research

On the hard sphere model and sphere packings in high dimensions

Abstract

We prove a lower bound on the entropy of sphere packings of Rd\mathbb R^d of density Θ(d2d)\Theta(d \cdot 2^{-d}). The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the mere existence of a dense packing. Our method also provides a new, statistical-physics-based proof of the Ω(d2d)\Omega(d \cdot 2^{-d}) lower bound on the maximum sphere packing density by showing that the expected packing density of a random configuration from the hard sphere model is at least (1+od(1))log(2/3)d2d(1+o_d(1)) \log(2/\sqrt{3}) d \cdot 2^{-d} when the ratio of the fugacity parameter to the volume covered by a single sphere is at least 3d/23^{-d/2}. Such a bound on the sphere packing density was first achieved by Rogers, with subsequent improvements to the leading constant by Davenport and Rogers, Ball, Vance, and Venkatesh

    Similar works