529 research outputs found

    Infinitary Tableau for Semantic Truth

    Get PDF
    Acknowledgements I would like to thank Philip Welch for his assistance and acknowledge the late Greg Hjorth for the time he spent in helping me learn how to use the tools used in the paper. I would also like to thank Hannes Leitgeb for giving me the opportunity to present this material and for providing me with valuable feedback. And I would like to thank Benedict Eastaugh and Marcus Holland for helping make the final sections of this paper more accessible in the way it was intended.Peer reviewedPostprin

    Playing with truth

    Get PDF

    Type-free truth

    Get PDF
    This book is a contribution to the flourishing field of formal and philosophical work on truth and the semantic paradoxes. Our aim is to present several theories of truth, to investigate some of their model-theoretic, recursion-theoretic and proof-theoretic aspects, and to evaluate their philosophical significance. In Part I we first outline some motivations for studying formal theories of truth, fix some terminology, provide some background on Tarski’s and Kripke’s theories of truth, and then discuss the prospects of classical type-free truth. In Chapter 4 we discuss some minimal adequacy conditions on a satisfactory theory of truth based on the function that the truth predicate is intended to fulfil on the deflationist account. We cast doubt on the adequacy of some non-classical theories of truth and argue in favor of classical theories of truth. Part II is devoted to grounded truth. In chapter 5 we introduce a game-theoretic semantics for Kripke’s theory of truth. Strategies in these games can be interpreted as reference-graphs (or dependency-graphs) of the sentences in question. Using that framework, we give a graph-theoretic analysis of the Kripke-paradoxical sentences. In chapter 6 we provide simultaneous axiomatizations of groundedness and truth, and analyze the proof-theoretic strength of the resulting theories. These range from conservative extensions of Peano arithmetic to theories that have the full strength of the impredicative system ID1. Part III investigates the relationship between truth and set-theoretic comprehen- sion. In chapter 7 we canonically associate extensions of the truth predicate with Henkin-models of second-order arithmetic. This relationship will be employed to determine the recursion-theoretic complexity of several theories of grounded truth and to show the consistency of the latter with principles of generalized induction. In chapter 8 it is shown that the sets definable over the standard model of the Tarskian hierarchy are exactly the hyperarithmetical sets. Finally, we try to apply a certain solution to the set-theoretic paradoxes to the case of truth, namely Quine’s idea of stratification. This will yield classical disquotational theories that interpret full second-order arithmetic without set parameters, Z2- (chapter 9). We also indicate a method to recover the parameters. An appendix provides some background on ordinal notations, recursion theory and graph theory

    On P-transitive graphs and applications

    Full text link
    We introduce a new class of graphs which we call P-transitive graphs, lying between transitive and 3-transitive graphs. First we show that the analogue of de Jongh-Sambin Theorem is false for wellfounded P-transitive graphs; then we show that the mu-calculus fixpoint hierarchy is infinite for P-transitive graphs. Both results contrast with the case of transitive graphs. We give also an undecidability result for an enriched mu-calculus on P-transitive graphs. Finally, we consider a polynomial time reduction from the model checking problem on arbitrary graphs to the model checking problem on P-transitive graphs. All these results carry over to 3-transitive graphs.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (∀x ∃y A(x,y))⇒∃w ∀x A(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (∀x ∃y A(x,y))⇒∃z ∀x ∃y (y≤T(x,z)∧A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    Fragments and frame classes:Towards a uniform proof theory for modal fixed point logics

    Get PDF
    This thesis studies the proof theory of modal fixed point logics. In particular, we construct proof systems for various fragments of the modal mu-calculus, interpreted over various classes of frames. With an emphasis on uniform constructions and general results, we aim to bring the relatively underdeveloped proof theory of modal fixed point logics closer to the well-established proof theory of basic modal logic. We employ two main approaches. First, we seek to generalise existing methods for basic modal logic to accommodate fragments of the modal mu-calculus. We use this approach for obtaining Hilbert-style proof systems. Secondly, we adapt existing proof systems for the modal mu-calculus to various classes of frames. This approach yields proof systems which are non-well-founded, or cyclic.The thesis starts with an introduction and some mathematical preliminaries. In Chapter 3 we give hypersequent calculi for modal logic with the master modality, building on work by Ori Lahav. This is followed by an Intermezzo, where we present an abstract framework for cyclic proofs, in which we give sufficient conditions for establishing the bounded proof property. In Chapter 4 we generalise existing work on Hilbert-style proof systems for PDL to the level of the continuous modal mu-calculus. Chapter 5 contains a novel cyclic proof system for the alternation-free two-way modal mu-calculus. Finally, in Chapter 6, we present a cyclic proof system for Guarded Kleene Algebra with Tests and take a first step towards using it to establish the completeness of an algebraic counterpart
    • …
    corecore