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Abstract

We prove a lower bound on the entropy of sphere packings of Rd of densityΘ(d ·2−d). The entropy
measures how plentiful such packings are, and our result is significantly stronger than the trivial
lower bound that can be obtained from the mere existence of a dense packing. Our method also
provides a new, statistical-physics-based proof of the Ω(d · 2−d) lower bound on the maximum
sphere packing density by showing that the expected packing density of a random configuration
from the hard sphere model is at least (1 + od(1)) log(2/

√
3)d · 2−d when the ratio of the fugacity

parameter to the volume covered by a single sphere is at least 3−d/2. Such a bound on the sphere
packing density was first achieved by Rogers, with subsequent improvements to the leading constant
by Davenport and Rogers, Ball, Vance, and Venkatesh.

2010 Mathematics Subject Classification: 52C17 (primary); 82B21 (secondary)

1. Sphere packings in high dimensions

The sphere packing density of d-dimensional Euclidean space, θ(d), is the
supremum of the packing density over all packings P of Rd by equal-sized
spheres; that is,

θ(d) = sup
P

lim sup
R→∞

vol(P ∩ BR(0))
vol(BR(0))

,

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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M. Jenssen, F. Joos and W. Perkins 2

where BR(x) is the closed ball of radius R around x and vol(P ∩ BR(0)) is the
volume of BR(0) covered by spheres in the packing P . The precise value of θ(d) is
known in only a small number of dimensions; to be precise for d ∈ {1, 2, 3, 8, 24}.
While d = 1 is trivial and d = 2 is elementary but not trivial, the proof for d = 3
was a monumental achievement of Hales [15], and the cases d = 8 and d =
24 were proved only very recently following a breakthrough of Viazovska [37]
(d = 8) and Cohn et al. [6] (d = 24); see [5] for an exposition of these recent
developments.

Optimal sphere packings in high dimensions are even more mysterious. It is not
even clear whether lattice packings achieve the optimal packing density or if the
best packings are disordered. A lower bound of θ(d) > 2−d is trivial. Take any
saturated packing; doubling the radii of the spheres must cover all of Rd , or else
another center could be added. Therefore the original density must be at least 2−d .
This bound has been improved by a factor of d by Rogers [29], with subsequent
improvements to the constant by Rogers and Davenport [9], Ball [2], Vance [35]
(in dimensions divisible by 4), culminating in the bound of Venkatesh [36] that
θ(d) > (65963+od(1))d ·2−d . Venkatesh also gains an additional log log d factor
in a sparse sequence of dimensions. An upper bound of θ(d) 6 2−(.599···+od (1))·d

is due to Kabatiansky and Levenshtein [20]; Cohn and Zhao [7] made a recent
constant factor improvement. Here we write h(d) = od(1) if h(d)→ 0 as d→∞.
We write h1(d) = Ω(h2(d)) if h1(d)/h2(d) > c > 0 for all sufficiently large d
and some constant c, and h1(d) = Θ(h2(d)) if 0 < c 6 h1(d)/h2(d) 6 C for all
sufficiently large d and two constants c,C . We caution the reader to distinguish
between the similar characters θ(d) and Θ(·).

Notably there has been no progress in closing the gap on an exponential scale
between the trivial lower bound and the Kabatiansky and Levenshtein upper
bound. See the books of Rogers [30], Conway and Sloane [8], and Cohn [4] for
an overview of results and techniques in the area.

Several of the previous proofs of lower bounds on θ(d) analyze a random
lattice packing by way of the Siegel mean-value theorem [33] or variants thereof;
a bound of 2 · 2−d is achieved by analyzing a uniform random lattice (see [4,
Proposition 6.1]); by imposing additional symmetries on the random lattice
Vance [35] and Venkatesh [36] gain a factor d and an improved constant. But
optimal packings in high dimensions are not necessarily lattice packings (see the
conjectures of Torquato and Stillinger [34]). If this is so, then we need different
tools and constructions. One natural candidate is the hard sphere model from
statistical physics (‘hard’ spheres since the only interaction between particles is
the hard constraint that spheres cannot overlap). This is a probability distribution
over sphere packings governed by a fugacity parameter λ > 0. The larger λ, the
larger the typical density of a random packing from the model.
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On the hard sphere model and sphere packings in high dimensions 3

Here we utilize the hard sphere model to analyze sphere packings in high
dimensions. We show that for an appropriate choice of the fugacity, the expected
packing density of a configuration drawn from the hard sphere model isΩ(d ·2−d).
The argument not only gives a statistical physics proof of the lower bound on
θ(d), but also gives a lower bound on the entropy of sphere packings of this
density. We define the entropy precisely in Section 2, but it essentially expresses
the exponential order of the fraction of sets of αn points in a ball of volume n
that are centers of a valid sphere packing in Rd . That is, it is a measure of how
plentiful packings of a given density are.

