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Chapter 1

Introduction

This thesis consists of seven papers that all (but one) revolve around a single
topic: that of self-referential truth. The papers, though conceptually connected,
stand on their own in the sense that they can be read independently of one
another. The order in which the papers are put, however, is such that the
papers that occur later on in the thesis may refer to results that were established
in earlier papers. Although the papers have a formal character, our formal
work is motivated by certain philosophical intuitions concerning the notion of
truth. Some of the papers hint at these intuitions, often in their introduction
or conclusion, but there is no single paper that is devoted to explicating those
intuitions as such. The general outlook of this introduction discusses, albeit in a
leisurely way, the main intuitions that govern our formal work. More generally,
the outlook explains how the various papers of this thesis are connected. The
general outlook is followed by a section in which we make some comments on
possible directions for future work. The introduction concludes with an overview
of the thesis, consisting of the abstracts of the seven papers.

1.1 General outlook

(1) From riddles about truth to theories of truth. In the 1986 movie
Labyrinth, Sarah has to reach the castle, located in the center of the labyrinth,
in order to get back her kidnapped baby brother. On her journey to the castle
Sarah faces the following challenge:

There are two doors and two guards, one who always lies and one
who always speaks the truth. One door leads to the castle in the
center of the labyrinth and the other door leads to certain death.
The guards know which road leads to the castle. The riddle is to
find out which door leads to the castle by asking one of the guards
a single yes-no question.

The Labyrinth riddle is due to Raymond Smullyan, who invented lots of riddles
with the same structure as the Labyrinth riddle. An essential characteristic of
Smullyan’s riddles is the presence of what he calls knights, who always speak the
truth, and knaves, who always lie. Another such characteristic is that, in order
to solve the riddle, you have to address yes-no questions to creatures that may
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be knights or knaves; the difficulty is that, typically, you do not know whether
you are facing a knight or a knave. Riddles which have those characteristics, we
call riddles about truth.

Facing the two guards, Sarah manages to continue her journey successfully
by addressing the following yes-no question to the guard of the left door:

Would he—Sarah points at the guard of the right door—tell me that
this door—Sarah points at the left door—leads to the castle?

Upon hearing Sarah’s question, the left guard needs some time to deliberate,
but then he answers the question with ‘yes’. From this answer, Sarah concludes
that the right door leads to the castle and, before she continues her journey to
the castle via the right road, she spends some time on explaining the perplexed
guards the rationale of her solution.

In a broad sense, the rationale of solutions to riddles about truth, of which
the Labyrinth riddle is an example, is the topic of Section 2 and 3. For sure,
Sarah’s reasoning is correct, but, so one may ask, in virtue of which principles?
In order to answer that question, Section 2 develops a framework in which riddles
about truth can be formalized. The relevance of the development of such a
framework is partly explained by the light that it sheds on another riddle about
truth, called the Hardest Logic Puzzle Ever (HLPE) by George Boolos, that
attracted quite some attention in the academic literature. HLPE is formulated
as follows:

The Puzzle: Three gods A, B and C are called, in some order, True,
False, and Random. True always speaks truly, False always speaks
falsely, but whether Random speaks truly or falsely is a completely
random matter. Your task is to determine the identities of A, B,
and C by asking three yes-no questions; each question must be put
to exactly one god. The gods understand English, but will answer
all questions in their own language, in which the words for ‘yes’ and
‘no’ are ‘da’ and ‘ja’ in some order. You do not know which word
means which. (Boolos [9, p62])

The solutions to (versions of) HLPE as given by Boolos and others (cf. [47],
[43], [53], [56]) share a common characteristic; they are all stated in natural
language. Our framework provides a formal basis for comparison of natural lan-
guage solutions to riddles about truth in general, and to HLPE in particular.
Besides representing natural language solutions, our framework can be used to
make precise certain claims that the authors make about their solutions. For
instance, Tim Roberts [47] criticizes Boolos’ solution to HLPE as being “too
complicated”, after which he comes up with an alterative solution to HLPE

that, so he claims, is less complicated. Upon representing their respective so-
lutions in our framework, however, we see that there is an important sense in
which it is Roberts’ solution that is more complicated.

In formalizing riddles about truth, the crucial question is how we should
model the behavior of knights (and knaves). As a knight always speaks truly,
the behavior of a knight is obviously connected to the notion of truth. It is no
surprise then, that our formalizations of the behavior of a knight rely on formal
theories of truth. We feel that, besides shedding light on solutions to HLPE,
another interesting feature of our formalizations of riddles about truth is the

2



connection they bear with theories of truth.
In Section 4, 5, 6 and 7, we are not concerned with riddles about truth1,

but rather with (formal) theories of truth. There are close connections between
the theories of truth that are considered in this thesis. On the technical side,
the connections can be understood from the relations between the frameworks
that we develop to define and study theories of truth: in Section 4, we develop
assertoric semantics, in Section 5, we develop the method of closure games and
in Section 7, we develop the strict-tolerant calculus. The development of our
three frameworks is guided by a single rationale, which may be called a de-
flationary, assertoric conception of truth. Before we turn to this rationale, we
introduce the notions of a quotational truth language, a ground model and of a
theory of truth, which play an important role in all (but one) of the sections
of this thesis. After our presentation of the main ingredients of a deflationary,
assertoric conception of truth, we explain how it is cashed out in terms of the
three—interrelated—formal frameworks that constitute the heart of this thesis.

(2) Quotational truth languages and ground models. A quotational
language is a first order language L with some additional structure, guaranteeing
that L has the means to refer to all of its sentences via quotational names. A
quotational language generalizes and formalizes a natural language platitude
pertaining to quoting: ‘snow is white’ refers to the following sentence: snow is
white. Similarly, each sentence σ of a quotational language L has a quotational
name, [σ], in L. A quotational truth language LT is a quotational language with
a distinguished predicate symbol, T , whose intended interpretation is that of a
truth predicate. That is, T (x) is to be read as ‘x is true’. A ground model for (a
quotational truth language) LT is a classical interpretation of L, the truth-free
fragment of LT . Intuitively, a ground model represents “the non-semantic states
of affairs”. A ground model M equips L with a Classical semantic valuation,
which we will denote as CM ∶ Sen(L) → {1,0}. By a theory of truth, we will
mean. . .

. . . a theory that purports to explain for a first-order language LT

what sentences are assertible in a [ground] modelM . (Gupta, [23, p19])

(3) Explanatory versus expressive function of truth. Suppose that you
confront Sarah with the following formulation of the Labyrinth riddle:

There are two doors and two guards. One guard is a knight, the
other one a knave. One door leads to the castle in the center of
the labyrinth and the other door leads to certain death. The guards
know which road leads to the castle. The riddle is to find out which
door leads to the castle by asking one of the guards a single yes-no
question.

Suppose that Sarah is not familiar with Smullyan’s work; Sarah has never heard
of knights (and knaves). Hence, she asks for an explanation2: what makes a
knight? As a response to Sarah’s question, we offer the following explanation:

1Although Section 4 is concerned with query problems which, in a sense, are abstractions
of riddles about truth.

2Concerning Sarah’s question, see also What makes a knight? [59], a paper that didn’t
make it to this thesis.
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A knight is a creature which behaves as follows: a knight answers
a yes-no question with ‘yes’ just in case the associated declarative
sentence is true, whereas he answers with ‘no’ otherwise.

As an example, the declarative sentence associated with the yes-no question ‘is
snow white?’ is ‘snow is white’. As ‘snow is white’ is true, a knight answers the
associated yes-no question with ‘yes’. Further, we explain Sarah how a knave
behaves, after which she successfully continues her journey.

In terms of LT , our explanation of a knight’s behavior can be phrased as
follows:

∀x (A(x, cy)↔ T (x))∧ (A(x, cn)↔ ¬T (x)) (1.1)

Here A(x, y) reads as “the Answer of the knight to x is y”, cy and cn stand
for ‘yes’ and ‘no’ respectively, ↔ is the material biconditional and ∧ expresses
conjunction.

In explaining, to Sarah, what a knight is, we use the notion of truth. Hence,
our toy example suggests that truth can play an explanatory role or function.
However, Paul Horwich [28] famously argued that truth never plays an explana-
tory role. Rather, the sole function of our truth predicate is an expressive one.
Although we are sympathetic to this particular claim of Horwich, we have cer-
tain qualms with his conception of truth, minimalism, to which it is wedded.
We first sketch a typical “Horwichean” analysis of our explanation to Sarah,
after which we explain on which points we agree and disagree with Horwich.

(4) A minimalist explanation of a knight’s behavior. According to Paul
Horwich, the expressive function of the truth predicate is, in an important
sense, all there is to the notion of truth. It is generally acknowledged that an
important function of our truth predicate is an expressive one, allowing us to
make assertions for which the truth predicate is indispensable. Examples of
such assertions are generalizations (1.2) and blind ascriptions (1.3) .

Everything the Pope says ex cathedra is true. (1.2)

Einstein’s first theorem is true. (1.3)

That truth plays an expressive function is uncontroversial. That the function
of truth is exhausted by its expressive function, is a thought that is associated
with, amongst others, Horwich conception of truth, which is called minimal-
ism. According to Horwich, the sole function of truth is an expressive one, and
truth can play its expressive role due to our ‘unconditional acceptance of the
(unproblematic) instances of the equivalence schema’. Or, to quote Horwich:

The entire conceptual and theoretical role of truth may be explained
on the basis of all uncontroversial instances of the equivalence schema:
it is true that p if and only if p.

(Horwich, [28, p5])

Horwich states the equivalence schema, consisting of the Tarski-biconditionals,
in terms of propositions, we do so in terms of sentences3. By exploiting quote
names, we may state the equivalence schema ES as follows:

ES ∶ T ([σ])↔ σ

3More generally, the main results of this thesis are obtained by modeling truth as a predicate
T applying to the sentences of a formal language. Now, it may very well be that, for subtle
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Thus, according to Horwich’s minimalism, the sole function of truth is an ex-
pressive one and truth has this function in virtue of our commitment to all
instances of ES. Let’s now turn to a minimalist analysis of the role of truth in
the explanation of a knight’s behavior.

A knight is a creature that answers ‘is snow white?’ with ‘yes’ because snow
is white. Further, a knight answers ‘Is the number of particles in the universe
odd?’ with ‘yes’ just in case the number of particles in the universe is odd.
More generally, a knight answers ‘s?’ with ‘yes’ just in case s. More formally,
the behavior of a knight is specified by the following axiom schema:

(A([σ], cy)↔ σ) ∧ (A([σ], cn)↔ ¬σ) (1.4)

In contrast to (1.1), the account of a knight’s behavior as in (1.4) does not
invoke the notion of truth. As (1.4) is a “truth-free explanation” of a knight’s
behavior, we see that the role of truth in such an account is not, fundamentally,
an explanatory one. Being finite creatures though, we cannot communicate
how a knight behaves by asserting all of the infinitely many instances of (1.4).
However, by exploiting the truth predicate in combination with a universal
quantifier, we can, albeit indirectly, assert all instances of (1.4) by asserting
(1.1). Thus, the truth predicate plays an expressive function in the explanation
of a knight’s behavior. Moreover, to realize this expressive function, ES plays
a crucial role:

1. ∀x (A(x, cy)↔ T (x))∧ (A(x, cn)↔ ¬T (x))
2. (A([σ], cy)↔ T ([σ])) ∧ (A([σ], cn)↔ ¬T ([σ])) (from 1)

3. A([σ], cy)↔ T ([σ]) (from 2)

4. T ([σ])↔ σ (from ES)

5. A([σ], cy)↔ σ (from 3, 4)

6. A([σ], cn)↔ ¬σ (by taking steps similar to 2,3,4)

7. (A([σ], cy)↔ σ) ∧ (A([σ], cn)↔ ¬σ) (from 5, 6 )

So, (1.1) allows us, in combination with ES (and classical logic), to explain the
behavior of a knight by (indirectly) asserting all instances of (1.4); by asserting
(1.1) we commit ourselves to all instances of (1.4). However, in “the explanation
itself”, i.e., in (1.4), the notion of truth does not play a role.

To be sure, this was just a toy example. But it has the same structure as
the examples that are used by Horwich [28] to argue for his claim that the sole
function of truth is an expressive one. In the third chapter of [28], called The
Explanatory Role of the Concept of Truth, Horwich seeks to rebut the following
claim that he ascribes to, amongst others, Putnam [42] and Field [14].

philosophical reasons, the truth predicate of our language, ‘. . . is true’, must be understood
as applying to propositions (or beliefs) rather than to sentences. Then again, it seems that
these propositions are expressible via sentences and so our truth predicate applies at least
derivatively to sentences. Further, given our formal set-up, it is far more convenient to talk
about the truth predicate (be it ours or a formal one) as applying to sentences. Hence, we
will do so.
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Truth has certain characteristic effects and causes. For example, true
beliefs tend to facilitate the achievement of practical goals. General
laws such as this call for explanation in terms of the nature of truth.
(Horwich, [28, p44])

Horwich rebuts the claim by showing that:

As we shall see [in various examples with the same structure as our
toy example], truth does indeed enter into explanatory principles,
but their validity may be understood from within the minimal theory
[i.e., the instances of the equivalence schema].

(Horwich, [28, p44])

That is, by analyzing cases where truth is purported to play an explanatory
role, we see that, in fact, the function of truth is to allow us to assert, albeit
indirectly via ES and logic, certain “truth-free sentences”.

(5) Agreeing with Horwich I am sympathetic to at least two ideas of Hor-
wich’s conception of truth.

First, I take it that the sole function of our truth predicate is indeed an ex-
pressive one. I will not argue for this claim though, but rather, build upon it.
When talking about truth though, some care is needed. For, so one may ask, is
it the property of ‘being true’ that is under consideration, the concept of truth,
or the predicate ‘ . . . is true’? According to some authors, Horwich’s minimalism
is correct in its analysis of the truth predicate, but it fails to account for the
role of, in particular, the concept of truth. For instance, Filip Buekens [10] takes
it that Horwich’s minimalism says the right things about the truth predicate,
but argues that it doesn’t account for the explanatory role of the truth concept
in rational reconstructions of what we mean and say. In this thesis, talk about
truth is to be understood as talk about the truth predicate. We take it that the
sole function of the truth predicate is an expressive one. By doing so, we do not
exclude the possibility that, say, the concept of truth fulfills a function in our
cognitive lives that cannot be understood in terms of the expressive function of
the truth predicate. However, this thesis is not concerned with such possibili-
ties.

Second I am sympathetic to Horwich’s idea that, in an important sense,
“truth has no underlying nature”. To illustrate the latter claim, consider the
following sentences:

Snow is white. (1.5)

Theft is (morally) wrong. (1.6)

Although their subject matters differ widely, both sentences are true. Accord-
ing to substantial theories of truth, (1.5) and (1.6) must share a property, P , in
virtue of which they are true. Substantial theories of truth have explicated P

as, e.g.,“correspondence to the facts” (correspondence theory), or “membership
of a coherent set of beliefs” (coherence theory). When “truth has no underlying
nature” the substantial theories fail, because truth is a primitive notion, i.e.,
there is no P which explains what all truths have in common. In this thesis, we
do not argue for the claim that truth is a primitive notion. Rather, we build
upon the assumption that truth is best understood as such.

