19,905 research outputs found

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Pengines: Web Logic Programming Made Easy

    Full text link
    When developing a (web) interface for a deductive database, functionality required by the client is provided by means of HTTP handlers that wrap the logical data access predicates. These handlers are responsible for converting between client and server data representations and typically include options for paginating results. Designing the web accessible API is difficult because it is hard to predict the exact requirements of clients. Pengines changes this picture. The client provides a Prolog program that selects the required data by accessing the logical API of the server. The pengine infrastructure provides general mechanisms for converting Prolog data and handling Prolog non-determinism. The Pengines library is small (2000 lines Prolog, 150 lines JavaScript). It greatly simplifies defining an AJAX based client for a Prolog program and provides non-deterministic RPC between Prolog processes as well as interaction with Prolog engines similar to Paul Tarau's engines. Pengines are available as a standard package for SWI-Prolog 7.Comment: To appear in Theory and Practice of Logic Programmin

    Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering

    Full text link
    Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.Comment: 9 pages, 3 figures, AAAI 201

    SWISH: SWI-Prolog for Sharing

    Full text link
    Recently, we see a new type of interfaces for programmers based on web technology. For example, JSFiddle, IPython Notebook and R-studio. Web technology enables cloud-based solutions, embedding in tutorial web pages, atractive rendering of results, web-scale cooperative development, etc. This article describes SWISH, a web front-end for Prolog. A public website exposes SWI-Prolog using SWISH, which is used to run small Prolog programs for demonstration, experimentation and education. We connected SWISH to the ClioPatria semantic web toolkit, where it allows for collaborative development of programs and queries related to a dataset as well as performing maintenance tasks on the running server and we embedded SWISH in the Learn Prolog Now! online Prolog book.Comment: International Workshop on User-Oriented Logic Programming (IULP 2015), co-located with the 31st International Conference on Logic Programming (ICLP 2015), Proceedings of the International Workshop on User-Oriented Logic Programming (IULP 2015), Editors: Stefan Ellmauthaler and Claudia Schulz, pages 99-113, August 201

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”
    corecore