The proof technique is general; in fact a version of the argument in a discrete
setting [11] (where the relevant statistical physics model is the hard-core model)
states that a uniformly random independent set chosen from a triangle-free graph
of maximum degree r occupies at least a log r/r fraction of the vertices in
expectation. This result gives an alternative proof of Shearer’s bound of Ramsey
number R(3, k) 6 (1 + o(1))k2/log k [32], which is itself a sharpening of
the independent set result of Ajtai et al. [1] used by Krivelevich et al. [22]
(following [19]) to give an alternative proof of the Ω(d · 2−d) lower bound on
θ(d) by formulating the problem in terms of finding a large independent set in a
graph derived by discretizing a region in Rd . Since the first version of this paper,
we have also used a variant of the method to prove lower bounds on the kissing
number and size of spherical codes in high dimensions [18].

In principle, the hard sphere model is a good random model with which to
study optimal and near optimal sphere packings, as typical packings from the
model will have density arbitrarily close to θ(d) for a large enough choice of the
fugacity parameter λ. Analyzing the typical packing density, however, is another
matter, and we do not expect our particular technique, which relies only on local
information, to improve the exponential order of the lower bound on θ(d). In the
analogy with independent sets in graphs, the Ω(d · 2−d) bound corresponds to
the Ω(log r/r) lower bound on the independence ratio of a r -regular triangle-
free graph. However, random r -regular graphs and random r -regular bipartite
graphs have the same local structure asymptotically yet have drastically different
independence ratios: 2 log r/r and 1/2, respectively.

In Section 2, we explain the hard sphere model in detail and state our main
result (Theorem 2). In Section 3, we prove Theorem 2. In Section 4, we use
Theorem 2 to prove a lower bound on the volume of sphere packings of density
Θ(d ·2−d). This lower bound is significantly larger than the trivial bound obtained
by shrinking the spheres of a dense packing and allowing the centers to move
locally.

In what follows log x always denotes the natural logarithm of x . For x, y ∈ Rd ,
we let d(x, y) denote the Euclidean distance between x and y, and for X ⊆ Rd
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M. Jenssen, F. Joos and W. Perkins 4

we let d(X, y) = infx∈X d(x, y). The sphere of radius r centered at x in Rd is
{y : d(x, y) = r}, while the (open) ball of radius r is {y : d(x, y) < r}.

2. The hard sphere model

The hard sphere model is a probability distribution over configurations of
nonoverlapping, identical spheres in a bounded subset of Euclidean space (that
can be extended with a limiting argument to a distribution on packings of all of
Rd). There are two variants of the model: the canonical ensemble is a uniformly
random packing of a given fixed density and the grand canonical ensemble is a
random packing with variable density governed by a fugacity parameter λ > 0.
The hard sphere model is a simple model of a gas or fluid with no interactions
apart from the hard constraint that molecules cannot overlap. In dimension 2 and
3 the model is expected to exhibit a freezing phase transition, though proving
this remains an open mathematical problem. Such a phase transition would show
that freezing and crystallization can be explained by purely geometric concerns.
The nature of such a phase transition may be different in 2 dimensions than in
3: Richthammer [28] has proved that there can be no translational symmetry
breaking in dimension 2. For more see Löwen’s survey [23].

To define the model precisely, we assume the spheres of our packings have
volume 1 and denote by rd the radius of a ball of volume 1 in Rd . For a bounded,
measurable subset S ⊂ Rd , let Ck(S) be the set of unordered k-tuples of points
from S; that is,

Ck(S) = {{x1, . . . xk} : xi ∈ S ∀ i}.

Let
Pk(S) = {{x1, . . . xk} ∈ Ck(S) : d(xi , x j) > 2rd ∀ i 6= j};

that is, Pk(S) is the subset of Ck(S) consisting of the centers of packings of
spheres of volume 1. Note that we allow centers near the boundary of S, so the
spheres themselves need not lie entirely within S.

The canonical hard sphere model on S with k centers is simply a uniformly
random k-tuple Xk ∈ Pk(S). The partition function of the canonical hard sphere
model on S is the function

ẐS(k) =
1
k!