6



A conception of truth which understands truth as a primitive notion (which
only plays an expressive function) is called a deflationary conception of truth. In
this thesis, we will develop a deflationary conception of truth which differs from
Horwich’s minimalism in the following two, related, ways. First, truth plays
its expressive function not in virtue of ES, but rather, in virtue of its trans-
parency, as explained in (10) below. Second, the primitivity of truth is not to
be understood in terms of our ‘unconditional acceptance of the (unproblematic)
instances of the equivalence schema’, but rather, in terms of our ‘unconditional
acceptance of the assertoric rules of truth’, as explained immediately below.

(6) Disagreeing with Horwich: assertoric rules of LT . Although I am
sympathetic to the deflationary spirit of Horwich’s minimalism, the equivalence
schema will not have a major role to play in this thesis. In this thesis, the leading
role is not for the equivalence schema, but rather for the assertoric rules of truth
which, in this thesis4, will be formulated according to the following schema:

AT ([σ])

Aσ

DT ([σ])

Dσ

The signs A and D are associated with an assertion and denial respectively.
Before we comment on the association, we remark that the assertoric rules for
truth allow us to understand truth as being on a par with the other logical
connectives, in the sense that these can also be understood via their assertoric
rules. For instance, here are the rules for negation and conjunction:

A¬α

Dα

D¬α

Aα

Aα∧β

Aα,Aβ

Dα∧β

Dα ∣Dβ

In this thesis, we distinguish two distinct readings of the assertoric rules of LT ,
which we call the commitment and entitlement reading respectively. The two
readings of the assertoric rules differ in the meaning that they attach to the
signs A and D.

Commitment reading On the commitment reading, Aσ and Dσ indicate, respec-
tively, a commitment to an assertion of σ and a commitment to a denial of σ.
We take it that there are two ways in which one can become committed to an
assertion (denial) of σ. In a direct manner, via an outright assertion (denial) of
σ, or in an indirect manner, i.e., as a function of (previous) outright assertoric
actions and the assertoric rules. For instance, I become indirectly committed
to an assertion of α via an outright assertion of α ∧ β and the assertion rule
of ∧, or conversely, I become indirectly committed to an assertion of α ∧ β via
(previous) outright assertions of α and β and the assertion rule of ∧.

4In Section 7, superscripts will be added to indicate the sense (strict or tolerant) in which
a sentence is asserted or denied.
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We take it that (but see Section 6) the commitment reading of the assertoric
rules is valid in both directions5. For instance: one is committed to an assertion
(denial) of T ([σ]) iff one is committed to assertion (denial) of σ. Similar for
the other assertoric rules. A remark is in order here. Consider the following
sentence:

JC: Ceasar had exaclty 12 hairs on his big toe when he crossed the Rubicon.

Suppose that I assert JC∨¬JC, which seems perfectly fine, as either Ceasar had
or didn’t had 12 hairs on his big toe when he crossed the Rubicon. But then,
under the commitment reading of the assertoric rules, by asserting JC ∨¬JC I
become (indirectly) committed to an assertion of JC or to an assertion of ¬JC.
But this seems absurd, as I do not (and no one does) know whether JC or ¬JC.
Hence, so one may ask, which sense of assertion and denial do we model by
the assertoric interpretation of the AD rules. A quick and dirty answer is that
we are modeling idealized assertbility, that is, assertibility for an agent who has
full knowledge of all non semantic facts as represented by the ground model.
This approach is explicitly taken in Section 4, which considers the assertoric
actions of an oracle, which is omniscient in the sense alluded to. In Section 6
though, we observe that the reaction to JC depends on the knowledge account
of assertion, and that this account is not indisputable. There, we suggest that
it is possible to make sense of our reading of the assertoric rules along the lines
of the truth account of assertion as developed by Weiner [55]. Further, Section
6 illustrates (via a rudimentary example) that the techniques that are devel-
oped in this thesis to model assertoric norms can be adapted to account for the
knowledge account of assertion as well.

Entitlement reading On the entitlement reading, Aσ and Dσ indicate, respec-
tively, an entitlement to an assertion of σ and an entitlement to a denial of σ.
Whether or not one is entitled to assert (deny) σ depends, in general, on the
assertoric norm under consideration.

The notion of an assertoric norm will play a crucial role in this thesis, as will
be explained immediately below. Let us note that, in contrast to the commit-
ment reading, we do not take the entitlement reading of the assertoric rules to
be (generally) valid in both directions—even in situations of “full knowledge of
non semantic facts”—as will be explained in (14) below.

(7) Assertoric norms It is generally acknowledged that our assertoric prac-
tice, i.e., our practice of asserting and denying sentences, is a rule based and
(hence) normative practice. What is not generally acknowledged is how the
norm that governs this practice should be understood. Typically, a discussion
of an assertoric norm consists of a specification of circumstances under which it
is allowed to assert a sentence6. Here are some proposed assertoric norms:

- Knowledge norm: one is allowed to assert σ only if one knows σ.

5The directions alluded to in the notions valid in upwards direction, valid in downwards

direction and valid in both directions are explained in accordance with the graphical represen-
tation of the assertoric rules.

6Typically, it is taken for granted that to deny a sentence is to assert its negation. On this
view, it suffices to specify norms for assertion only. We’ll return to this view in more detail
below.
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- Truth norm: one is allowed to assert σ only if σ is true.

- Warrant norm: one is allowed to assert σ only if one has “sufficient”
warrant for σ.

There is an important distinction between the Knowledge, Truth and Warrant
norm on the one hand, and the assertoric norms that will be considered in this
thesis, on the other. We may say that the Knowledge, Truth and Warrant
norm are Prussian norms. Just like the Prussian conception of law, the norms
focus upon what one is allowed to do, by listing those actions that are to be
deemed “legal” and by specifying that everything is forbidden which is not ex-
plicitly permitted. As we will see, our assertoric norms focus upon what one is
forbidden to do, by listing those actions that are to be deemed “a crime” and
by then specifying that everything is permitted that is not explicitly forbidden7.
In this sense, our norms resemble the English conception of law, and we may
say that the norms that will be considered in this thesis are English norms.
Another distinction between the Knowledge, Truth and Warrant norm and the
assertoric norms of this thesis, is that the latter have a more formal character.
To illustrate both distinctions at once, let M be a ground model—remember
that, intuitively, M specifies the “non-semantic states of affairs”, and that it
gives rise to a classical valuation CM of L—and consider the following assertoric
norm which will have a major role to play in this thesis8.

The strict norm. It is (explicitly) forbidden to assert (deny) σ just is case, by
asserting (denying) σ, you become committed, via the assertoric rules, to:
1) an assertion of an atomic truth-free sentence α of L with CM(α) = 0, or
2) a denial of an atomic truth-free sentence α of L with CM(α) = 1, or
3) an assertion and a denial of an arbitrary sentence of LT .
Whenever it is not (explicitly) forbidden to assert (deny) σ, it is allowed to
assert (deny) σ.

In a catchy slogan, the strict norm may be stated as follows: thou shalt respect
the world and thou shalt not contradict thyself. The interpretation of the third
condition is clear; as assertion and denial are mutually exclusive, one cannot live
up to commitments which specify that you are committed to an assertion and a
denial of the same sentence9. The interpretation of the first two conditions relies
on the interpretation of CM . In common parlance, CM(α) = 1 and CM(α) = 0
abbreviate ‘α is true’ and ‘α is false’ respectively. The common parlance may
also be applied in the present setting, but please note that, in doing so, the
truth predicate plays an expressive, and not an explanatory function. Thus, we
do not explain assertion and denial in terms of truth. More concretely, an ex-
ample of a truth free-sentence is ‘snow is white’. It is beyond doubt that we are
allowed to assert ‘snow is white’ and it is such information that is captured, via
a ground model, by the classical valuation CM . For the purposes of this thesis,
such a (minimal) interpretation of CM suffices. According to this interpretation,
we do not have to (and do not want to) say that ‘snow is white’ is assertible

7The Prussian / English terminology is taken from van Fraassen [54], who uses it to draw
a distinction between two accounts of rationality.

8See in particular Section 4, 5 and 7
9See Section 7 though, were we consider the thought that, e.g., Liar sentences, are both

tolerantly assertible and deniable.
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because it is true. Likewise, we do not have to (and do not want to) say that
‘snow is white’ is true because it is assertible. Saying that ‘snow is white’ is
assertible because it is true is tantamount to ascribing an explanatory role to
truth. Saying that ‘snow is white’ true because it is assertible is tantamount to
ascribing an “underlying nature” to truth. As we explained in (5), we agree
with Horwich that such ascriptions should be avoided.

(8) An assertoric conception of truth. We understand the notion of truth,
on a par with the (other) logical connectives, in terms of its assertoric rules.
Therefore, we will say that we advocate an assertoric conception of truth. As
such, an assertoric conception of truth is not committed to the strict norm,
although the norm will play a major role in this thesis. Further details of our
assertoric conception of truth will be filled in below. We will start though, by ex-
plaining how the phenomenon of self-referential truth testifies that accepting the
assertoric rules for truth significantly differs from accepting the instances of ES.

(9) Self-reference: how the assertoric truth rules and ES come apart.
There is a fundamental distinction between accepting the assertoric rules of
truth, on the one hand, and the equivalence schema ES, on the other. The
fundamental character of the distinction may not be clear at first sight. For,
can’t we say that, in asserting the Tarski-biconditional ‘ ‘snow is white’ is true
if and only if snow is white’, we thereby express that we accept the (assertoric)
truth rules pertaining to the sentence ‘snow is white’? If such a relation holds
in general, then, to call the distinction between ES and the assertoric rules
fundamental is to make too much fuss.

Very well, but the relation between the Tarski-biconditional and the asser-
toric truth rule of a sentence is not always as in the case of ‘snow is white’. The
phenomenon of self-referential truth, which is the central topic of this thesis,
testifies that we may accept the assertoric truth rules for any sentence, while
there are sentences for which we are reluctant to express this acceptance via a
Tarski-biconditional. To illustrate that the rules for truth and the equivalence
schema may come apart in the sense alluded to, consider :

sentence (1.7) is not true. (1.7)

We may say that (1.7) says, of itself, that is not true. Sentences which assert
their own untruth, such as (1.7), are called Liar sentences. In terms of LT , a
Liar sentence will be represented as the sentence ¬T (λ), where λ is specified to
denote10 ¬T (λ). We will now use ¬T (λ) to explain, in terms of our framework,
the distinction between accepting the assertoric truth rules and accepting ES.

Suppose that you assert ¬T (λ). By doing so, you take up assertoric com-
mitments in accordance with the assertoric rules; in particular, you take up the
commitment to deny T (λ)—in accordance with assertoric rules for negation.
Further, the commitment to deny T (λ) brings with it further assertoric com-
mitments, which, on their turn, . . . By asserting ¬T (λ), we take up assertoric
commitments that, according to the strict norm, we cannot live up to, for:

10In fact, this thesis exploits two distinct ways to express that ‘λ denotes ¬T (λ)’. In
Section 7, we do so in our object language by exploiting an identity sign ≈ via the sentence:
λ ≈ [¬T (λ)]. In Section 2,3,4,5 and 6 we do so via a denotation function I which is such that
I(λ) = ¬T (λ).

10



1. A¬T (λ) (asserting ¬T (λ))
2. DT (λ) (from 1 and the rule A¬)

3. DT ([¬T (λ)]) (from 2 by substitution, as λ denotes ¬T (λ))
4. D¬T (λ) (from 3 and the rule DT )

Hence, by asserting ¬T (λ) you become, via the assertoric rules, committed to
a denial of ¬T (λ). Accordingly, an assertion of ¬T (λ) is forbidden. Dually,
a denial of ¬T (λ) is also seen to be forbidden. Hence, one should neither
assert nor deny ¬T (λ). To arrive at the judgement that the Liar is neither
assertible nor deniable, we applied the assertoric truth rules pertaining to the
Liar. Although we accept these rules, we cannot express that we do so via the
associated Tarski-biconditional of (1.8).

T ([¬T (λ)])↔ ¬T (λ) (1.8)

By asserting or denying (1.8), we likewise take up commitments that we cannot
live up to according to the strict norm, as the reader may verify for himself.
So, (1.8) shares its assertoric status with the Liar and so, in particular, it is not
allowed—under the strict norm—to assert (1.8). Hence, our acceptance of the
assertoric truth rules pertaining to the Liar cannot be expressed via an assertion
of the associated instance of the equivalence schema. Accepting the assertoric
rules for truth thus differs from accepting all instances of ES.

To be sure, Horwich reserves a central role for all uncontroversial instances
of the equivalence schema, and (1.8) is the canonical example of a controversial
instance of ES: including (1.8) in ES produces an inconsistent theory from
which—given Horwich’s commitment to classical logic—everything follows. So,
Horwich’s minimalism needs to be backed up by a sieve that can demarcate the
controversial from the uncontroversial instances of ES. There may very well be
such a sieve11. Then again, we feel that the introduction of such a sieve is an ad
hoc move. However, the deflationary spirit (truth is a primitive notion whose
sole function is an expressive one) of Horwich’s position does not seem to rely
on his insistence on ES. More concretely, we can understand the primitivity of
truth in terms of its assertoric rules and we can explain its expressive function
in terms of its transparency. To illustrate this last remark, we return to the
explanation of a knight’s behavior.

(10) Transparency and the expressive function of truth. Recall that we
take a theory of truth to be. . .

. . . a theory that purports to explain for a first-order language LT

what sentences are assertible in a [ground] modelM . (Gupta, [23, p19])

In a considerable part of this thesis (Section 4, 5, 7), we will develop methods to
define (construct) theories of truth. As we will see later on, the methods wear
the assertoric conception of truth on their sleeves: roughly, a theory of truth
is defined by specifying a formal English assertoric norm which, in combination
with the assertoric rules, tells us which sentences of LT are assertible (and or

11Horwich sometimes suggests that all and only grounded—a notion that is discussed at
various places in this thesis—instances of ES are uncontroversial.
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deniable). All the theories of truth that will be defined in this thesis share the
characteristic that, according to these theories, truth is a transparent notion.
Many authors (most prominently Field [15] and Beall [5]) have argued that
truth can play its expressive function in virtue of this transparency. The follow-
ing quote explains the notion of transparency and, also, illustrates its central
importance in Beall’s conception of truth.

