399 research outputs found

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument

    A logic programming framework for possibilistic argumentation: formalization and logical properties

    Get PDF
    In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studie

    Taking Defeasible Entailment Beyond Rational Closure

    Get PDF
    We present a systematic approach for extending the KLM framework for defeasible entailment. We first present a class of basic defeasible entailment relations, characterise it in three distinct ways and provide a high-level algorithm for computing it. This framework is then refined, with the refined version being characterised in a similar manner. We show that the two well-known forms of defeasible entailment, rational closure and lexicographic closure, fall within our refined framework, that rational closure is the most conservative of the defeasible entailment relations within the framework (with respect to subset inclusion), but that there are forms of defeasible entailment within our framework that are more “adventurous” than lexicographic closure

    Reasoning in inconsistent prioritized knowledge bases: an argumentative approach

    Get PDF
    A study of query answering in prioritized ontological knowledge bases (KBs) has received attention in recent years. While several semantics of query answering have been proposed and their complexity is rather well-understood, the problem of explaining inconsistency-tolerant query answers has paid less attention. Explaining query answers permits users to understand not only what is entailed or not entailed by an inconsistent DL-LiteR KBs in the presence of priority, but also why. We, therefore, concern with the use of argumentation frameworks to allow users to better understand explanation techniques of querying answers over inconsistent DL-LiteR KBs in the presence of priority. More specifically, we propose a new variant of Dung’s argumentation frameworks, which corresponds to a given inconsistent DL-LiteR KB. We clarify a close relation between preferred subtheories adopted in such prioritized DL-LiteR setting and acceptable semantics of the corresponding argumentation framework. The significant result paves the way for applying algorithms and proof theories to establish preferred subtheories inferences in prioritized DL-LiteR KBs
    corecore