∫
Sk

1D(x1,...,xk ) dx1 · · · dxk, (1)

where for x1, . . . , xk ∈ Rd , the expression D(x1, . . . , xk) denotes the event that
d(xi , x j) > 2rd for all distinct i, j ∈ [k]. In other words, Ẑk(S) is the volume
of Pk(S) in the space of unordered k-tuples from S. As the volume of Ck(S)
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On the hard sphere model and sphere packings in high dimensions 5

is vol(S)k/k!, the probability that k uniformly random points in S are the centers
of a sphere packing is (k!/vol(S)k)ẐS(k).

In the canonical ensemble the number of centers is fixed. In the grand canonical
ensemble we imagine S lying in some larger region with which it can exchange
particles, and so the number of centers is allowed to fluctuate.

The grand canonical hard sphere model on a bounded, measurable set S ⊂ Rd

at fugacity λ is a random set X of unordered points, with X distributed according
to a Poisson point process of intensity λ conditioned on the event that d(x, y) >
2rd for all distinct x, y ∈ X.

The partition function of the grand canonical hard sphere model on S is

ZS(λ) =
∑
k>0

λk ẐS(k) (2)

where we take ẐS(0) = 1. If S is bounded then ZS(λ) is a polynomial in λ.
Note that the fugacity λ is not an absolute quantity: defining the model with

spheres of a different size would lead to a different scaling of the fugacity. The
right absolute parameter to consider is the ratio of the fugacity to the volume
enclosed by a single hard sphere; as we consider spheres of volume 1 here, this
ratio is λ as well.

In both the canonical and grand canonical ensembles, the partition function and
its normalized logarithm play a central role in the study of the hard sphere model.
Let Bn = Bn1/d ·rd (0) be the ball of volume n around the origin in Rd . The limits

fd(α) := lim
n→∞

1
αn

log
Ẑ Bn (bαnc)

nbαnc/(bαnc)!

gd(λ) := lim
n→∞

1
n

log Z Bn (λ)

exist for α ∈ (0, θ(d)) and λ > 0 (see for example [31, Ch. 3]). We will call
fd(α) the entropy density of sphere packings of Rd at density α, and gd(λ) the
pressure of the hard sphere model. Both are measurements of how plentiful sphere
packings are in Rd . The entropy density is minus the thermodynamic free energy,
which itself is the large deviation rate function of the probability that αn random
points in Bn form a sphere packing. We dispense with the minus sign so that a
lower bound on fd(α) corresponds to a lower bound on the quantity of sphere
packings. Dividing by αn ensures that fd(α) is independent of the choice of the
size of spheres in our packings. See for example [27] for a discussion of the
entropy density in dimension 3.

The statistical physics definition of a phase transition in the hard sphere model
is that the entropy density (respectively the pressure) is nonanalytic at some
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M. Jenssen, F. Joos and W. Perkins 6

α∗ ∈ (0, θ(d)) (respectively at some λ∗ > 0). See [13, 17, 26] for some recent
results showing that the entropy density or pressure is analytic below some
threshold in α or λ. See also [12, 16, 21] for results showing that certain Markov
chains for sampling from these models mix rapidly below a given threshold.

In fact in the large volume limit the two ensembles are essentially equivalent, as
for each λ > 0, there is a typical density α(d, λ)with small fluctuations. However,
computing this conversion function α(d, λ) is as difficult as understanding both
the sphere packing problem and the problem of phase transitions in the hard
sphere model, as limλ→∞ α(d, λ) = θ(d) (for example [24]) and α(d, λ) is
nonanalytic at λ at which gd(λ) is nonanalytic. The main task of this work is
to prove a lower bound on α(d, λ).

The expected packing density, αS(λ), of the hard sphere model is simply the
expected number of centers in S normalized by the volume of S; that is,

αS(λ) =
ES,λ|X|
vol(S)

.

Here and in what follows the notation PS,λ and ES,λ indicates probabilities and
expectations with respect to the grand canonical hard sphere model on a region S
at fugacity λ. We may omit the subscripts if S and λ are clear from the context.

The expected packing density can be expressed as the derivative of the
normalized log partition function. We calculate

αS(λ) =
1

vol(S)

∞∑
k=1

k · PS,λ[|X| = k]

=
1

vol(S)

∞∑
k=1

k · λk ẐS(k)
ZS(λ)

=
1

vol(S)
λ · Z ′S(λ)

ZS(λ)
(3)

=
λ

vol(S)
(log ZS(λ))

′. (4)

The next lemma shows that the expected packing density of the hard sphere
model provides a lower bound for θ(d).