This book has a single aim: to concisely lay out and defend a simple,
modest approach to transparent truth and its inevitable paradoxes,
where transparent truth is entirely ‘see-through’ truth, a notion of
truth such that x is true and x are intersubstitutable in all (non-
opaque) contexts, for all (meaningful, declarative) sentences x of our
language. (Beall, [5, p.vii])

In our terminology, truth’s transparency is described as follows. Let φ be a
sentence of LT which contains T ([σ]) as a sub sentence and let φ′ result from
φ by replacing (one or more occurrences of) T ([σ]) with σ. A theory of truth
dictates that truth is transparent if, for all φ and φ′ that are related as indi-
cated, the assertoric status of φ is the same as that of φ′. Before we discuss
the relation between transparent truth and the assertoric conception of truth
in more detail, we first illustrate the sense in which the transparency of truth
ensures that truth can play its expressive function.

Remember that, for the sake of argument, we initially took our explanation
of a knight’s behavior to suggest that truth can play an explanatory function.
Then, we illustrated how Horwich would invoke his minimalist conception of
truth to rebut this suggestion. On behalf of Horwich, we argued that the func-
tion of truth in the explanation of a knight’s behavior is to let us take up a
commitment to all instances of (1.4) via an assertion of (1.1). Moreover, we
saw how this function could be realized (or explained) via (classical logic and)
the acceptance of the equivalence schema ES. However, the function (of taking
us to (1.4) via (1.1) ) can also be realized by means of a transparent notion of
truth. Here is how:

1. ∀x (A(x, cy)↔ T (x))∧ (A(x, cn)↔ ¬T (x))
2. (A([σ], cy)↔ T ([σ])) ∧ (A([σ], cn)↔ ¬T ([σ])) (from 1)

3. (A([σ], cy) ↔ σ) ∧ (A([σ], cn) ↔ ¬σ) (from 2 and truth’s trans-
parency)

More generally, the notion of transparent truth allows us12 to account for truth’s
expressive function without relying on the uncontroversial instances of ES.

(11) Transparent truth and Strong Kleene fixed point valuations. The
transparency of truth is a property of so called Strong Kleene (SK) fixed point
valuations. With M a ground model, VM ∶ Sen(LT ) → {0, 1

2
,1} is a SK fixed

point valuation over M just in case:

12Note that the transparency of truth does not guarantee that all (intuitively plausible)
truth involving generalizations are assertible according to a theory of truth. For instance,
according to Kripke’s minimal fixed point theory of truth (which satisfies the transparency of
truth), a statement like ‘for any sentences α and β, their disjunction is true iff α is true or β

is true’ is not assertible.
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- VM(σ) = CM(σ) for all σ ∈ Sen(L)
VM respects the ground model M .

- VM(T (σ)) = VM(σ), whenever σ denotes σ in M .
VM respects the identity of truth

- VM(¬σ) = 1 − VM(σ)
VM(α∧β) = min{VM(α), VM (β)}, VM(α∨β) = max{VM(α), VM (β)}
∃ and ∀ behave as generalized ∨ and ∧ respectively.

VM dictates that the logical connectives have a Strong Kleene semantics.

Thus formulated, a SK fixed point valuation VM is not a theory of truth in the
sense of this thesis, as the values 0, 1

2
and 1 as such do not inform us about the

assertoric status of the LT sentences. Sentences with value 1 will be assertible
(and not deniable), no doubt. Sentences with value 0 will be deniable (and not
assertible), for sure. The interpretation of 1

2
though, has been much disputed.

Before we comment on that dispute, we make a couple of remarks on the abstract
notion of a SK fixed point valuation, which will be useful later on.

Multiple SK fixed point valuations over M . There are various SK fixed
point valuations over a fixed ground model M . The Liar sentence though, has
to be valuated as 1

2
in any SK fixed point valuation; allotting it a value of 1 or

0 is incompatible with the Strong Kleene behavior of negation and the identity
of truth. To illustrate the existence of multiple SK fixed point valuations over
M , we turn to the “benign cousin” of the Liar. Consider:

sentence (1.9) is true. (1.9)

Sentence (1.9) says, of itself, that is true. Sentences which assert their own
truth, such as (1.9), are called Truthtellers. In terms of LT , a Truthteller will be
represented as the sentence T (τ), where τ is specified to denote T (τ). Clearly,
the valuation of the Truthteller does not depend on the ground model M . Then,
given the structure of the Truthteller, it is not hard to see that there are three
distinct types of SK fixed point valuations over M : those that valuate T (τ)
as 0, 1

2
and 1 respectively. We will use FP(LT ,M) to denote the set of all SK

fixed point valuations of LT over M .
The minimal fixed point. The set FP(LT ,M) can be equipped with a partial

order ≤, by stipulating that:

VM ≤ V ′
M ⇔ ∀σ ∈ Sen(LT ) ∶ VM (σ) = 1 ⇒ V ′

M(σ) = 1

It can be shown (see Kripke [33]) that (FPM(LT ),≤) has a least element, V min
M ,

which is called the minimal fixed point valuation over M . Kripke gives an intu-
itive motivation of V min

M in terms of an imaginary subject that starts to assert
(and deny) the truth-free sentences of L and, on the basis of these assertions, ex-
tends his assertoric actions to LT sentences in a cumulative way. For instance,
the imaginary subject asserts ‘snow is white’ and, on basis of that assertion,
further asserts “snow is white’ is true’. On the basis of that assertion, he then
asserts, say, “snow is white’ is true or grass is red’ and, further, the truth of
that disjunction. In a nutshell, Kripke’s imaginary subject starts with assertoric
actions that he is entitled to on the basis of the world (the ground model M)
and he works his way upwards, by following the assertoric rules in an upwards
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direction. Kripke shows that this upwards process culminates in the minimal
fixed point V min

M . It is in line with Kripke’s upwards story of the imaginary
subject to interpret the range of V min

M as follows:

- Vmin
M (σ) = 1: it is allowed to assert σ on basis of M .

- Vmin
M (σ) = 1

2
: it is neither allowed to assert nor to deny σ on basis of M .

- Vmin
M (σ) = 0: it is allowed to deny σ on basis of M .

Sentences which are valuated as 1
2

by V min
M will be called ungrounded. The

Truthteller is, just like the Liar, an example of an ungrounded sentence. Below,
we will consider an alternative interpretation of V min

M that is backed up by a
downwards story.

A SK fixed point valuation ensures the transparency of truth. That is, with
φ′ resulting from φ by replacing (one or more occurrences of) T ([σ]) with σ

and with VM a SK fixed point valuation, we have that VM(φ) = VM (φ′). Prima
facie, it seems that a SK fixed point valuation VM ensures the transparency of
truth via its second defining condition: the identity of truth. First looks are,
in this case, deceiving, as we will now show. For, a Supervaluation fixed point
valuation SM ∶ Sen(LT ) → {0, 1

2
,1} also respects the ground model M and the

identity of truth, but it violates the transparency of truth. To illustrate this,
there’s no need to define the notion of a Supervaluation fixed point valuation
in detail; the following remarks suffice. Let SM be a Supervaluation fixed point
valuation and let ¬T (λ) be a Liar. Then:

i. SM valuates all classical tautologies as 1.

ii. SM(σ) = SM(σ ∨ σ), for all sentences σ of LT .

iii. SM(¬T (λ)) = 1
2
.

From i, it follows that SM(¬T (λ)∨T (λ)) = 1 and so, as λ denotes ¬T (λ)—and
as we are allowed to substitute coreferential terms—we get that:

SM(¬T (λ)∨ T ([¬T (λ)])) = 1

From ii and iii, we know that ¬T (λ) ∨ ¬T (λ) is valuated as 1
2

by SM . But
¬T (λ)∨¬T (λ) is obtained from ¬T (λ)∨T ([¬T (λ)]) by substituting T ([¬T (λ)])
for ¬T (λ). Hence, according to SM “x is true and x are not intersubstitutable”,
i.e., SM violates the transparency of truth.

(12) Two novel frameworks for theories of truth. It is now time to have
a look at how, in this thesis, assertoric rules and assertoric norms are used to
induce theories of truth which respect the transparency of truth. In this the-
sis we develop two novel—interrelated—approaches to induce such theories of
truth: we develop two novel frameworks to define theories of truth. The frame-
works are called assertoric semantics (developed in Section 4, see also Section
5 and Section 7) and the method of closure games (developed in Section 5, see
also Section 6 and Section 7). Both frameworks define a theory of truth by
specifying the assertoric status of LT ’s sentences relative to an assertoric norm.
In both frameworks, the assertoric status of a sentence σ is determined by con-
sidering (calculating) whether we can live up, according to the norm, to the
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commitments that are associated with an assertion (denial) of σ. The frame-
works differ in their use of the assertoric rules. Assertoric semantics may be
interpreted as a semantic version of a signed tableau calculus for LT , which
(in an abstract sense) explains its use of the assertoric rules. The method of
closure games, on the other hand, takes the assertoric rules (together with an
assertoric norm) as constituting a two player game. Below, we turn to the two
frameworks13 in more detail.

(13) Assertoric semantics As we announced above, assertoric semantics is a
semantic version of a signed tableau calculus for LT : whereas tableau calculi
define proof systems, assertoric semantics is a semantic valuation tool. Relative
to a ground model M and upon specification of an assertoric norm ‡, assertoric
semantics returns a semantic valuation V‡

M of the sentences of LT . The valuation

V
‡
M

tells us which sentences of LT are assertible and / or deniable inM according

to ‡. To obtain V‡
M , assertoric semantics associates, with each sentence σ of LT ,

two assertoric trees: T
σ
A and T

σ
D. The assertion tree of σ, T

σ
A, keeps track of

the commitments that are associated with an assertion of σ, whereas its denial
tree T

σ
D keeps track of the commitments that are associated with a denial of

σ. Formally, an assertoric tree T
σ
X , where X ∈ {A,D}, is a set of branches and

a branch of T
σ
X is a minimal set of AD signed sentences, containing Xσ and

downwards saturated under the assertoric rules. The following example, where
¬T (λ) is the Liar and where W (s) is an atomic sentence of L, suffices to get
the idea:

A¬T (λ)∧W(s)

A¬T (λ)

AW(s)

DT (λ)

D¬T (λ)

AT (λ)

branch A1

D¬T (λ)∧W(s)

D¬T (λ)

AT (λ)

A¬T (λ)

DT (λ)

branch D1

DW(s)

branch D2

So, the assertion tree of ¬T (λ)∧W (s) contains a single branch, A1, whereas its
denial tree contains two branches: D1 and D2.

Whether or not one is able to live up to the commitments associated with
an assertion (denial) of σ depends, in general, on the assertoric norm under
consideration. Assertoric semantics formalizes assertoric norms as closure con-
ditions on the branches of the assertoric trees. Closure conditions are necessary
and sufficient conditions for a branch to be closed, whereas a branch that is not
closed is called open. Intuitively, the closure of a branch indicates that it is not
possible to live up to the assertoric commitments associated with that branch.

13In (1), we announced that we develop three frameworks in which to define and study
theories of truth. Besides assertoric semantics and the method of closure games, we also men-
tioned the strict-tolerant calculus. The strict-tolerant calculus, however, is not a framework
to define theories of truth, but rather, to study the consequence relations induced by such
theories as explained in (18) and (19) below.
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An assertoric tree is called closed just in case al its branches are closed, and is
called open otherwise. Intuitively, the closure of T

σ
A under closure condition ‡

in M indicates that, relative to assertoric norm ‡, it is not possible to live up to
the assertoric commitments associated with an assertion of σ in M ; when T

σ
A is

closed‡ in M we say that it is forbidden to assert σ according to ‡ in M . Dually,
when T

σ
A is open‡ in M we say that it is allowed to assert σ according to ‡ in

M . Hence, with ‡ an arbitrary closure condition and with M a ground model,
assertoric semantics induces a theory of truth, V‡

M , as follows:

V
‡
M(σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a ∶= (1,0), T
σ
A is open‡ in M & T

σ
D is closed‡ in M

b ∶= (1,1), T
σ
A is open‡ in M & T

σ
D is open‡ in M

n ∶= (0,0), T
σ
A is closed‡ in M & T

σ
D is closed‡ in M

d ∶= (0,1), T
σ
A is closed‡ in M & T

σ
D is open‡ in M

The values assertible only, both assertible and deniable, neither assertible nor
deniable and deniable only, wear their interpretation on their sleeves.

Let us illustrate our abstract account of assertoric semantics via a concrete
example. The strict norm as defined in (7) is, in fact, an example of a closure
condition. Let us stipulate that W (s) represents an attribution of whiteness
to snow, in other words, the ground model M is such that W (s) represents
‘snow is white’. Let us see how Vs

M , the assertoric valuation function induced
by the strict norm, valuates ¬T (λ)∧W (s). First, consider the assertion tree of
¬T (λ)∧W (s). Note that its sole branch is closed, as it contains both an assertion
and a denial of the Liar. Hence, the assertion tree of ¬T (λ) ∧W (s) is closed
and so it is forbidden (according to the strict norm) to assert ¬T (λ) ∧W (s).
Branch D1 of the denial tree of ¬T (λ) ∧W (s) is closed for the same reason:
it contains both an assertion and denial of the Liar. Branch D2 of the denial
tree is closed for a different reason: it contains a denial of ‘snow is white’. As
both its branches are closed, the denial tree of ¬T (λ) ∧W (s) is closed and so
it is forbidden (according to the strict norm) to deny ¬T (λ) ∧W (s). Hence,
¬T (λ) ∧W (s) is neither assertible nor deniable according to the strict norm.
The Truthteller T (τ) is an example of a sentence that is both assertible and
deniable according to the strict norm, which is testified by the fact that:

T
T (τ)
A = {{AT (τ)}} T

T (τ)
D = {{DT (τ)}}

Note that, although T (τ) is both assertible and deniable according to the strict
norm, it is not allowed to assert and deny the Truthteller “at the same time”14.
Asserting and denying T (τ) “at the same time” is, according to assertoric se-
mantics, tantamount to asserting T (τ) ∧ ¬T (τ). And, as an inspection of the
assertion tree of T (τ) ∧ ¬T (τ) reveals, it is not allowed to assert T (τ) ∧ ¬T (τ)
according to the strict norm:

14Strictly speaking, it is never possible to assert and deny any sentence whatsoever at the
same time: one (assertoric) action at a time. When we say that it is allowed to assert and
deny σ “at the same time”, we mean that it is allowed to take up a joint commitment to an
assertion of σ and to a denial of σ. To take up such a commitment, we can assert σ ∧ ¬σ (or
deny σ ∨ ¬σ).
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AT (τ)∧¬T (τ)

AT (τ)

A¬T (τ)

DT (τ)

More generally, it is, according to Vs
M , never allowed to assert and deny a sen-

tence “at the same time”.
Although assertoric semantics is a novel framework to define and study the-

ories of truth, Vs
M is a familiar function. For, Vs

M turns out to be identical to
the function K4

M , which Kripke [33] defined by quantifying over all SK fixed
point valuations over M , i.e. by quantifying over FP(LT ,M):

- K4
M(σ) = (1,0)⇔ ∃VM ∶ VM(σ) = 1 and /∃ VM ∶ VM(σ) = 0

- K4
M(σ) = (1,1)⇔ ∃VM ∶ VM(σ) = 1 and ∃VM ∶ VM(σ) = 0

- K4
M(σ) = (0,0)⇔/∃ VM ∶ VM(σ) = 1 and /∃ VM ∶ VM(σ) = 0

- K4
M(σ) = (0,1)⇔/∃ VM ∶ VM(σ) = 1 and ∃VM ∶ VM(σ) = 0

For a proof that Vs
M = K4

M and a discussion of the distinct philosophical in-
terpretations that we associate with those functions, the reader is referred to
Section 5. As K4

M is obtained by quantifying over all SK fixed point valuations
over M and as a SK fixed point valuation satisfies the transparency of truth, it
readily follows that K4

M satisfies the transparency of truth. Hence, as Vs
M = K4

M ,
Vs

M satisfies the transparency of truth.
Speaking of a strict norm suggests that we also have a tolerant norm around.

