6,124 research outputs found

    On the hard sphere model and sphere packings in high dimensions

    Get PDF
    We prove a lower bound on the entropy of sphere packings of Rd\mathbb R^d of density Θ(dβ‹…2βˆ’d)\Theta(d \cdot 2^{-d}). The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the mere existence of a dense packing. Our method also provides a new, statistical-physics-based proof of the Ξ©(dβ‹…2βˆ’d)\Omega(d \cdot 2^{-d}) lower bound on the maximum sphere packing density by showing that the expected packing density of a random configuration from the hard sphere model is at least (1+od(1))log⁑(2/3)dβ‹…2βˆ’d(1+o_d(1)) \log(2/\sqrt{3}) d \cdot 2^{-d} when the ratio of the fugacity parameter to the volume covered by a single sphere is at least 3βˆ’d/23^{-d/2}. Such a bound on the sphere packing density was first achieved by Rogers, with subsequent improvements to the leading constant by Davenport and Rogers, Ball, Vance, and Venkatesh

    Origin of Scaling Behavior of Protein Packing Density: A Sequential Monte Carlo Study of Compact Long Chain Polymers

    Full text link
    Single domain proteins are thought to be tightly packed. The introduction of voids by mutations is often regarded as destabilizing. In this study we show that packing density for single domain proteins decreases with chain length. We find that the radius of gyration provides poor description of protein packing but the alpha contact number we introduce here characterize proteins well. We further demonstrate that protein-like scaling relationship between packing density and chain length is observed in off-lattice self-avoiding walks. A key problem in studying compact chain polymer is the attrition problem: It is difficult to generate independent samples of compact long self-avoiding walks. We develop an algorithm based on the framework of sequential Monte Carlo and succeed in generating populations of compact long chain off-lattice polymers up to length N=2,000N=2,000. Results based on analysis of these chain polymers suggest that maintaining high packing density is only characteristic of short chain proteins. We found that the scaling behavior of packing density with chain length of proteins is a generic feature of random polymers satisfying loose constraint in compactness. We conclude that proteins are not optimized by evolution to eliminate packing voids.Comment: 9 pages, 10 figures. Accepted by J. Chem. Phy

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    Rotated sphere packing designs

    Full text link
    We propose a new class of space-filling designs called rotated sphere packing designs for computer experiments. The approach starts from the asymptotically optimal positioning of identical balls that covers the unit cube. Properly scaled, rotated, translated and extracted, such designs are excellent in maximin distance criterion, low in discrepancy, good in projective uniformity and thus useful in both prediction and numerical integration purposes. We provide a fast algorithm to construct such designs for any numbers of dimensions and points with R codes available online. Theoretical and numerical results are also provided
    • …
    corecore