LEMMA 1. The asymptotic expected packing density of Bn ⊂ Rd is a lower bound
on the maximum sphere packing density. That is, for any λ > 0,

θ(d) > lim sup
n→∞

αBn (λ).
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On the hard sphere model and sphere packings in high dimensions 7

Proof. First note that

θ(d) = lim sup
n→∞

sup
X∈P(Bn ,rd )

|X |
n

(5)

where P(Bn, rd) is the set of all packings of Bn by spheres of radius rd (where
again only the centers need to be in Bn); that is, sets of distinct points X ⊂ Bn

so that d(xi , x j) > 2rd for all distinct xi , x j ∈ X . The equality (5) relies on the
fact that volume of a ball in Rd grows subexponentially fast as a function of its
radius, and so deleting centers from the boundary of Bn has a negligible effect on
the packing density as n →∞. Now from the definition of the expected packing
density, supX∈P(Bn ,rd )

(|X |/n) > αBn (λ) for any λ.

Our main result is the following lower bound on the expected packing density.

THEOREM 2. Let S ⊂ Rd be bounded, measurable, and of positive volume. Then
for any λ > 3−d/2, we have

αS(λ) > (1+ od(1))
log(2/

√
3) · d

2d
.

We remark that the error term in Theorem 2 can be taken to be O(log d/d)
uniformly over the choice of λ and S. As a corollary, by applying Theorem 2 to
Bn , we obtain the following lower bound on the sphere packing density of the
d-dimensional Euclidean space.

COROLLARY 3.

θ(d) > (1+ od(1))
log(2/

√
3) · d

2d
.

The fact that we achieve the bound in Theorem 2 for λ as small as 3−d/2 has
no implication on the bound obtained on θ(d), but it allows us to prove nontrivial
lower bounds on the entropy density and pressure.

THEOREM 4. For all λ = e−cd with c ∈ [(log 3)/2, log 2),

gd(λ) >

(
(log 2− c)2

2
+ od(1)

)
·

d2

2d
.

THEOREM 5. There exists α = α(d) = (1+ od(1))((log(2/
√

3) · d)/2d) so that

fd(α) > −(1+ od(1)) log(2/
√

3) · d.

The lower bound in Theorem 5 matches, up to a factor 2, a formula for the
entropy of hard spheres conjectured in the physics literature to hold for densities
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M. Jenssen, F. Joos and W. Perkins 8

up to either the crystallization phase transition or the glass transition, whichever
comes first [14, 25] (see also [3] for an overview of the mean-field approach to
hard spheres).

Of course even the existence of a sphere packing of density Θ(d · 2−d) implies
some positive volume of sphere packings at a slightly lower density by shrinking
the spheres and allowing their centers to move locally. Such a lower bound on the
canonical partition function is called the ‘cell model’ lower bound in statistical
physics (see for example [23, Section 4.2]). While the cell model is a rigorous
lower bound on ẐS(k) at all densities, it is thought to be approximately accurate
if the model is in a crystalline phase. In Section 4.1 we compare the bound
from Theorem 5 to this cell model lower bound, and show that it is significantly
stronger.

In fact, to achieve the bound in Theorem 5 through the existence of a dense
packing and the cell model lower bound would require θ(d) > (2 − ε)−d for
some ε > 0. So in a sense we can say that either there is no crystallization at
densityΘ(d ·2−d) or there are exponentially better sphere packings than currently
known. We leave precise statements to this effect for future work, but conclude by
observing that these two challenging problems in geometry and statistical physics,
determining the asymptotic sphere packing density and determining whether or
not the hard sphere model exhibits a phase transition, closely complement one
another and understanding their relationship may open the way to further progress
in both areas.

3. A lower bound on the expected packing density

In this section we prove Theorem 2. We start with some useful identities and
inequalities.

When λ is large, the model favors configurations with more spheres. It is a
standard fact that αS(λ) is strictly increasing in λ.

LEMMA 6. Let S ⊂ Rd be bounded, measurable, and of positive volume. Then
the expected packing density αS(λ) is a strictly increasing function of λ.

Proof. We use (4) and calculate

λ · vol(S) · α′S(λ) = λ
2(log ZS(λ))

′′
+ λ(log ZS(λ))

′

= λ2
·

ZS(λ)Z ′′S(λ)− (Z
′

S(λ))
2

Z 2
S(λ)

+
λZ ′S(λ)
ZS(λ)

= ES,λ[|X|(|X| − 1)] − (ES,λ[|X|])2 + ES,λ[|X|]
= varS,λ[|X|] > 0,

and so αS(λ) is strictly increasing.
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On the hard sphere model and sphere packings in high dimensions 9

Let FVS(λ) denote the expected free volume of the hard sphere model; that is,
the expected fraction of the volume of S containing points that are at distance
at least 2rd from the nearest center; or in other words, the expected fraction of
volume at which a new sphere could be legally placed. A key fact in our argument
is the following link between αS(λ) and FVS(λ).