Indeed we do. The tolerant norm is obtained by removing the third condition
of the strict norm. That is, the closure conditions that represent the tolerant
norm are as follows:

Tolerant norm A branch B is closed just in case B contains:
1) Aα, where α is an atomic sentence of L s.t. CM(α) = 0, or
2) Dα, where α is an atomic sentence of L s.t. CM(α) = 1.

Thus, in a catchy slogan, the tolerant norm may be stated as follows: thou shalt
respect the world. We will use Vt

M to indicate the valuation function that is
induced by the tolerant norm. In contrast to Vs

M , the range of Vt
M consists of

three values: a, b and d. Just like Vs
M , the function Vt

M turns out to be a
familiar one: modulo a translation of a, b and d as, respectively, 1, 1

2
and 0,

Vt
M is identical to the SK minimal fixed point valuation V min

M , as we prove in
Section 7. Hence, Vt

M satisfies the transparency of truth.
Observe that Vt

M ’s assertoric interpretation of V min
M (σ) = 1

2
is diametrically

opposed to the Kripkean interpretation that was outlined above in (11). We
will use Kmin

M ∶ Sen(LT ) → {a,n,d} to denote the Kripkean interpretation of
V min

M , obtained by translating 1, 1
2

and 0 as, respectively, a, n and d. Indeed,

according to Kmin
M , ungrounded sentences are neither assertible nor deniable,

while they are both assertible and deniable according to Vt
M .

Remember that, according to Vs
M , sentences that are valuated as b are both
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assertible and deniable, but never “at the same time”. According to Vt
M how-

ever, sentences that are valuated as b are always both assertible and deniable
“at the same time”. The last remark readily follows from the Strong Kleene
compositionality of Vt

M : when Vt
M(σ) = b, we get that Vt

M(¬σ) = b, and so
Vt

M(σ ∧ ¬σ) = b, i.e., it is allowed to assert (and deny) σ ∧ ¬σ.
For sure, the fact that sentences of form σ ∧ ¬σ may be (tolerantly) assert-

ible is counterintuitive. According to Kmin
M , sentences of form σ ∧ ¬σ are never

assertible. In light of this observation, it is tempting to say that Kmin
M is a more

natural interpretation of V min
M than Vt

M . On the other hand, the intuition that
it is never allowed to assert a sentence of form σ∧¬σ seems to be closely related
to the intuition that it is always allowed to deny a sentence of form σ ∧¬σ. Fo-
cussing on the latter intuition, the roles are exactly reversed: according to Vt

M it
is always allowed to deny a sentence of form σ∧¬σ, whereas this is not the case
according to Kmin

M . More generally, it seems that there is an important sense in
which the vices and virtues of Kmin

M are on a par with, respectively, the virtues
and vices of Vt

M . However, from the perspective of assertoric semantics, there
is an important distinction between Vt

M and Kmin
M . For, according to assertoric

semantics, a sentence is valuated as b just in case both its assertoric trees are
open, whereas a sentence is valuated as n just in case both its assertoric trees are
closed. We defined Vt

M via the tolerant closure conditions, according to which
both assertoric trees of ungrounded sentences are open. On the other hand, I
do not know how to pick closure conditions that induce Kmin

M and according to
which, in particular, both assertoric trees of ungrounded sentences are closed.
Thus, in contrast to Kmin

M , Vt
M has a natural definition in the framework of

assertoric semantics.

(14) Vs
M , the entitlement reading and compositionality According to the

entitlement reading (cf.(6)) of the assertoric rules, the upwards direction of the
A∧ rule reads as follows:

it is allowed to assert α and it is allowed to assert β ⇒
it is allowed to assert α ∧ β.

Above, we explained that according to Vs
M , it is allowed to assert the Truthteller

T (τ). Similarly, it is allowed to assert the negation of the Truthteller, ¬T (τ),
according to Vs

M . However, we also explained that it is not allowed to assert
T (τ)∧¬T (τ) according to Vs

M . Hence, α ∶= T (τ) and β ∶= ¬T (τ) testify that the
upwards direction of the entitlement reading of the A∧ rule is not valid according
to Vs

M . In Section 4, we show that Vs
M validates the (entitlement reading of)

the assertoric rules in downwards direction though. Further, we show that an
arbitrary 4-valued assertoric valuation function VM ∶ Sen(LT ) → {a,n,b,d}
validates the assertoric rules in both directions just in case VM respects the
identity of truth and defines a 4-valued Strong Kleene semantics, a notion that
is conveniently explained via the Hasse diagram of FOUR = ({a,n,b,d},≤):
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a

bn

d

≤

VM is said to define a 4-valued Strong Kleene semantics just in case: 1) ¬ swaps
a for d and vice versa, while it acts as the identity operation on b and n, 2) ∧
and ∨ act as meet and join in FOUR, and 3) ∃ and ∀ behave as generalized ∨

and ∧ respectively.
Hence, as Vs

M does not validate the assertoric rules in both directions, it
does not define a 4-valued Strong Kleene semantics. Indeed, Vs

M does not define
a compositional semantics, in the sense that the semantic value of a complex
sentence can not be explained in terms of the semantic values of its constituents.
Compositionality is often cited of as an attractive property of a semantics:

Proponents of compositionality typically emphasize the productivity
and systematicity of our linguistic understanding. We can under-
stand a large—perhaps infinitely large—collection of complex ex-
pressions the first time we encounter them, and if we understand
some complex expressions we tend to understand others that can
be obtained by recombining their constituents. Compositionality is
supposed to feature in the best explanation of these phenomena.
(Szabó, [51])

Although Vs
M does not define a compositional semantics in the sense alluded

to above, I’m not sure whether this implies that it is not compositional in the
sense of Szabó’s remark. For instance, there is a sense in which Vs

M ’s semantic
valuation of α∧β (via the assertoric trees of α∧β) can be understood as a “re-
combination” of the assertoric trees of α and β. We will not enter this broader
discussion on (Vs

M ’s) compositionality. In what follows, we are only concerned
with the notion of compositionality according to which Vs

M ’s treatment of the
Truthteller, its negation and their conjunction testifies that Vs

M is not compo-
sitional. According to this notion of compositionality, Vt

M is compositional.
There are many senses in which one can answer the following question: why

is Vs
M not compositional? For instance, one can cite the definition of composi-

tionality and show that Vs
M does not satisfy it; indeed, in that sense we already

answered the question. Below, we will be concerned with the question ‘why is
Vs

M not compositional?’ in the following sense:

The valuations Vs
M and Vt

M are closely related, in the sense that
they arise out of the same assertoric rules and out of related clo-
sure conditions. Why then, is Vt

M compositional while Vs
M is not?

Can we, more generally, understand the (non-) compositionality of
a valuation function in terms of the closure conditions that induce
it?
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In Section 5 we answer the last question affirmatively. There, we show how
to characterize (3- and 4- valued) Strong Kleene compositionality in terms of
closure conditions. However, the closure conditions in Section 5 are not defined
over branches of assertoric trees, but rather over expansions that are induced in
closure games. That is, in Section 5 we develop the method of closure games. As
a semantic valuation method, the method of closure games is best understood as
a refinement of assertoric semantics. Whereas a branch is a set of AD sentences,
an expansion is an (infinite) sequence of AD sentences. An expansion of Xσ can
be thought of as “running through” (or “lying in”) a branch of T

σ
X . Hence, we

may say that the notion of an expansion is more fine-grained than the notion of
a branch. Below, we explain how, by putting closure conditions on expansions,
the method of closure games induces valuations of LT .

(15) The Method of Closure Games In a closure game, there are two
players, called ⊔ and ⊓. Player ⊔ controls all AD sentences of disjunctive
type and player ⊓ controls all sentences of conjunctive type. Sentences of form
Aα∨β ,Dα∧β ,A∃φ(x),D∀φ(x) are of disjunctive type, all others are of conjunctive
type. A strategy of a player is a mapping of each AD sentence Xσ that is in
his control to exactly one of the immediate successors of Xσ, as specified by the
assertoric rule applicable to Xσ. A few examples suffice to illustrate the notion
of a strategy. The immediate successors of Aα∧β are Aα and Aβ and, as Aα∧β

is of conjunctive type, a strategy of player ⊓ maps Aα∧β to either Aα or Aβ . As
AT (σ) has only one immediate successor, Aσ, every strategy of player ⊓ must
map AT (σ) to Aσ. A strategy for player ⊔, who controls Dα∧β, maps Dα∧β to
either Dα or Dβ.

With f a strategy for player ⊔, g a strategy for player ⊓ and with Xσ an
arbitrary AD sentence, the tuple (Xσ, f, g) defines an expansion of Xσ. In gen-
eral, an expansion of Xσ is an infinite15 sequence of AD sentences whose first
element is Xσ and whose successor relation respects the assertoric rules. As an
example, here is the expansion of A¬T (λ), i.e., of an assertion of the Liar:

A¬T (λ),DT (λ),D¬T (λ),AT (λ),A¬T (λ) . . . (1.10)

Indeed, A¬T (λ) has only one expansion and so, in the closure game for A¬T (λ),
none of the players can influence the expansion ofA¬T (λ) that is realized. In gen-
eral, an AD sentence Xσ may have (infinitely) many expansions, each of which
is realized by some strategy pair (f, g) of our players. For instance, AP (c1)∧P (c2),
where P (c1) and P (c2) are atomic sentences of L, has two expansions and, in
the closure game for AP (c1)∧P (c2), player ⊓ can determine which one is realized.
By setting g(AP (c1)∧P (c2)) = AP (c1), player ⊓ ensures that expansion (1.11) is
realized, while g(AP (c1)∧P (c2)) = AP (c2) realizes expansion (1.12).

AP (c1)∧P (c2),AP (c1),AP (c1),AP (c1), . . . (1.11)

AP (c1)∧P (c2),AP (c2),AP (c2),AP (c2), . . . (1.12)

We will write exp(Xσ, f, g) to denote the expansion of Xσ that is induced by
strategies f (for player ⊔) and g (for player ⊓).

A closure function † assigns, to each ground model M , a closure condition

15Whenever an expansion “hits” a signed atomic sentence of L it keeps on repeating it
indefinitely.
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†(M) = {O†
M
,C

†
M
}, consisting of the sets O†

M
and C†

M
of all open and all closed

expansions in M . In a closure game for Xσ played in M relative to †, player
⊔ tries to pick his strategy f in such a way that the expansion of Xσ that is
realized will be contained in O

†
M . We will write O†

M(Xσ), and say that Xσ is
open relative to †(M), to indicate that player ⊔ has a strategy which ensures

that the expansion of Xσ ends up in O†
M

. That is:

O
†
M
(Xσ)⇔∃f∀g exp(Xσ, f, g) ∈ O†

M
(1.13)

Xσ is closed relative to †(M), denoted C†
M(Xσ), just in case not O†

M(Xσ). As
specified by (1.13), a closure condition for expansions induces a closure condition
for AD sentences. The closure condition for AD sentences is used to induce a
valuation for LT , denoted V

†
M :

V
†
M(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a ∶= (1,0), O
†
M(Aσ) and C†

M(Dσ);
b ∶= (1,1), O

†
M(Aσ) and O†

M(Dσ);
n ∶= (0,0), C

†
M(Aσ) and C†

M(Dσ);
d ∶= (0,1), C

†
M(Aσ) and O†

M(Dσ).
In general V†

M may, but need not have, a range of four values. The intuitive
interpretation of the functions that are induced by the method of closure games
resembles that of assertoric semantics. For instance, V†

M
(σ) = a indicates that it

is allowed to assert, but not to deny, sentence σ in ground model M according to
the norms for assertion and denial that are specified by †. In a sense, assertoric
semantics and the method of closure games are two distinct ways of formalizing
a single intuition. Here, we will not enter the question as to whether assertoric
norms are “better” modeled via closure conditions on branches or on expansions:
for some remarks pertaining to that question, see Section 5.7. Rather, we will
sketch how the method of closure games allows us to characterize all 3- and 4-
valued Strong Kleene fixed point valuations in a uniform manner. In particular,
we will sketch how the method of closure games allows us to characterize (3-
and 4- valued) Strong Kleene compositionality in terms of closure conditions.

For each expansion exp, its successor expansion exp′, is obtained by deleting
the first term of exp. For instance, (1.14) is the successor expansion of (1.11).

AP (c1),AP (c1),AP (c1), . . . (1.14)

A closure condition †(M) = {O†
M ,C

†
M} satisfies the Stable Judgement Constraint

(SJC), just in case for every expansion exp we have that:

SJC ∶ exp ∈ C
†
M ⇔ exp′ ∈ C

†
M

If a closure condition †(M) satisfies SJC, the judgement of † as to whether an
expansion is open or closed is stable, in the sense that it does not change along
the expansion. The content of our first stable judgement theorem (See Section
5) is that closure conditions which satisfy SJC induce Strong Kleene valuations:

First stable judgement theorem
Let M be a ground model, let †(M) be a closure condition which satisfies SJC

and let V†
M

be the valuation function induced by the method of closure games.
Then:
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1. V†
M

has either a classical, a 3- or 4- valued Strong Kleene semantics.

2. Whenever σ denotes σ in M : V†
M(T (σ)) = V†

M(σ). That is, V†
M respects

the identity of truth.

Note that the first stable judgement theorem is one sided: if closure conditions
satisfies SJC then they induce a Strong Kleene valuation16 which respects the
identity of truth. The converse direction does not hold: in Section 5 we show
that there are closure conditions which violate SJC and which, nevertheless,
induce a Strong Kleene valuation function which respects the identity of truth.
However, the second stable judgement theorem (see Section 5) comes close to a
converse reading of the first stable judgement theorem.

Second stable judgement theorem
Let M be a ground model and let VM be a 2, 3 or 4 valued Strong Kleene
valuation of LT in M which respects the identity of truth. Then there is a clo-
sure condition †(M) which respects SJC and such that, with V

†
M the valuation

induced by †(M), we have that: V†
M = VM .

