361,710 research outputs found

    Machine learning and deep learning performance in classifying dyslexic children’s electroencephalogram during writing

    Get PDF
    Dyslexia is a form of learning disability that causes a child to have difficulties in writing alphabets, reading words, and doing mathematics. Early identification of dyslexia is important to provide early intervention to improve learning disabilities. This study was carried out to differentiate EEG signals of poor dyslexic, capable dyslexic, and normal children during writing using machine learning and deep learning. three machine learning algorithms were studied: k-nearest neighbors (KNN), support vector machine (SVM), and extreme learning machine (ELM) with input features from coefficients of beta and theta band power extracted using discrete wavelet transform (DWT). As for the deep learning (DL) algorithm, long short-term memory (LSTM) architecture was employed. The kernel parameters of the classifiers were optimized to achieve high classification accuracy. Results showed that db8 achieved the greatest classification accuracy for all classifiers. Support vector machine with radial basis function kernel yields the highest accuracy which is 88% than other classifiers. The support vector machine with radial basis function kernel with db8 could be employed in determining the dyslexic children’s levels objectively during writing

    Towards Building Child-Centered Machine Learning Pipelines: Use Cases from K-12 and Higher-Education

    Full text link
    Researchers and policy-makers have started creating frameworks and guidelines for building machine-learning (ML) pipelines with a human-centered lens. Machine Learning pipelines stand for all the necessary steps to develop ML systems (e.g., developing a predictive keyboard). On the other hand, a child-centered focus in developing ML systems has been recently gaining interest as children are becoming users of these products. These efforts dominantly focus on children's interaction with ML-based systems. However, from our experience, ML pipelines are yet to be adapted using a child-centered lens. In this paper, we list the questions we ask ourselves in adapting human-centered ML pipelines to child-centered ones. We also summarize two case studies of building end-to-end ML pipelines for children's products

    Correspondences between word learning in children and captioning models

    Full text link
    For human children as well as machine learning systems, a key challenge in learning a word is linking the word to the visual phenomena it describes. By organizing model output into word categories used to analyze child language learning data, we show a correspondence between word learning in children and the performance of image captioning models. Although captioning models are trained only on standard machine learning data, we find that their performance in producing words from a variety of word categories correlates with the age at which children acquire words from each of those categories. To explain why this correspondence exists, we show that the performance of captioning models is correlated with human judgments of the concreteness of words, suggesting that these models are capturing the complex real-world association between words and visual phenomena

    A Robust Random Forest Prediction Model for Mother-to-Child HIV Transmission Based on Individual Medical History

    Get PDF
    Human Immunodeficiency Virus (HIV) continues to be a leading cause of mortality and reduces manpower throughout the world. HIV transmission from mother to child is still a global challenge in health research. According to UNAIDS, in every 7 girls, 6 are found to be newly infected among adolescents whereby 15-24 years are likely to be living with HIV which is the maternal age and likely to transfer to the child. Machine learning methods have been used to predict HIV/AIDS transmission from mother to child but left behind some important considerations including the use of patient-level information and techniques in balancing the dataset which may impact models’ performance. A robust prediction model for mother-to-child HIV/AIDS transmission is vital to alleviate HIV/AIDS detrimental effects. The Random Forest Machine Learning method was employed based on features from the individual medical history of HIV-positive mothers. A total of 680 balanced data tuples were used for model development using the ratio of 75:25 for training and testing the dataset. The Random Forest model outperformed the most commonly used learning algorithms achieving the performance of 99% accuracy, recall and F1-score of 0.99 and an error of 0.01, thus improving the prediction rate

    Toddler-Inspired Visual Object Learning

    Get PDF
    Real-world learning systems have practical limitations on the quality and quantity of the training datasets that they can collect and consider. How should a system go about choosing a subset of the possible training examples that still allows for learning accurate, generalizable models? To help address this question, we draw inspiration from a highly efficient practical learning system: the human child. Using head-mounted cameras, eye gaze trackers, and a model of foveated vision, we collected first-person (egocentric) images that represents a highly accurate approximation of the "training data" that toddlers' visual systems collect in everyday, naturalistic learning contexts. We used state-of-the-art computer vision learning models (convolutional neural networks) to help characterize the structure of these data, and found that child data produce significantly better object models than egocentric data experienced by adults in exactly the same environment. By using the CNNs as a modeling tool to investigate the properties of the child data that may enable this rapid learning, we found that child data exhibit a unique combination of quality and diversity, with not only many similar large, high-quality object views but also a greater number and diversity of rare views. This novel methodology of analyzing the visual "training data" used by children may not only reveal insights to improve machine learning, but also may suggest new experimental tools to better understand infant learning in developmental psychology