LEMMA 7. Let S ⊂ Rd be bounded, measurable, and of positive volume. Then

αS(λ) = λ · FVS(λ).

Proof. We simply use the definition of αS(λ) and compute

αS(λ) =
ES,λ|X|
vol(S)

=
1

vol(S)

∞∑
k=0

(k + 1)PS,λ[|X| = k + 1]

=
1

vol(S)ZS(λ)

∞∑
k=0

∫
Sk+1

λk+1

k!
1D(x0,...,xk ) dx1 · · · dxkdx0

=
λ

vol(S)ZS(λ)

∫
S

[
1+

∞∑
k=1

∫
Sk

λk

k!
1D(x0,...,xk ) dx1 · · · dxk

]
dx0

= λ · FVS(λ).

Now consider the following two-part experiment: sample a configuration of
centers X from the hard sphere model on S at fugacity λ and independently choose
a point v uniformly from S. We define the random set

T = {x ∈ B2rd (v) ∩ S : d(x, y) > 2rd ∀ y ∈ X ∩ B2rd (v)
c
}.

That is, T is the set of all points of S in the 2rd ball around v that are not blocked
from being a center by a center outside the 2rd ball around v. We call T the
set of externally uncovered points in the neighborhood of v, in analogy with the
terminology used in [10, 11] in the discrete case. Note that T depends only on
X ∩ B2rd (v)c—the presence or absence of centers inside B2rd (v) has no effect on
T (see Figure 1).

Since X is a finite set of points it is clear that there exists some ε > 0 (depending
on X) such that Bε(v) ∩ S ⊆ T. If S has positive volume then it follows from the
Lebesgue density theorem that Bε(v) ∩ S has positive volume almost surely and
hence that vol(T) > 0 almost surely.
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M. Jenssen, F. Joos and W. Perkins 10

Figure 1. An illustration of the set of externally uncovered points in the
neighborhood of v (shaded dark gray). The dashed circles represent the hard
spheres which do not overlap.

PROPOSITION 8. Let S ⊂ Rd be bounded, measurable, and of positive volume.
Then

αS(λ) = λ · E
[

1
ZT(λ)

]
(6)

and

αS(λ) > 2−d
· E
[
λ · Z ′T(λ)

ZT(λ)

]
, (7)

where both expectations are with respect to the random set T generated by the
two-part experiment defined above.

Proof. We use Lemma 7 to conclude that

αS(λ) = λ · FVS(λ)

=
λ

vol(S)

∫
S
P[d(X, v) > 2rd] dv

= λ · E[1T∩X=∅]

= λ · E
[

1
ZT(λ)

]
,
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On the hard sphere model and sphere packings in high dimensions 11

which gives (6). The last equality uses the spatial Markov property of the hard
sphere model: conditioned on X ∩ B2rd (v)c, the distribution of X ∩ B2rd (v) is
exactly that of the hard sphere model on the set T.

Now, for any x ∈ S, P(x ∈ B2rd (v)) = vol(S ∩ B2rd (x))/vol(S) 6 2d/vol(S). It
follows that

αS(λ) > 2−d
· E[|X ∩ B2rd (v)|]

= 2−d
· E[αT(λ) · vol(T)]

(3)
= 2−d

· E
[
λ · Z ′T(λ)

ZT(λ)

]
.

PROPOSITION 9. Let S ⊂ Rd be bounded and measurable. Then

log ZS(λ) 6 λ · vol(S) (8)

and if in addition S is of positive volume, then

αS(λ) > λ · e−λ·E[vol(T)]. (9)

Proof. From (2), the definition of ZS(λ), we have ZS(λ) 6
∑
∞

k=0 (λ
k/k!) ·

vol(S)k = eλ·vol(S). Turning to (9), we conclude

αS(λ)
(6)
= λ · E

[
1

ZT(λ)

]
(8)
> λ · E[e−λ·vol(T)

]

> λ · e−λ·E[vol(T)],

where the last inequality is an application of Jensen’s Inequality.