Remember that, in (14), we raised the following question: Can we, more gen-
erally, understand the (non-) compositionality of a valuation function in terms
of the closure conditions that induce it? Together, the first and second stable
judgement theorem testify that we can answer with a well-known campaign slo-
gan: yes, we can.

Observe that a closure condition †(M) which satisfies SJC gives rise to a

Strong Kleene valuation function V
†
M which respects the identity of truth, but

also, that V†
M need not respect the ground model M . As such, there is no guar-

antee that V†
M is a (2-, 3- or 4- valued) Strong Kleene fixed point valuation over

M . To ensure that we induce a Strong Kleene fixed point valuation over M , we
need to impose a further (obvious) constraint on our closure conditions. The
(world-respecting) constraint is formulated in terms of grounded expansions. We
say that an expansion is grounded just in case it hits a signed atomic sentence of
L and ungrounded otherwise. Thus, expansions (1.11) and (1.12) are grounded,
whereas (1.10) is ungrounded. We say that an expansion exp is grounded and
correct in M just in case exp is grounded and, with Xσ the (unique) signed
atomic sentence of L that occurs on exp, we have that:

- (Xσ = Aσ and CM(σ) = 1) or (Xσ =Dσ and CM(σ) = 0).

In Section 5, we show that closure conditions †(M) which satisfy SJC and the
world respecting constraint (WRC), induce Strong Kleene fixed point valuations,
where:

WRC ∶ { {exp ∣ exp is grounded and correct in M} ⊆ O†
M
, and

{exp ∣ exp is grounded and incorrect in M} ⊆ C†
M
.

Further, we show that the following closure conditions induce the Kripkean
interpretation of the minimal fixed point valuation, i.e., Kmin

M ∶ Sen(LT ) →{a,n,d}:
exp is closed in M ⇔ exp is ungrounded or grounded and incorrect in M

16We may understand a classical valuation as a 2-valued Strong Kleene valuation.
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So, although I do not know how to define Kmin
M in assertoric semantics, Kmin

M has
a very natural definition in the method of closure games. In Section 7, we show
that the counterpart of Kmin

M , the tolerant valuation Vt
M ∶ Sen(LT )→ {a,b,d},

can also be defined in the method of closure games; Vt
M is induced by the

following closure conditions.

exp is closed in M ⇔ exp is grounded and incorrect in M (1.15)

The fact that an expansion of Xσ can be thought of as “running through” a
branch of T

σ
X ensures that there are many interesting connections between as-

sertoric semantics and the method of closure games. An example of such a
connection is the definability of Vt

M in both frameworks via related closure con-
ditions. For more examples, the reader is referred to Section 5. Most notably,
we show (Section 5.5) how the maximal intrinsic fixed point can be defined by
combining both frameworks.

(16) Generalized Strong Kleene fixed point valuations So, as a conse-
quence of our first and second stable judgement theorem, the method of closure
games is a powerful tool to study three and four valued SK fixed point valua-
tions in a uniform manner. The uniform approach allows us to combine suitably
related three and four valued SK fixed point valuations into Generalized Strong
Kleene fixed point valuations (GSK fixed point valuations), a notion that is
novel to this thesis. Let us illustrate the notion of a GSK fixed point valuation
by means of V

8+, an 8-valued GSK valuation which is defined in terms of one
4-valued and two 3-valued Strong Kleene theories.

ai

di

ae

de

ne be

ag

dg

Figure 1.1: Hasse diagram of 8+≤ , the lattice of V
8+.

The GSK compositionality of V
8+ is explained as follows. Conjunction and dis-

junction behave as meet and join in the lattice 8+≤, while universal and existential
generalization behave as generalized meet and join. The only difference with
SK compositionality concerns negation, which interchanges, for x ∈ {g, i, e}, ax

with dx (and vice versa) and acts as the identity on ne and be. As explained in
Section 5, we can think of V

8+ as combining three assertoric norms, associated
with the subscripts g, i and e that flank the assertoric values a,b,n and d.
More generally, Section 5 exploits the method of closure games to study con-
ditions under which SK fixed point valuations can be combined into GSK ones.

(17) Desiderata for truth and GSK fixed point valuations In Section 6,
we exploit the notion of a GSK fixed point valuation to argue that the Modified
Gupta-Belnap Desideratum (MGBD), which is a desideratum for theories of
truth due to Philip Kremer [32], has to be reconsidered. Intuitively, MGBD
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says that if there is no vicious reference according to a theory of truth T (a for-
mally defined notion that we will not discuss here) then, according to T, truth
should behave like a classical concept (another formally defined notion that we
will not discuss here). Formally:

MGBD If T dictates that there is no vicious reference in ground model M then
T dictates that truth behaves like a classical concept in ground model M .

With respect to the rationale of MGBD, Kremer cites Gupta [23]:

For models M belonging to a certain class—a class that we have
not formally defined but which in intuitive terms contains models
that permit only benign kinds of self-reference—the theory should
entail that all Tarski biconditionals are assertible in the model M .
(Gupta, [23, p19]

Thus, the proposed rationale for MGBD is that it is a theory-relative formal-
ization of an intuitive desideratum that was formulated by Gupta. In [60] an
Alternative—to MGBD—formalization of Gupta’s Desideratum is proposed:

AD If T dictates that there is no vicious reference in ground model M then T
dictates that all the Tarski biconditionals are strongly assertible in M .

In Section 6, we argue that AD is preferable over MGBD as a desideratum
for theories of truth. For one thing, it seems to be superior to MGBD in cap-
turing the rationale that is given for that desideratum. Further, we show that
any theory of truth which violates AD violates MGBD, but also that there
are theories of truth with a GSK semantics which violate MGBD while they
satisfy AD. I take it that these results testify that the notion of a GSK fixed
point valuation is a philosophically fruitful notion.

(18) The assertoric conception of truth, inferentialism and the strict-
tolerant calculus. According to the assertoric conception of truth (see (8))
that is laid out in this thesis, the meaning of truth is given by the assertoric
rules of the truth predicate. The assertoric conception of truth is naturally wed-
ded to a broader account of meaning: that of inferentialism17. In a nutshell,
inferentialism is the view that meanings are to be explained in terms of which
inferences are valid. As assertoric semantics and the method of closure games
do not inform us about which inferences are valid, there is a sense in which the
assertoric conception of truth as articulated thus far is incomplete. To fill in the
lacuna, Section 7 presents the strict-tolerant calculus, which can be thought of
as the syntactic counterpart of assertoric semantics. As we will explain below
(cf. (19)), the strict-tolerant calculus is a signed tableau system which gives us
syntactic characterizations of four fixed point consequence relations that are se-
mantically defined by quantifying over the class of all (3-valued Strong Kleene)
fixed point valuations. To develop the strict tolerant calculus, we follow Co-
breros et al. [11], in drawing a distinction between strict assertions and denials

17We thus develop a deflationary, assertoric conception of truth which is naturally wedded
to inferentialism. As such, the conception of truth is close in spirt to Horsten’s inferential

deflationism, a position that he develops in [27]. For some remarks on the relation between
assertoric semantics and Horsten’s inferential deflationism, see Section 4.
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and tolerant assertions and denials. We exploit the distinction by equipping our
calculus with four signs, which are naturally associated with the four different
speech acts that arise out of the strict-tolerant distinction. As such, the strict-
tolerant calculus does not single out a particular fixed point consequence relation
as favorite. However, the strict-tolerant calculus, in combination with assertoric
semantics, sheds light on the Strict Tolerant Conception of Truth (STCT), a re-
cent conception of truth that is articulated by Dave Ripley [46]. An essential
ingredient of STCT is its commitment to a particular fixed point consequence
relation. Below, we first present the rationale of the strict-tolerant calculus (cf.
(19)), after which we explain the relation between the strict-tolerant calculus
and assertoric semantics (cf. (20)). Then, we explain how the strict-tolerant
calculus and assertoric semantics jointly shed light on STCT (cf. (21)).

(19) The strict-tolerant calculus In our presentation of assertoric seman-
tics, we discussed two theories of truth, Vt

M and Vs
M . We presented Vt

M and
Vs

M as describing which assertions and denials are allowed according to, respec-
tively, the tolerant norm and the strict norm. This presentation suggests the
following broader picture: there are two assertoric speech acts, assertion and de-
nial, while the strict norm and the tolerant norm are two assertoric norms that
(may) govern our assertoric practice. In what follows we reverse this picture, in
accordance with the strict-tolerant distinction, as follows: there are four asser-
toric speech acts, strict assertion, strict denial, tolerant assertion and tolerant
denial, while there is a single assertoric norm: the strict-tolerant one. As we
will explain below, in a sense, the strict-tolerant calculus forces us to switch to
the revised picture.

Let us first explain how the strict-tolerant slang is to be used with respect
to a (3-valued Strong Kleene) fixed point valuation V ∶ Sen(LT ) → {0, 1

2
,1}.

Sentences that are valuated as 1 are strictly assertible, sentences that are valu-
ated as 0 are strictly deniable and sentences that are valuated as 1

2
are neither

strictly assertible nor strictly deniable. Sentences that receive a value in {1, 1
2
}

are tolerantly assertible, whereas those that receive a value in {0, 1
2
} are tol-

erantly deniable. Indeed, sentences that are valuated as 1
2

are neither strictly
assertible nor deniable, but, at the same time, both tolerantly assertible and
deniable. Exploiting the strict-tolerant terminology, we can define the four fixed
point consequence relations, ⊧ss, ⊧tt, ⊧st and ⊧ts where, with i, j ∈ {t, s}, Γ ⊧ij ∆
means that: whenever all premisses in Γ are i-ly assertible, some conclusion in
∆ is j-ly assertible. For instance:

Γ ⊧st ∆ iff for every fixed point valuation V (over some ground model) :

∀α ∈ Γ ∶ V (α) = 1 ⇒ ∃β ∈ ∆ ∶ V (β) ∈ {1, 1
2
}

“All premisses strictly assertible ⇒ some conclusion tolerantly assertible”.

The strict-tolerant calculus is a signed tableau calculus which can be used to
characterize ⊧ss, ⊧tt, ⊧st and ⊧ts in a uniform manner. The signs that are em-
ployed by the strict-tolerant calculus indicate the strict and tolerant assertoric
actions: As, Ds, At and Dt indicate, respectively, a strict assertion, a strict
denial, a tolerant assertion and a tolerant denial. A tableau calculus consists of
(tableau expansion) rules and closure conditions, which specify when a tableau
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path is closed. The rules of the strict-tolerant calculus are simply obtained by
doubling the assertoric rules: each assertoric rule gives rise to a strict version
and a tolerant one. In (6), we displayed the assertoric rules for the truth pred-
icate, negation and conjunction. With i ∈ {t, s}, these rules give rise to the
following rules of the strict-tolerant calculus:

Ai
T ([σ])

Ai
σ

Di
T ([σ])

Di
σ

Ai
¬α

Di
α

Di
¬α

Ai
α

Ai
α∧β

Ai
α,A

i
β

Di
α∧β

Di
α ∣Di

β

So, the strict-tolerant calculus clearly points out that the rules that govern our
strict assertoric actions are the same as the rules that govern our tolerant ones.
Still, a sentence may be tolerantly assertible (deniable) without being strictly
assertible or deniable, the Liar being a case in point. This distinction is not
explained by the rules of our calculus, but rather by its closure conditions. Here
are the closure conditions:

Closure conditions of the strict-tolerant calculus A tableau is closed just in case
all its paths are closed. A path P of a tableau is closed just in case one of the
following four conditions holds:

1. For some sentence σ of LT : {As
σ,D

s
σ} ⊆ P

2. For some sentence σ of L: {At
σ,D

t
σ} ⊆ P

3. For some sentence σ of LT : {As
σ,D

t
σ} ⊆ P

4. For some sentence σ of LT : {At
σ,D

s
σ} ⊆ P

The closure conditions have the following rationale: 1) it is forbidden to18

strictly assert and deny the same sentence. 2) it is forbidden to tolerantly
assert and deny the same sentence of L. 3) it is forbidden to strictly assert and
tolerantly deny the same sentence. 4) it is forbidden to tolerantly assert and
strictly deny the same sentence. The closure conditions of the strict-tolerant
calculus can be thought of as representing the strict-tolerant norm that governs
the strict and tolerant assertoric actions. As reflected by closure conditions 3
and 4, the strict-tolerant norm is more than the sum of the strict norm and the
tolerant norm. Above, we asserted that ‘in a sense, the strict-tolerant calculus
forces us to switch to the revised picture’, i.e., to a picture with four speech acts
and one norm. The ground for that assertion is the fact that the strict-tolerant
norm is more than the sum of the strict norm and the tolerant norm.

A notion that plays a crucial role in (tableau based) soundness and com-
pleteness proofs for classical logic is that of satisfiability. In our soundness
and completeness proofs pertaining to the fixed point consequence relations, a
similar role is played by the notion of fixed point satisfiability. A set of (strict-
tolerant) assertoric sentences S is said to be fixed point satisfiable just in case
there exists a fixed point valuation V such that:

As
σ ∈ S ⇒ V (σ) = 1, Ds

σ ∈ S ⇒ V (σ) = 0, (1.16)

18More precisely, it is forbidden to perform assertoric actions which enforce you to take up
a commitment to a strict assertion and strict denial of the same sentence. We will not be that
precise though.
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At
σ ∈ S ⇒ V (σ) ∈ {1, 1

2
}, Dt

σ ∈ S ⇒ V (σ) ∈ {0, 1
2
}. (1.17)

The notion of fixed point satisfiability allows us to reformulate the fixed point
consequence relations in terms of sets of assertoric sentences. For instance,
observe that per definition:

Γ ⊧st ∆ ⇔ {As
α ∣ α ∈ Γ} ∪ {Ds

β ∣ β ∈ ∆} is not fixed point satisfiable.

The reformulation of the fixed point consequence relations in terms of assertoric
sentences motivates our definition of ⊢st, ⊢ss, ⊢tt and ⊢ts. For instance, we have
that:

Γ ⊢st ∆ ⇔ there exists a tableau starting with{As
α ∣ α ∈ Γ} ∪ {Ds

β ∣ β ∈ ∆} that is closed.

In Section 7, we prove that Γ ⊢st ∆ just in case Γ ⊧st ∆. More generally, we
prove the following theorem.

Strict-tolerant theorem: With i, j ∈ {s, t}: Γ ⊢ij ∆ ⇔ Γ ⊧ij ∆

While the first and second stable judgement testify that the method of closure
games gives us a uniform approach to all SK fixed point valuations, the strict-
tolerant theorem testifies that the strict-tolerant calculus gives us a uniform
approach to the SK fixed point consequence relations.

