). (2001). Strategic Information Technology. doi:10.4018/978-1-87828-987-2Peñaranda, N., Mejía, R., Romero, D., & Molina, A. (2010). Implementation of product lifecycle management tools using enterprise integration engineering and action-research. International Journal of Computer Integrated Manufacturing, 23(10), 853-875. doi:10.1080/0951192x.2010.495136Reich, B. H., & Benbasat, I. (2000). Factors That Influence the Social Dimension of Alignment between Business and Information Technology Objectives. MIS Quarterly, 24(1), 81. doi:10.2307/3250980Sledgianowski, D., & Luftman, J. (2005). IT-Business Strategic Alignment Maturity. Journal of Cases on Information Technology, 7(2), 102-120. doi:10.4018/jcit.2005040107Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information systems architecture. IBM Systems Journal, 31(3), 590-616. doi:10.1147/sj.313.0590Van Grembergen, W., & De Haes, S. (2010). A Research Journey into Enterprise Governance of IT, Business/IT Alignment and Value Creation. International Journal of IT/Business Alignment and Governance, 1(1), 1-13. doi:10.4018/jitbag.2010120401Xueying Wang, Xiongwei Zhou, & Longbin Jiang. (2008). A method of business and IT alignment based on Enterprise Architecture. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. doi:10.1109/soli.2008.468649

    Desenvolvimento de um instrumento de medição do alinhamento estratégico dos processos de negócio

    Get PDF
    O alinhamento estratégico é hoje em dia um dos maiores desafios nas organizações. Para atingir esse alinhamento é fundamental clarificar e comunicar a estratégia de negócio a todas as partes da organização e garantir que os objectivos individuais sejam definidos no sentido de representarem e contribuírem para os objectivos organizacionais, garantindo assim que todos caminham no mesmo sentido. Na utilização de um referencial que propõe uma abordagem “top down”, sistémica, integrada e orientada a processos, através da concepção e implementação de um modelo de melhoria contínua assente numa arquitectura de competências organizacionais, pode estar uma solução para garantir um alinhamento estratégico dos processos de negócio e tornar a organização mais ágil e eficaz. Para que se possa aferir da utilidade de um tal referencial, importa dispor de um instrumento para medir o alinhamento estratégico dos processos de negócio. Da revisão de literatura efectuada, propõe-se um conjunto inicial de variáveis a considerar no instrumento

    Dynamic enterprise modelling: a methodology for animating dynamic social networks

    Get PDF
    PhD ThesisSince the introduction of the Internet and the realisation of its potential companies have either transformed their operation or are in the process of doing so. It has been observed, that developments in I.T., telecommunications and the Internet have boosted the number of enterprises engaging into e-commerce, e-business and virtual enterprising. These trends are accompanied by re-shaping, transformation and changes in an enterprise's boundaries. The thesis gives an account of the research into the area of dynamic enterprise modelling and provides a modelling methodology that allows different roles and business models to be tested and evaluated without the risk associated with committing to a change

    Development of a user-centred design methodology to accommodate changing hardware and software user requirements in the sports domain

    Get PDF
    The research presented in this thesis focuses on the development of wireless, real time performance monitoring technology within the resistance training domain. The functionality of current performance monitoring technology and differences in monitoring ability is investigated through comparative force platform, video and accelerometer testing and analysis. Determining the complexity of resistance training exercises and whether performance variable profiles such as acceleration, velocity and power can be used to characterise lifts is also investigated. A structured user-centred design process suitable for the sporting domain is proposed and followed throughout the research to consider the collection, analysis and communication of performance data. Identifying the user requirements and developing both hardware and software to meet the requirements also forms a major part of the research. The results indicate that as the exercise complexity increases, the requirement for sophisticated technology increases. A simple tri-axial accelerometer can be used to monitor simple linear exercises at the recreational level. Gyroscope technology is required to monitor complex exercises in which rotation of the bar occurs. Force platform technology is required at the elite level to monitor the distribution of force and resultant balance throughout a lift (bilateral difference). An integrated system consisting of an Inertial Measurement Unit (both accelerometer and gyroscope technology) and a double plate force platform is required to accurately monitor performance in the resistance training domain at the elite level
    corecore