LEMMA 10. Let S ⊆ B2rd (0) be measurable. Then

E[vol(B2rd (u) ∩ S)] 6 2 · 3d/2, (10)

where u is a uniformly chosen point in S. In particular

αS(λ) > λ · e−λ·2·3
d/2
. (11)

The geometric fact (10) is related to the fact used in [22]; here we consider the
volume of the intersection of a sphere with an arbitrary set, but we bound this by
the intersecting volume of two identical spheres, as in [22].
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M. Jenssen, F. Joos and W. Perkins 12

Figure 2. We upper bound the volume of the intersection of two spheres, centered
at 0 and u, with radii trd and 2rd respectively, by the volume of the smallest sphere,
depicted in gray, containing the intersection.

Proof of Lemma 10. Clearly, we may assume that S has positive volume. We
write

E[vol(B2rd (u) ∩ S)] =
1

vol(S)

∫
S

∫
S

1d(u,v)62rd dv du

=
2

vol(S)

∫
S

∫
S

1d(u,v)62rd · 1‖v‖6‖u‖ dv du

6 2 max
u∈B2rd (0)

∫
S

1d(u,v)62rd · 1‖v‖6‖u‖ dv

6 2 max
u∈B2rd (0)

vol(B2rd (u) ∩ B‖u‖(0)).

Now suppose the point u is at distance trd from 0 for some t ∈ [0, 2]. We may
assume that t >

√
2 as otherwise vol(B‖u‖(0)) 6 2d/2. Then, by bounding the

volume of the intersection of two balls by the volume of a containing ball (see
Figure 2), we have

vol(B2rd (u) ∩ Btrd (0)) 6 vol(B
2rd

√
1−t−2(0))

6
(

2
√

1− t−2
)d
,

and so

E[vol(B2rd (u) ∩ S)] 6 max
{

2d/2, 2 · max
√

26t62

(
2
√

1− t−2
)d
}

= 2 · 3d/2.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.25
Downloaded from https://www.cambridge.org/core. University of Birmingham, on 03 Feb 2020 at 11:11:01, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.25
https://www.cambridge.org/core


On the hard sphere model and sphere packings in high dimensions 13

This establishes (10). It follows that E[vol(T)] 6 2 · 3d/2 and so (11) follows
from (9).

Using these results we now prove Theorem 2.

Proof of Theorem 2. Let S ⊂ Rd be bounded, measurable, and of positive volume.
Let α = αS(λ). Then by Jensen’s Inequality we obtain

α
(6)
= λ · E

[
1

ZT(λ)

]
> λ · e−E log ZT(λ),

where as above the expectation is with respect to the two-part experiment in
forming the random set T.

On the other hand we have

α
(7)
> 2−d

· E
[
λ · Z ′T(λ)

ZT(λ)

]
(3)
= 2−d

· E[vol(T) · αT(λ)]
(11)
> 2−d

· E[λ · vol(T) · e−λ·2·3d/2
]

(8)
> 2−d

· E[log ZT(λ) · e−λ·2·3
d/2
]

= 2−d
· e−λ·2·3

d/2E[log ZT(λ)].

Combining these two lower bounds, and letting z = E log ZT(λ), we see that

α > inf
z

max{λe−z, z · 2−de−λ·2·3
d/2
}.

Since λe−z is decreasing in z and z · 2−de−λ·2·3
d/2 increasing, the infimum over

z of the maximum of the two expressions occurs when they are equal, that is,
α > λe−z∗ , where z∗ is the solution to

λe−z
= z · 2−de−λ·2·3

d/2
,

or in other words,

z∗ = W (λ2deλ·2·3
d/2
) (12)

where W (·) is the Lambert-W function. For readers unfamiliar with the W
function we take a moment to recall some of its properties. For x > 0, w = W (x)
is defined to be the unique solution to the equation wew = x . Taking logarithms
yields w + logw = log x and so

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.25
Downloaded from https://www.cambridge.org/core. University of Birmingham, on 03 Feb 2020 at 11:11:01, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.25
https://www.cambridge.org/core
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w = log x − log(log x − logw) = log x − log log x − log
(

1−
logw
log x

)
.

It follows that as x →∞,

W (x) = log x − log log x + O
(

log log x
log x

)
. (13)

Now, returning to (12), we take λ = d−13−d/2 (in fact λ = ε3−d/2 for any
ε = ε(d) such that ε→ 0 and −log(ε)/d → 0 as d →∞ would suffice). Using
(13), this gives

z∗ = W (λ · 2d
· e2/d)

= log λ+ d log 2− log d − log log(2/
√

3)+ O(log d/d)

and so

α > λe−z∗
=

(
1+ O

(
log d

d

))
log(2/

√
3) · d

2d
.

Recalling that α is monotone in λ (Lemma 6), this bound holds for all
λ > d−13−d/2. This completes the proof of Theorem 2.