(20) The strict-tolerant calculus and assertoric semantics Assertoric se-
mantics can be thought of as the semantic version of the strict-tolerant calculus.
Dually, the strict-tolerant calculus can be thought of as the syntactic version
of assertoric semantics. The connection between assertoric semantics and the
strict tolerant calculus is nicely illustrated via Vt

M and Vs
M . Observe that the

functions Vs
M and Vt

M (which, in assertoric semantics, are thought of as deriv-
ing from the strict norm and tolerant norm respectively) can be induced by the
closure conditions of the strict-tolerant calculus (modeling the strict-tolerant
norm), augmented with the closure conditions associated with M . The function
Vs

M of assertoric semantics can be thought of as answering the question which
sentences are initially, strictly assertible and deniable, while Vt

M answers the
same question in tolerant terms. On the other hand, by performing assertoric
actions we take up certain assertoric commitments, which (may) rule out certain
other assertoric actions as forbidden. For instance, strictly asserting a sentence
rules out tolerantly denying it. More generally, the transmission of assertoric
entitlements due to (strict and tolerant) assertions and denials is captured by
the strict-tolerant calculus. For instance, we have that:

Γ ⊢st ∆ ⇔ strictly asserting all of Γ rules out strictly denying all of ∆.

Let’s call the view according to which Vs
M and Vt

M describe the initial asser-
toric entitlements and according to which the strict-tolerant calculus describes
the transmission of assertoric entitlements the Dynamic Conception of Strict-
Tolerant assertion and denial (DCST). According to DCST, the “rules out inter-
pretation” of the four ⊢ij relations as illustrated for ⊢st above, are all truisms
about the strict and tolerant assertoric actions. DCST doesn’t single out one
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of those relations as privileged, but treats them on a par. In contrast, STCT

singles out ⊢st as privileged. However, STCT’s judgment that ⊢st is privileged
depends on its interpretation of the ⊢ij relations as consequence relations. Upon
being interpreted as consequence relations, the four relations are certainly not
on a par, as we explain below.

(21) The Strict Tolerant Conception of Truth. In [46], Ripley advocates a
new approach to truth and semantics, which heavily relies on the strict-tolerant
distinction. Ripley’s conception of truth will be called the Strict Tolerant Con-
ception of Truth. Most notably, STCT relies on an inferentialist theory of mean-
ing according to which (a syntactic characterization of) ⊧st is the norm accord-
ing to which inferences should be valuated as (in)correct. The reason that,
according to STCT, inferences should be judged by the standards of ⊧st is, in a
nutshell, that it is well-behaved as a consequence relation. In particular, STCT

claims that it is better behaved as a consequence relation than the other three
fixed point consequence relations.

Let us first illustrate the distinction between the “rules out interpretation”
of ⊧ij and its “consequence interpretation”. To do so, consider ⊧ts first. Impor-
tantly, it does not hold that:

σ ⊧ts σ (1.18)

On the “rules out interpretation” of ⊧ts, it is very natural that (1.18) does not
hold. For, tolerantly asserting a Truthteller or Liar does not rule out that you
also deny it tolerantly. However, on the “consequence interpretation”, the fact
that (1.18) does not hold seems absurd. For is seems that any consequence
relation should be reflexive: according to any consequence relation, inferring
σ from σ should be correct. As ⊧ts is not reflexive, it does not qualify as a
well-behaved consequence relation.

The argument form σ ⊧ σ is classically valid, i.e., valid in classical logic.
With Liar sentences around, classical logic has, in some way or the other, to be
modified. It seems a desirable property of a fixed point consequence relation
that this modification—relative to classical logic—is rather small. Fact 1 has
been put forward as an attractive selling point of STCT.

Fact 1 Any argument form that is classically valid is ⊧st-valid.

Fact 1 distinguishes ⊧st from the other three fixed point consequence relations.
We already saw that ⊧ts does not validate the argument form σ ⊧ σ, which is
classically valid. Although ⊧ss and ⊧tt validate argument form σ ⊧ σ, they do
not validate all classically valid argument forms. For instance, we have that:

/⊧ss
σ → σ (1.19)

α,α → β /⊧tt
β (1.20)

For illustrations of (1.19) and (1.20), the reader is referred to Section 7. Fact 1
certainly is a nice property for a consequence relation to have, and it may provide
a reason for preferring ⊧st over ⊧ss and ⊧tt. However, with Liar sentences
around, any “good” property of a fixed point consequence relation comes at a
price; the relation must also give up some intuitively plausible principles. The
price that ⊧st has to pay for Fact 1 is:

Fact 2 ⊧st is non-transitive: α ⊧st β and β ⊧st γ /⇒ α ⊧st γ
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In a nutshell, we may say that ⊧st saves classical logic (Fact 1) but has to give
up its meta-theory (Fact 2). To see that ⊧st is non-transitive, consider a Liar
sentence ¬T (λ). As the Liar has value 1

2
in any fixed point valuation, it is

always tolerantly assertible but never strictly. As the Liar is always tolerantly
assertible, we have that α ⊧st ¬T (λ) for any sentence α whatsoever. So in par-
ticular, for the sentence ‘snow is white’. As the Liar is never strictly assertible,
we have that ¬T (λ) ⊧st β for any sentence β whatsoever. So, in particular, for
the sentence ‘snow is black’. Thus, according to ⊧st, ‘snow is white’ implies the
Liar, the Liar implies ‘snow is black’, but ‘snow is white’ does not imply ‘snow
is black’. Hence, ⊧st is not transitive.

In this thesis, we do not enter the discussion as to whether Fact 2 is too
high a price to be paid for Fact 1. In Section 7, we are concerned with another,
related, issue that has to be addressed by a STCT proponent. For ⊧st crucially
relies on the distinction between strict and tolerant assertions and denials. As a
consequence, STCT is committed to holding that there are four assertoric speech
acts. As such, one may ask whether strict-tolerant distinction is, by itself, not
all too costly. Ripley [46] has argued that it is not, as the strict-tolerant dis-
tinction is not a primitive one. In other words, the strict can be understood in
terms of the tolerant, or, vice versa, the tolerant can be understood in terms of
the strict. As we will see in Section 7, the combination of assertoric semantics
and the strict-tolerant calculus provides a fruitful framework in which to assess
this claim.

(22) From theories of truth to riddles about truth. We started our tour of
the thesis with Sarah, who managed to pass the two guards safely by reasoning
with the notion of truth. Let us, before we conclude our tour, return to Sarah
and provide her with some guidance for further strolls through labyrinths. In
the movie Labyrinth, Jareth (also known as the King of Goblins or David Bowie)
tries to refrain Sarah from reaching his castle in the center of the labyrinth by
confronting her with all kinds of riddles and puzzles. In the movie Labyrinth:
the sequel, Jareth still has these bad habits. In particular, he sets up the four
roads riddle (see also Section 3 and Section 4):

There are four roads, numbered 1, 2, 3 and 4. Three out of these
four roads lead to certain death, whereas the other road leads to the
castle. The four roads are guarded by a single knight, and Sarah is
only allowed to ask one yes-no question to the knight.

Confronted with the four roads riddle, Sarah is perplexed. For, how can she
distinguish four possibilities by asking a single yes-no question? But then she
remembers reading a story in which the four roads riddle was discussed. The
moral of the story was formulated as a slogan: self-referential truth has com-
putational power (see Section 4). She recalls from the story that asking the
following yes-no question allows her to find out which road leads to the castle.

Is it the case that: (your answer to this very question is ‘no’ and the first door
leads to the castle) or (your answer to this very question is ‘yes’ and the second
door leads to the castle) or the third door leads to the castle?

Upon hearing Sarah’s question, the knight needs some time to deliberate, but
then he answers the question with ‘I can both answer your question with ‘yes’ or
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‘no”. From this answer, Sarah concludes that the second door leads to the cas-
tle. When confronted with Sarah’s conclusion, the knight looks worried. Then,
the following dialogue evolves.

Knight: How do you know that the second door leads to the castle?
Sarah: I remember reading a manuscript, called Playing with Truth. In Section
3 and Section 4 it was explained that when you answer with both, the second
door leads to the castle.
Knight: I also read that manuscript. In the sections you are alluding to, it is
assumed that I answer yes-no questions in accordance with the strict assertoric
norm. However, the manuscript also considers a tolerant assertoric norm. If I
answer in accordance with the tolerant norm, I may also answer your question
with both when the first door leads to the castle. So then, what makes you think
that I answered in accordance with the strict norm?
Sarah: (looks scared) I see. . . Indeed, I do not know which norms you try to
live up to. However, it seems plausible that a knight, who always speaks truly,
answers yes-no questions in accordance with the strict assertoric norm. Then
again, as you’re a knight, I can simply find out how knights behave by asking
you a question about yourself. So then, do you answer in accordance with the
strict norm?
Knight: . . .
Jareth: Hahaha. . . He doesn’t answer your questions anymore! With riddles
about truth, it’s all in the rules of the game: you were only allowed to ask a
single question and you had your go. Bad luck with your decision!

As Sarah couldn’t ask a second question, she decided to stick to her assumption
that the knight had answered her question in accordance with the strict norm.
Then, she acted in accordance with her assumption and passed through the
second door. At that point, the movie ends.

(23) Playing with truth. We acted as follows. We started out with a riddle
about truth, which we used to illustrate in which sense truth plays an expressive
function. Then, we illustrated that this expressive function can be realized by a
transparent notion of truth, i.e., a notion according to which ‘x. . . is true’ and x
are, in all (non-opaque) contexts intersubstitutable for all declarative sentences
x. We noted that the transparency of truth is a property of Strong Kleene (SK)
theories of truth. Then, we introduced three frameworks in which to define and
study theories of truth according to which truth is a transparent notion. A
common feature of these frameworks is that truth is understood, in terms of the
assertoric rules that govern it, as a primitive notion.

We introduced the notion of an English assertoric norm and showed how
such norms can be formalized as closure conditions on branches of assertoric
trees: i.e., we developed assertoric semantics. We considered two such closure
conditions, which give rise to the theories of truth Vt

M and Vs
M . Both theories

have a Strong Kleene character and satisfy the transparency of truth.
We asked whether the fact that Vt

M is compositional and Vs
M is not could be

understood in terms of closure conditions. The method of closure games answers
that question affirmatively: by putting constraints on the closure conditions of
expansions (“fine-grained branches”), the method of closure games gives us a
uniform approach to all (3- and 4-valued) SK fixed point valuations.
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Assertoric semantics and the method of closure games are frameworks to
define theories of truth. As such, the frameworks do not specify a consequence
relation of the language for which the theories of truth are constructed. To
study such consequence relations, we developed a signed tableau system, which
we called the strict-tolerant calculus. To develop the calculus, we followed, o.a.,
Cobreros et al. [11], in drawing a distinction between strict assertions and de-
nials and tolerant assertions and denials. Then, we exploited the distinction by
equipping our calculus with four signs, which are naturally associated with the
four different speech acts that arise out of the strict-tolerant distinction. We
explained that the strict-tolerant calculus gives us a uniform approach to the
SK fixed point consequence relations.

We introduced the notion of a Generalized Strong Kleene fixed point valua-
tion and we pointed out that the method of closure games can be (indirectly)
used to define such valuations. We explained how the notion of a Generalized
Strong Kleene theory of truth suggests that a proposed desideratum for theories
of truth has to be reconsidered.

Assertoric semantics and the strict-tolerant calculus are natural bedfellows.
Assertoric semantics can be thought of as the semantic version of the strict-
tolerant calculus. Dually, the strict-tolerant calculus can be thought of as the
syntactic version of assertoric semantics. The connection between assertoric se-
mantics and the strict tolerant calculus is nicely illustrated via Vt

M and Vs
M .

These valuation functions of assertoric semantics can be induced by the closure
conditions of the strict-tolerant calculus (modeling the strict-tolerant norm),
augmented with the closure conditions associated with M . We explained that
Vt

M , Vs
M and the strict-tolerant calculus shed light on the Strict Tolerant Con-

ception of Truth.
Then, we presented another riddle about truth, and we used this riddle to

illustrate that there is a sense in which we can say that self-referential truth
has computational power. Our last riddle gave rise to the same question that
we asked after presenting our first riddle: what makes a knight? Sarah assumed
that knights are made of strict assertoric norms.

In a nutshell, we acted as follows: we have been Playing with Truth.

1.2 Future work

Here are some possible directions of future work.

(A) Exploring the connections between Vt
M , Vs

M , the strict-tolerant
calculus and STCT. As we illustrated in (19) and (20), there are clear con-
nections between the theories Vt

M and Vs
M of assertoric semantics, the strict-

tolerant calculus and STCT. More generally, STCT is a novel and, I take it,
interesting and promising conception of truth, and the techniques developed in
this thesis can be used to foster our understanding of it. For example, an inter-
esting question to ask is whether our techniques can be used to define alternative
consequence relations that satisfy the attractive highly classical behavior of the
consequence relation that is advocated by STCT.

(B) Other frameworks for truth. This thesis is called ‘Playing with Truth’.
However, ‘Playing with Strong Kleene Truth’ also covers the subject of the the-
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sis quite well. For, the results that are obtained with assertoric semantics, the
method of closure games and the strict-tolerant calculus all have a Strong Kleene
character. However, the main techniques of the three frameworks (put closure
conditions on branches of assertoric trees, on expansions of closure games or
on paths of tableaux) do, as such, not have this character. The question arises
whether the techniques can also be used to deliver results that have a, say,
Weak Kleene or Supervaluation character. Further, the question arises how our
techniques and their motivation relates to other (non-Kripkean) frameworks for
truth, such as, e.g., the Gupta-Belnap revision theories of truth (cf. [24]) or
Gaifman’s Pointer Semanics (cf. [18]).

(C) Expressive completeness. Kripke [33] criticized his own interpretation
of the minimal fixed point along the following lines. With ¬T (λ) the Liar, we
have that Kmin

M (¬T (λ)) = n. As Kmin
M (¬T (λ)) /= a, the Liar is not true. Yet

when we express, in LT , that the Liar is not true, i.e., by uttering ¬T ([¬T (λ)]),
we are left with a sentence that we can’t assert, as Kmin

M (¬T ([¬T (λ)])) = n. In
one sentence, we may say that Kripke complained that Kmin

M is not expressive
complete. Very roughly, a theory of truth is expressive complete if it allows
you to assert, in the object language, claims about the semantic values that are
exploited by the meta-language. In this thesis, we were not concerned with the
notion of expressive completeness at all. It seems interesting to study the notion
of expressive completeness from the perspective of the assertoric conception of
truth that is developed in this thesis. From this perspective, Kripke’s criticism
of Kmin

M may have to be reconsidered. For, why would the fact that the Liar is
not (strictly) assertible motivate you to claim that ‘the Liar is not true’ should
be (strictly) assertible. On an assertoric conception of truth, strictly asserting
‘the Liar is not true’ is tantamount to strictly denying the Liar, and we know
we can’t do that. More generally, what do we mean with the expressive com-
pleteness of a theory of truth in an assertoric framework?