    Transfer Learning Approach to Multiclass Classification of Child Facial Expressions

    Get PDF
    The classification of facial expression has been extensively studied using adult facial images which are not appropriate ground truths for classifying facial expressions in children. The state-of-the-art deep learning approaches have been successful in the classification of facial expressions in adults. A deep learning model may be better able to learn the subtle but important features underlying child facial expressions and improve upon the performance of traditional machine learning and feature extraction methods. However, unlike adult data, only a limited number of ground truth images exist for training and validating models for child facial expression classification and there is a dearth of literature in child facial expression analysis. Recent advances in transfer learning methods have enabled the use of deep learning architectures, trained on adult facial expression images, to be tuned for classifying child facial expressions with limited training samples. The network will learn generic facial expression patterns from adult expressions which can be fine-tuned to capture representative features of child facial expressions. This work proposes a transfer learning approach for multi-class classification of the seven prototypical expressions including the ‘neutral’ expression in children using a recently published child facial expression data set. This work holds promise to facilitate the development of technologies that focus on children and monitoring of children throughout their developmental stages to detect early symptoms related to developmental disorders, such as Autism Spectrum Disorder (ASD)

    Computational Theories of Curiosity-Driven Learning

    Get PDF
    What are the functions of curiosity? What are the mechanisms of curiosity-driven learning? We approach these questions about the living using concepts and tools from machine learning and developmental robotics. We argue that curiosity-driven learning enables organisms to make discoveries to solve complex problems with rare or deceptive rewards. By fostering exploration and discovery of a diversity of behavioural skills, and ignoring these rewards, curiosity can be efficient to bootstrap learning when there is no information, or deceptive information, about local improvement towards these problems. We also explain the key role of curiosity for efficient learning of world models. We review both normative and heuristic computational frameworks used to understand the mechanisms of curiosity in humans, conceptualizing the child as a sense-making organism. These frameworks enable us to discuss the bi-directional causal links between curiosity and learning, and to provide new hypotheses about the fundamental role of curiosity in self-organizing developmental structures through curriculum learning. We present various developmental robotics experiments that study these mechanisms in action, both supporting these hypotheses to understand better curiosity in humans and opening new research avenues in machine learning and artificial intelligence. Finally, we discuss challenges for the design of experimental paradigms for studying curiosity in psychology and cognitive neuroscience. Keywords: Curiosity, intrinsic motivation, lifelong learning, predictions, world model, rewards, free-energy principle, learning progress, machine learning, AI, developmental robotics, development, curriculum learning, self-organization.Comment: To appear in "The New Science of Curiosity", ed. G. Gordon, Nova Science Publisher

    Detection of Children Abuse by Voice and Audio Classification by Short-Time Fourier Transform Machine Learning implemented on Nvidia Edge GPU device

    Full text link
    The safety of children in children home has become an increasing social concern, and the purpose of this experiment is to use machine learning applied to detect the scenarios of child abuse to increase the safety of children. This experiment uses machine learning to classify and recognize a child's voice and predict whether the current sound made by the child is crying, screaming or laughing. If a child is found to be crying or screaming, an alert is immediately sent to the relevant personnel so that they can perceive what the child may be experiencing in a surveillance blind spot and respond in a timely manner. Together with a hybrid use of video image classification, the accuracy of child abuse detection can be significantly increased. This greatly reduces the likelihood that a child will receive violent abuse in the nursery and allows personnel to stop an imminent or incipient child abuse incident in time. The datasets collected from this experiment is entirely from sounds recorded on site at the children home, including crying, laughing, screaming sound and background noises. These sound files are transformed into spectrograms using Short-Time Fourier Transform, and then these image data are imported into a CNN neural network for classification, and the final trained model can achieve an accuracy of about 92% for sound detection.Comment: 5 pages, 7 figures, PRAI 202
    • …
    corecore