Note that in the proof if we take λ = e−cd for c ∈ ((log 3)/2, log 2), then we
obtain the following bound

αS(λ) > (1+ od(1))
(log 2− c) · d

2d
. (14)

4. A lower bound on the entropy density and pressure

We first consider the grand canonical model and the pressure of the hard sphere
model. As shown in (4), the expected packing density is the scaled derivative of
the log partition function; that is αS(λ) = (λ/vol(S))(log ZS(λ))

′ . Theorem 2 and
inequality (14) give a lower bound on the expected packing density; by integrating
this bound we obtain the lower bound on the pressure stated in Theorem 4.

Proof of Theorem 4. We compute

1
n

log Z Bn (λ) =

∫ λ

0

1
n
(log Z Bn (t))

′ dt

=

∫ λ

0

αBn (t)
t

dt
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On the hard sphere model and sphere packings in high dimensions 15

> −d
∫ c

log 2
αBn (e

−ud) du

> (1+ od(1))
d2

2d

∫ log 2

c
(log 2− u) du

=

(
(log 2− c)2

2
+ od(1)

)
·

d2

2d
,

and taking n→∞ gives the theorem.

Now recall the definition of the entropy density of sphere packings of Rd at
density α:

fd(α) = lim
n→∞

1
αn

log
Ẑ Bn (bαnc)

nbαnc/(bαnc)!
.

The entropy density is a measure of how plentiful sphere packings of a given
density are, as it tells us, on a logarithmic scale, what fraction of point sets of a
given density in a large region of Rd are the centers of a sphere packing. We use
Theorem 2 to provide the lower bound on fd(α) given in Theorem 5. First let us
record the simple fact that as sphere packings become more dense they become
less plentiful.

LEMMA 11. fd(α) is decreasing in α.

Proof. Suppose 0 < α < α′ < θ(d). Since the limit

fd(α) = lim
n→∞

1
αn

log
Ẑ Bn (bαnc)

nbαnc/(bαnc)!

exists it is enough to show

1
αn

log
Ẑ Bn (bαnc)

nbαnc/(bαnc)!
>

1
α′n′

log
Ẑ Bn′

(bα′n′c)
n′bα′n′c/(bα′n′c)!

for some sequence n, n′ → ∞. Choose n arbitrarily and set n′ = (α/α′)n. Let
k0 = αn = α′n′ and k = bαnc = bα′n′c. Then we must show

1
k0

log
Ẑ Bn (k)
nk/k!

>
1
k0

log
Ẑ Bn′

(k)
n′k/k!

,

or equivalently,

Ẑ Bn (k)
nk

>
Ẑ Bn′

(k)
n′k

.
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In words this is the statement that the probability k uniform and independent
random points in a ball of volume n form a packing of balls of volume 1 is at
least the same probability in a ball of volume n′ with n′ < n. This follows from
a simple scaling and coupling: it is the same as the statement that the probability
k uniform and independent random points in a ball of volume n form a packing
of balls of volume 1 is at least the probability k uniform and independent random
points in a ball of volume n form a packing of balls of volume v with v > 1, and
clearly the second event is contained in the first.

Now we prove our lower bound on the entropy density.

Proof of Theorem 5. In the following there is a lot of flexibility in our choice of
parameters and we do not attempt to optimize all of our bounds. Fix d and n
sufficiently large. Choose λ ∈ [3−d/2, 2 · 3−d/2

] so that varBn ,λ|X| 6 n3/2; such a
choice of λ always exists because otherwise, by the calculation of Lemma 6, we
would have

αBn (2 · 3
−d/2) =

1
n

∫ 2·3−d/2

0

varBn ,t |X|
t

dt >
1
n

∫ 2·3−d/2

3−d/2

n3/2

t
dt = n1/2

· log 2 > 1.

By our bound on the variance and Chebyshev’s inequality it follows that

PBn ,λ[|X| ∈ (EBn ,λ|X| − n4/5,EBn ,λ|X| + n4/5)] > 1−
1

n1/10
.

Since there are at most b2n4/5
c integers in the interval (EBn ,λ|X|−n4/5,EBn ,λ|X|+

n4/5) we may pick some k in this interval so that

PBn ,λ[|X| = k] =
λk Ẑ Bn (k)

Z Bn (λ)
>

1− n−1/10

b2n4/5c
>

1
n
.