From a more technical point of view, it is interesting to see whether assertoric
semantics or the method of closure games can be used to introduce semantic
predicates within our language. For instance, can we specify appropriate rules
and closure conditions for an ungroundedness predicate?

(D) Truth and arithmetic. In this thesis, sentential reference (i.e. reference
to sentences) is modeled via quotational languages and the associated notion of
a ground model. This approach is not uncommon, and is also found in the work
of, a.o., Michael Kremer, Philip Kremer or Anil Gupta. However, another way
of modeling sentential reference is by letting the truth language LT to be an
extension of the language of arithmetic LA. On this approach, one first sets up
a 1:1 correspondence G (a Gödel numbering) between the sentences of LT and
the natural numbers. As LT extends LA, it has available a numeral n which
denotes, in the intended model N of LA, the number n. Hence, relative to a
Gödel numbering G and relative to N, each sentence has a name in LT : when
G(σ) = n, the name for σ is n.

However, the attractiveness of the arithmetic approach of sentential reference
is not to be found on the semantic side, but rather on the syntactic side. For a
sufficiently strong theory of arithmetic (such as Robinson’s arithmetic or Peano
arithmetic) represents all recursive functions. As the syntactic operations on
sentences (formulas) of LT are recursive functions, a sufficiently strong theory
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of arithmetic can represent the syntax of LT . In fact, a theory of arithmetic
can also be thought of as a theory of the syntax of LT . As an example, let
RA be the sentences of Robinson’s arithmetic and let G be a Gödel numbering.
Clearly, to determine whether a sentence is a conjunction or not is a recursive
operation. In other words, CON = {n ∣ G(n) is a conjunction} is a recursive
set and hence, it is represented by RA, meaning that there will be a complex
predicate of LA, abbreviate it as Con, such that:

RA ⊢ Con(n)⇔ n ∈ CON

So, whenever n is (the Gödel number of) a conjunction, RA proves that it
is a conjunction. In other words, RA represents the syntactic fact that n is
conjunction. In a similar vein, RA represents all syntactic facts of LT . This
representation allows us to express (and evaluate) certain “laws of truth” in a
language of arithmetic, such as the claim that a conjunction is true just in case
its conjuncts are. On the arithmetical approach, self-reference is obtained via
the diagonalization theorem of the arithmetical theory that is used to represent
the syntax of LT . In case of RA, the diagonalization theorem tells us that for any
open formula φ(x) of LT , there is a sentence σ of LT such that RA ⊢ σ↔ φ(σ),
where σ is the numeral of the Gödel number of σ. Applying the theorem to
¬T (x), it follows that there has to be some LT sentence σλ such that:

RA ⊢ σλ ↔ ¬T (σλ)] (1.21)

The sentence σλ represents the Liar on the arithmetical approach to sentential
reference.

As the quotational language approach to self-reference as such does not allow
us to represent the syntax of LT , we may say that the arithmetical approach
has a comparative advantage here. On the other hand, there is a sense in which
the quotational language approach is more flexible. For instance, we can (as we
do in Section 6) study ground models with and without vicious reference and
explore the behavior of various theories of truth in such models. In contrast, on
the arithmetical approach, there is always vicious reference around, as testified
by (1.21).

Are there decisive reasons that force us to prefer, in general, one the two
approaches to sentential reference over the other? Or do such reasons depend
on the phenomenon under consideration? Besides these foundational questions,
it is, at any rate, interesting to explore the techniques of this thesis in combi-
nation with an arithmetical approach to sentential reference. We hope to do so
in future work.

(E) Game semantics The method of closure games is a method to equip LT

with a semantic valuation for LT that is, ultimately, grounded in game-theoretic
concepts. In particular, whether or not a sentence is assertible is determined
by the existence of a winning strategy for one of the two players. As such, the
method of closure games qualifies as a game semantics. It would be interesting
to connect the method of closure games to other game semantics, such as the
dialogue logics of Lorenzen and Lorenz [36] or the game semantics as developed
by Hintikka [26]. More generally, our assertoric practice is often compared with
a game. This suggest that the assertoric conception of truth as developed in
this thesis can be backed up by a rationale that is similar to that underpinning
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(versions of) game semantics.

(F) What makes a knight? As explained in (22), Section 4 shows that self-
referential truth has computational power. To obtain that result, we basically
assumed that a knight answers a yes-no question σ? with ‘yes’, ‘no’, ‘both’
or ‘neither’ just in case Vs

M valuates σ as, respectively, a, d, b or n. Hence,
we assumed that knights answer yes-no questions in accordance with the strict
norm. There are various ways to alter the assumptions of Section 4. First I list
some changes that, I think, are particulary interesting. Second, I explain why I
think that the proposed changes are interesting in light of the results that are
obtained in Section 4.

We may alter the form of a yes-no question that may be asked to a knight as
follows. WithX ∈ {A,D} and i ∈ {s, t}, let the form of a yes-no question be equal
to X i

σ. As an example, At
σ corresponds to the question: do you tolerantly assert

σ? The change in our questions naturally corresponds to a change in the manner
in which a knight answers our questions. Previously, the knight answered the
Liar question with ‘neither’, as Vs

M(¬T (λ)) = n. This seems reasonable if we
think of the Liar question as analogous to the question ‘is your answer to this
very question ‘no’?’. However, when—in the to be developed framework under
consideration—we ask a knight, say As

¬T (λ), we ask him whether he strictly
asserts the Liar. Being a knight, he should answer with ‘no’. Similarly, when
we ask a knight At

¬T (λ), i.e., when we ask him whether he tolerantly asserts
the Liar, he should answer with ‘yes’. A further way in which we will alter
the knight’s answering function is by assuming that he always answers with
either ‘yes’ or ‘no’ but that he does so probabilistically. For instance, with
T (τ) the Truthteller, suppose that we ask the knight As

T (τ). As the knight

is entitled, but not obliged, to strictly assert T (τ), he will answer ‘yes’ with a
certain probability. But with which probability, i.e., for which x do we have that
p(As

T (τ),yes) = x. One may say that, upon being asked As
T (τ) the knight takes

a random decision as to whether or not to strictly assert the Truthteller. Hence,
we can model the decision of a knight as a random variable over the courses
of action that he may take. But then, should p(As

T (τ),yes) = 1
3

as he may

either strictly assert T (τ), tolerantly assert and tolerantly deny T (τ) or strictly
deny T (τ)? Or should p(As

T (τ),yes) = 1
2
, as, whenever possible, a knight should

assert and deny strictly? Or does a tolerant assertion of the Truthteller not
commit one to tolerantly deny it as well, in which case it seems plausible that
p(As

T (τ),yes) = 1
4
. At any rate, it seems interesting to explore the probability

spaces that emerge from different assumptions on the knight’s behavior in the
sketched “strict-tolerant framework”.

In Section 4, we showed that the four roads riddle (cf. (22)) could be
solved by asking a single self-referential yes-no question. We presented this
result in computational terms. One way to object to this presentation is by
responding that “on no natural notion of computational complexity, the four
roads riddle is solvable in one question. So much the worse for the notion
of computational complexity that is underlying your result”. In Section 4, I
respond to that objection by pointing out that the four roads riddle can also
be solved in one question according to the notion of quantum query complexity,
a notion of computational complexity that is used by researchers in quantum
computation. Although the point of the “quantum reply” in Section 4 is merely
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to rebut the considered objection, the question arises as to whether there are
connections between the framework of Section 4 and quantum computation.
An important distinction between classical and quantum computation is found
in the non-classical probability distributions that are associated with the latter
paradigm. It would be interesting if the probability spaces that are obtained in
the sketched “strict-tolerant framework” connect, somehow, to the probability
spaces that are used in quantum computation. Can quantum-like probability
spaces arise out of self-referential truth? To explore this speculative question is
the topic of future research.

1.3 Overview of the Thesis (Summary)

In the remainder of this thesis, we present the following papers:

Section 2: A Framework for Riddles about Truth that do not involve
Self-Reference [58].

In this paper, we present a framework in which we analyze three riddles
about truth that are all (originally) due to Smullyan. We start with the riddle
of the yes-no brothers and then the somewhat more complicated riddle of the da-
ja brothers is studied. Finally, we study the Hardest Logic Puzzle Ever (HLPE).
We present the respective riddles as sets of sentences of quotational languages,
which are interpreted by sentence-structures. Using a revision-process the con-
sistency of these sets is established. In our formal framework we observe some
interesting dissimilarities between HLPE’s available solutions that were hid-
den due to their previous formulation in natural language. Finally, we discuss
more recent solutions to HLPE which, by means of self-referential questions,
reduce the number of questions that have to be asked in order to solve HLPE.
Although the essence of the paper is to introduce a framework that allows us
to formalize riddles about truth that do not involve self-reference, we will also
shed some formal light on the self-referential solutions to HLPE.

Section 3: On the Behavior of True and False [65].
Uzquiano showed that the Hardest Logic Puzzle Ever (HLPE) (in its amended

form due to Rabern and Rabern ) has a solution in only two questions. Uzquiano
concludes his paper by noting that his solution strategy naturally suggests a
harder variation of the puzzle which, as he remarks, he does not know how
to solve in two questions. Wheeler and Barahona formulated a three question
solution to Uzquiano’s puzzle and gave an information theoretic argument to
establish that a two question solution for Uzquiano’s puzzle does not exist. How-
ever, their argument crucially relies on a certain conception of what it means
to answer self-referential yes-no questions truly and falsely. We propose an al-
ternative such conception which, as we show, allows one to solve Uzquiano’s
puzzle in two questions. The solution strategy adopted suggests an even harder
variation of Uzquiano’s puzzle which, as we will show, can also be solved in two
questions. Just as all previous solutions to versions of HLPE, our solution is
presented informally. The second part of the paper investigates the prospects
of formally representing solutions to HLPE by exploiting theories of truth.

Section 4: Assertoric Semantics and the Computational Power of Self-
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Referential Truth [57].
There is no consensus as to whether a Liar sentence is meaningful or not.

Still, a widespread conviction with respect to Liar sentences (and other un-
grounded sentences) is that, whether or not they are meaningful, they are use-
less. The philosophical contribution of this paper is to put this conviction into
question. Using the framework of assertoric semantics, which is a semantic
valuation method for languages of self-referential truth that has been devel-
oped by the author, we show that certain computational problems, called query
structures, can be solved more efficiently by an agent who has self-referential
resources (amongst which are Liar sentences) than by an agent who has only
classical resources; we establish the computational power of self-referential truth.
The paper concludes with some thoughts on the implications of the established
result for deflationary accounts of truth.

Section 5: From Closure Games to Generalized Strong Kleene Theo-
ries of Truth [63].

In this paper, we study the method of closure games, which is a game theo-
retic valuation method for languages of self-referential truth, developed by the
author. We prove two theorems which jointly establish that the method of clo-
sure games characterizes all 3- and 4-valued Strong Kleene theories of truth
(SK theories) in a uniform manner. Another theorem states conditions under
which SK theories can be combined into Generalized Strong Kleene theories of
truth (GSK theories). In contrast to a SK theory, a GSK theory recognizes
more than one sense of strong assertibility—where a sentence is strongly assert-
ible just in case it is assertible and its negation is not. Exploiting the relations
between SK theories laid bare by the method of closure games, we then show
how to define 5-, 6-, 7-, 8- and 10-valued GSK theories.

Section 6: Alternative Ways for Truth to Behave when there’s no
Vicious Reference [60].

In a recent paper, Philip Kremer proposes a formal and theory-relative
desideratum for theories of truth that is spelled out in terms of the notion of
‘no vicious reference’. Kremer’s Modified Gupta-Belnap Desideratum (MGBD)
reads as follows: if theory of truth T dictates that there is no vicious reference
in ground model M , then T should dictate that truth behaves like a classical
concept in M . In this paper, we suggest an alternative desideratum (AD): if
theory of truth T dictates that there is no vicious reference in ground model M ,
then T should dictate that all T -sentences are (strongly) assertible in M . We
illustrate that MGBD and AD are not equivalent by means of a Generalized
Strong Kleene theory of truth and we argue that AD is preferable over MGBD
as a desideratum for theories of truth.

Section 7: Strict-Tolerant Tableaux for Strong Kleene Truth [66].
We discuss four distinct semantic consequence relations which are based on

Strong Kleene theories of truth and which generalize the notion of classical con-
sequence to 3-valued logics. Then we set up a uniform signed tableau calculus
(the strict-tolerant calculus) which we show to be sound and complete with re-
spect to each of the four semantic consequence relations. The signs employed
by our calculus are As, Ds, At and Dt which indicate a strict assertion, strict
denial, tolerant assertion and tolerant denial respectively. Recently, Ripley ap-
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plied the strict-tolerant account of assertion and denial (originally developed by
Cobreros et all. to bear on vagueness) to develop a new approach to truth and
alethic paradox, which we call the Strict Tolerant Conception of Truth (STCT).
The paper aims to contribute to our understanding of STCT in at least three
ways. First, by developing the strict-tolerant calculus. Second, by developing
a semantic version of the strict-tolerant calculus (assertoric semantics) which
informs us about the (strict-tolerant) assertoric possibilities relative to a fixed
ground model. Third, by showing that the strict-tolerant calculus and asser-
toric semantics jointly suggest that STCT’s claim that “the strict and tolerant
can be understood in terms of one another” has to be reconsidered. The paper
concludes with a methodological comparison between the strict-tolerant calcu-
lus and other calculi that are also sound and complete with respect to (some
of the) semantic consequence relations based on Strong Kleene theories of truth.

Section 8: A Calculus for Belnap’s Logic in Which Each Proof Con-
sists of Two Trees19 [67].

In this paper we introduce a Gentzen calculus for (a functionally complete
variant of) Belnap’s logic in which establishing the provability of a sequent in
general requires two proof trees, one establishing that whenever all premises
are true some conclusion is true and one that guarantees the falsity of at least
one premise if all conclusions are false. The calculus can also be put to use in
proving that one statement necessarily approximates another, where necessary
approximation is a natural dual of entailment. The calculus, and its tableau
variant, not only capture the classical connectives, but also the ‘information’
connectives of four-valued Belnap logics. This answers a question by Avron.

19This paper is joint work with Reinhard Muskens.
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Chapter 2

A Framework for Riddles
about Truth that do not
involve Self-Reference

2.1 Abstract

In this paper, we present a framework in which we analyze three riddles about
truth that are all (originally) due to Smullyan. We start with the riddle of the
yes-no brothers and then the somewhat more complicated riddle of the da-ja
brothers is studied. Finally, we study the Hardest Logic Puzzle Ever (HLPE).
We present the respective riddles as sets of sentences of quotational languages,
which are interpreted by sentence-structures. Using a revision-process the con-
sistency of these sets is established. In our formal framework we observe some
interesting dissimilarities between HLPE’s available solutions that were hid-
den due to their previous formulation in natural language. Finally, we discuss
more recent solutions to HLPE which, by means of self-referential questions,
reduce the number of questions that have to be asked in order to solve HLPE.
Although the essence of the paper is to introduce a framework that allows us
to formalize riddles about truth that do not involve self-reference, we will also
shed some formal light on the self-referential solutions to HLPE.