It follows that

Ẑ Bn (k) >
1
n

1
λk

Z Bn (λ) >
1
n

1
λk
, (15)

where we used the trivial bound Z Bn (λ) > 1. Note that by our choice of λ we have

EBn ,λ|X| > (1+ od(1))
log(2/

√
3) · d

2d
· n

by Theorem 2. Letting α = k/n, it follows that by our choice of k we have
α > (1+ on,d(1))((log(2/

√
3) · d)/2d). It then follows from (15) that
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1
αn

log
Ẑ Bn (k)
nk/k!

> logα − log λ− 1+ on(1)

> −(1+ on,d(1)) log(2/
√

3) · d.

Taking n→∞ and recalling Lemma 11 proves the theorem.

4.1. Comparison of Theorem 5 to the cell model lower bound. Given a
lattice packing of Bn with k = c1d · 2−d(1 − ε)dn spheres of radius rd/(1 − ε)
(and thus density Θ(d · 2−d)), construct the Voronoi diagram around the centers
of the packing. Around each center, place a copy of its Voronoi cell scaled down
by a factor ε. If the centers are allowed to move arbitrarily within their respective
shrunken cells, they still form a packing of spheres of radius rd . The density of
such a packing is c1(1 − ε)dd2−d , and so if we take ε = c2/d , then the resulting
packing still has density ∼c1e−c2 d · 2−d . The probability that a random set of k
points in Bn is such a configuration is the probability that each of the k shrunken
cells contain exactly one of k uniformly random points, that is:

k!
nk
εdk(n/k)k

since the volume of each shrunken Voronoi cell is n/k · εd . This gives

Ẑ Bn (k) > εdk(n/k)k,

and so with α = k/n ∼ c1e−c2 d · 2−d ,

1
αn

log
Ẑ Bn (k)
nk/k!

>
1
αn

log
εdk

ek
= −(1+ od(1))d log d,

which is considerably smaller (of a different asymptotic order) than the bound in
Theorem 5.
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simulated tempering for hard core Gibbs point processes’, Ann. Inst. Statist. Math. 53(4)
(2001), 661–680.

[25] G. Parisi and F. Zamponi, ‘Mean-field theory of hard sphere glasses and jamming’, Rev. Mod.
Phys. 82(1) (2010), 789–845.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.25
Downloaded from https://www.cambridge.org/core. University of Birmingham, on 03 Feb 2020 at 11:11:01, subject to the Cambridge Core

http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1603.05202
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1407.1930
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
http://www.arxiv.org/abs/1507.02521
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.25
https://www.cambridge.org/core


On the hard sphere model and sphere packings in high dimensions 19

[26] E. Pulvirenti and D. Tsagkarogiannis, ‘Cluster expansion in the canonical ensemble’, Comm.
Math. Phys. 316(2) (2012), 289–306.

[27] C. Radin and L. Sadun, ‘Structure of the hard sphere solid’, Phys. Rev. Lett. 94(1)015502
(2005).

[28] T. Richthammer, ‘Translation-invariance of two-dimensional Gibbsian point processes’,
Comm. Math. Phys. 274(1) (2007), 81–122.

[29] C. A. Rogers, ‘Existence theorems in the geometry of numbers’, Ann. of Math. (2) 48 (1947),
994–1002.

[30] C. A. Rogers, Packing and Covering, (Cambridge University Press, Cambridge, 1964).
[31] D. Ruelle, Statistical Mechanics: Rigorous Results, (Imperial College Press and World

Scientific, London, 1999).
[32] J. B. Shearer, ‘A note on the independence number of triangle-free graphs’, Discrete Math.

46 (1983), 83–87.
[33] C. L. Siegel, ‘A mean value theorem in geometry of numbers’, Ann. of Math. (2) 46 (1945),

340–347.
[34] S. Torquato and F. H. Stillinger, ‘New conjectural lower bounds on the optimal density of

sphere packings’, Exp. Math. 15(3) (2006), 307–331.
[35] S. Vance, ‘Improved sphere packing lower bounds from Hurwitz lattices’, Adv. Math. 227

(2011), 2144–2156.
[36] A. Venkatesh, ‘A note on sphere packings in high dimension’, Int. Math. Res. Not. IMRN

2013(7) (2013), 1628–1642.
[37] M. S. Viazovska, ‘The sphere packing problem in dimension 8’, Ann. of Math. (2) 185 (2017),

991–1015.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.25
Downloaded from https://www.cambridge.org/core. University of Birmingham, on 03 Feb 2020 at 11:11:01, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.25
https://www.cambridge.org/core

	Sphere packings in high dimensions
	The hard sphere model
	A lower bound on the expected packing density
	A lower bound on the entropy density and pressure
	Comparison of Theorem 5 to the cell model lower bound

	References