2.2 Introduction

In this paper, I analyze a cluster of riddles about truth that are all (originally)
due1 to Smullyan ([49]). Although most of Smullyan’s riddles are trapped in the
fun-logic cage, one of them was set free by George Boolos ([9]) and now lives in
academia. Upon setting it free in 1996, Boolos baptized the riddle ‘the Hardest
Logic Puzzle Ever’ (HLPE). For the readers not familiar with HLPE, here is
its formulation due to Boolos:

1According to Raymond Smullyan however, the ‘Hardest Logic Puzzle Ever’, though at-
tributed to him by George Boolos, is not due to him. Professor Smullyan doesn’t know to
whom the puzzle is due.
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The Puzzle: Three gods A, B and C are called, in some order, True,
False, and Random. True always speaks truly, False always speaks
falsely, but whether Random speaks truly or falsely is a completely
random matter. Your task is to determine the identities of A, B,
and C by asking three yes-no questions; each question must be put
to exactly one god. The gods understand English, but will answer
all questions in their own language, in which the words for ‘yes’ and
‘no’ are ‘da’ and ‘ja’ in some order. You do not know which word
means which. Before I present the somewhat lengthy solution, let me
give answers to certain questions about the puzzle that occasionally
arise:

• (B1) It could be that some god gets asked more than one ques-
tion (and hence that some god is not asked any question at
all)

• (B2) What the second question is, and to which god it is put,
may depend on the answer to the first question. (And of course
similarly for the third question)

• (B3)Whether Random speaks truly or not should be thought
of as depending on the flip of a coin hidden in his brain: if the
coin comes down heads, he speaks truly, if tails, falsely.

• (B4)Random will always answer ‘da’ or ‘ja’ when asked any
yes-no question. (Boolos [9, p62])

Until very recently, HLPE has lived a quiet life in academia. We only find Tim
Roberts ([47]) coming up with an alternative solution for HLPE, criticizing
Boolos’ solution as being ‘unnecessarily complicated’. Recently, Rabern and
Rabern ([43]) interestingly observed an ambiguity in Boolos’ instruction for
HLPE concerning the behavior of Random. They observed that there is a
genuine difference between the following two courses of action that may be
followed by Random upon being addressed some question Q.

1. Random flips a coin and then, depending on the outcome of the coin-flip,
answers Q with either ‘da’ or ‘ja’.

2. Random flips a coin and then, depending on the outcome of the coin-flip,
answers Q either truly or falsely.

We refer to the first course of action as the syntactic protocol and to the second
course of action as the semantic protocol. Rabern and Rabern point out that
‘most commentators on the puzzle [i.e. HLPE] have assumed that Random
answers randomly and that therefore nothing can be gleaned from his answers;
but that is not how Random works’. They claim that previous commentators
have assumed that Random’s answers are completely unpredictable and they
show that this assumption is false when Random’s behavior is understood in
line with Boolos’ instruction (B3), that is, according to the semantic protocol.
The syntactic protocol is introduced to make explicit the behavior of Random
that, arguably, Boolos intended to describe. This leaves us with two different
versions of HLPE, one in which Random behaves according to the syntactic
protocol, denoted HLPEsyn, and one in which Random behaves according to
the semantic protocol, denoted HLPEsem.
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Rabern and Rabern exploit their observations concerning the behavior of
Random to give a (three-question) solution to HLPEsem that differs substan-
tially from the previous solutions due to Boolos and Roberts. Interestingly,
they also show that HLPEsem can be solved by asking only two questions (!)
when we are allowed to ask the gods self-referential questions. As observed
by Uzquiano ([53]), the results of Rabern and Rabern prompt the question
whether HLPEsyn, which is, after all, more properly called “the hardest logic
puzzle ever”, allows for a two-question solution as well. To answer this question,
Uzquiano observes that a refinement of the puzzle is in place. For, the omni-
science of True and False is somewhat at odds with the random behavior of
Random; can an omniscient god predict a random event? Two answers suggest
themselves:

1. True and False have the ability to predict the outcome of the coin flip in
Random’s brain (as they are omniscient).

2. True and False do not have the ability to predict the outcome of the coin
flip in Random’s brain (as the coin flip is a random event).

As indicated by the formulation of the two answers, the (in)ability of True
and False to predict the outcome of random coin flips is independent of the
distinction between semantic and syntactic HLPE. Thus, we obtain four ver-
sions of HLPE; HLPEsyn splits into HLPEomn

syn , in which True and False can
predict random events, and HLPEran

syn , in which they do not have this ability.
Likewise, HLPEsem splits into HLPEomn

sem and HLPEran
sem. Uzquiano shows

that both HLPEomn
syn and HLPEran

syn allow for a two question solution. How-
ever, the nature of his two solutions is fundamentally distinct, as his solution to
HLPEomn

syn depends on self-referential questions, while his solution to HLPEran
syn

does not. The distinction between HLPEomn
sem and HLPEran

sem is less important;
the solution of Boolos, of Roberts and the solutions of Rabern and Rabern work
for both versions of HLPEsem. For that reason, we will not be concerned with
HLPEran

sem, but only with the other three versions of HLPE.
A common feature of all mentioned solutions for HLPE, in2 one of its vari-

ants, is their being fully couched in natural language; there is no formalization
of the reasoning involved that leads to the respective solution for HLPE. The
central theme in this paper is the formalization of such reasoning. The paper is
organized as follows.

Section 2.3 We provide our formal framework, consisting of the use of quo-
tational languages and sentence-structures. Before studying HLPE (which we
do in Section 2.4), we confront our framework with two other riddles due to
Smullyan, whose essential features are also present in HLPE; the riddle of the
yes-no brothers and the riddle of the da-ja brothers. In analyzing them, we
present sets of first order axioms that represent the riddles and show how their
solutions can be derived from these axioms. The presented sets of axioms con-
tain an axiom scheme that closely resembles the infamous T -scheme. For that
reason, the consistency of our axioms is under suspicion. However, borrowing
from Gupta ([23]) the consistency of the axioms can be established by explicitly

2From now on ‘HLPE’, without sub or superscripts, will be used as shorthand for ‘one of
the variants of the hardest logic puzzle ever’.
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constructing a model for them using a revision process. For each of the two
riddles, we present two different solutions; one solution having degree 0 and the
other having degree 1, where the degree of a sentence is the number of embedded
quotations occurring in that sentence. The degree 0 solution for the riddle of the
yes-no brothers may be obtained as an application of Smullyan’s fundamental
principle ([49]). A key feature of Smullyan’s puzzles is that the correctness of
a solution is easily verified while it is much harder to come up with a solution.
For that reason, we present the possible worlds method, allowing us to obtain
the degree 0 solution (and in fact Smulllyan’s fundamental principle) in a con-
structive manner. We also use the possible worlds method to obtain the degree
0 solution for the riddle of the da-ja brothers.

Section 2.4 Then it is time to study the solutions to HLPE which do
not rely on the possibility to ask self-referential questions. In Section 2.4.1
we present the natural language solutions due to Boolos and Roberts and we
show that they have the same three stage structure. In Section 2.4.2, we for-
malize HLPEomn

syn and show how the solutions of Boolos (having degree 0) and
Roberts (having degree 1) can be derived from our representation of HLPEomn

syn .
In Section 2.4.3, we will discuss the three-question solution offered by Rabern
and Rabern for HLPEomn

sem , i.e., for the semantic version of HLPE where True
and False can predict random events. Section 2.4.4 is concerned with (the
formalization) of HLPEran

syn . Although the solutions of Boolos’ and Roberts’
for HLPEomn

syn carry over to HLPEran
syn , we reveal an interesting dissimilarity in

their solutions: for Roberts’ solution to go through, it is necessary that the gods
know their own answers to the questions, whereas this is not a necessary con-
dition for Boolos’ solution. In Section 3.5, we discuss Uzquiano’s two-question
solution for HLPEran

syn , and show that a formal derivation of this solution de-
mands, when compared Boolos’ and Roberts’ solutions for HLPEran

syn , some
additional axioms.

Section 2.5 Here, we discuss the self-referential solutions to HLPE and we
sketch a possible way to formalize these solutions as well.

2.3 Two riddles due to Smullyan

2.3.1 The riddle of the yes-no brothers

In this section, I present a logic riddle that is originally due to Raymond
Smullyan ([49]). However, the version of the riddle that I present is taken
from the movie ‘the Labyrinth’ ([25]). Let me state the riddle.

There are two brothers, bL and bT , having the following remarkable properties. One
of them is always lying (bL), the other is always speaking the truth (bT ). The brothers
know this of each other. That is, bT knows that bL is always lying and bL knows that
bT is always speaking the truth. ‘Speaking’ is probably not the right word to charac-
terize the linguistic behavior of the brothers, in fact, they hardly speak at all. Their
only linguistic behavior consists of giving yes / no answers to questions in sentential
form. Thus, if we ask ‘snow is white?’ to bT , he will answer ‘yes’, whereas bL’s answer
to this question will be ‘no’. A last remarkable feature of the brothers is as follows.
When a single question is asked to and answered by either one of them, they both
cease to exist. You are traveling along a road and suddenly the road forks. You have
to continue your journey by either heading left (l) or right (r). One of the roads, call
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it ‘the good road’, leads you to the destination of your travel. However, taking the
other road (the bad one) will result in a vicious death. Thus, taking the good road is
of crucial importance. Unfortunately, you have no clue which road is the good one.
But at the cross-roads, the two brothers are stationed, and each of them knows which
road is the good road. You know this and you also know the brothers’ remarkable
properties, but you do not know which brother is the liar and which brother is the
truth-speaker. The riddle of the yes-no brothers is as follows.

Given the circumstances just sketched, can you reach the destination of your travel

with certainty?

When the brothers lack the ‘jointly ceasing to exist after being addressed a sin-
gle question’ property, the riddle can hardly be called a ‘riddle’ anymore. You
just pick a brother, take a sentence σ of which you know that it is true and of
which you know that the brothers know that it is true and ask ‘σ’?. By this,
you find out whether you are dealing with bL or bT . Next, you ask ‘l is the good
road?’ to (say) bT and depending on whether his answer is ‘yes’ or ‘no’, you
continue your journey by taking road l or r respectively. This strategy is un-
available, for the brothers jointly cease to exist after one of them has answered
a question. Nonetheless, as you may have already observed, the riddle can be
solved by addressing Q1 to either one of the brothers:

Q1: The answer of your brother to the question ‘l is the good road?’ is ‘yes’ ?

We leave the verification that Q1 solves the riddle to the reader. It turns out
that, although the brothers cease to exist after one of them has answered a
question, we can safely continue our journey by asking Q1 to either one of the
brothers. When the answer we get on Q1 is ’no’, we take road l, and when the
answer we get is ’yes’ we take road r.

2.3.2 Modeling the riddle of the yes-no brothers

In the previous section, our reasoning led us to the following conclusion:

Conclusion: ‘The left road is good if and only if the answer to Q1 of either
one of the brothers is ‘no’, and the right road is good if and only if the answer
to Q1 of either one of the brothers is ‘yes’ ’.

An adequate treatment of the riddle should formalize the reasoning that leads
us to this conclusion. That is, we want to have a set of axioms, describing
the riddle, and show how we can infer the above conclusion from these axioms.
As the informal reasoning in Section 2.3.1 employed the concept of knowledge
(e.g. ‘bT knows that . . . ’) one might think of introducing a modal language
—interpreting the modal operators as epistemic operators — to fulfill our task.
However, in this paper we only work with first order languages. In fact, the
riddle of the yes-no brothers is modeled in a first order language that does
not even poses a knowledge predicate. As we shall see, an adequate treatment
of HLPEran

syn (Section 2.4.4) demands that our object-language does contain a
knowledge predicate.
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In order to describe the axioms for the riddle of the yes-no brothers, we shall

introduce, in Section 2.3.4, the first order language L
[⋅]
B

. Before doing so, we
first have a section containing some technical preliminaries.

2.3.3 The formal framework: quotational languages and
sentence-structures.

I use ‘first order language’ as shorthand for ‘first order language with identity’.
That is, ‘=’ is taken to be a logical symbol, denoting the identity relation. That
being said, first order languages will be identified with their non-logical vocabu-
lary. When L is a first order language, we use Sen(L) for the set of all sentences
of L. Thus, we assume that the reader is familiar with the standard syntactic
operations that build sentences out of the symbols of a first order language.

In our model of the riddle, we make use of a quotational language. The rea-
son that we work with quotational languages is that doing so allows us to refer
to sentences in our object language. For instance, with respect to the riddle of
the yes-no brothers, it allows us to formalize expressions like: ‘the lying brother
answers ‘no’ to ‘snow is white”. A natural way to refer to sentences is by quot-
ing them, as we just did, and a quotational language allows us to capture this
type of sentential reference. Formally, a language is quotational if it is obtained
from some base-language by means of the process of quotational closure. The
process is defined as follows:

Definition 2.1 Quotational language, quotational closure.
Let L be an arbitrary first order language. We set L0 = L and define:

• Ln+1 = Ln ∪ {[σ] ∣ σ ∈ Sen(Ln)}, n ≥ 0

• L[⋅] = ⋃i≥0L
i

When σ is a sentence of Ln, [σ] is a constant symbol of Ln+1. We say that
L[⋅] is the quotational language obtained from L by means of (the process of)
quotational closure. The hierarchy L0,L1, . . . is called the quotational hierarchy.
◻

Thus, a quotational language L[⋅] has a canonical constant symbol [σ] for each
sentence σ. Canonical, in the sense that in any sentence structure M = ⟨D,I⟩
for L[⋅], we have that I([σ]) = σ. The notion of a sentence-structure is defined
as follows.

Definition 2.2 Sentence-structures.
Let L be an arbitrary first order language and let L[⋅] be the quotational lan-
guage obtained from L by quotational closure. A sentence-structure M = ⟨D,I⟩
for L[⋅] is a structure for L[⋅] such that:

1. Sen(L[⋅]) ⊆D.

2. I(c) /∈ Sen(L[⋅]) for any constant symbol c ∈ L.

3. I(f)(d1, . . . , dn) /∈ Sen(L[⋅]) for any n-place function symbol f and any
sequence d1, . . . dn ∈ D.
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4. I([σ]) = σ ∈ Sen(L[⋅]) for each constant symbol [σ] ∈ L[⋅]. ◻

So in a sentence-structure for a quotational language L[⋅] there is for each sen-
tence σ of L[⋅] exactly one term in the language L[⋅] (the canonical constant
symbol [σ]) that refers to σ.

Note that each sentence σ of L[⋅] has a first occurrence in the hierarchy
Sen(L0), Sen(L1), . . . . The level of this first occurrence is called the degree of
σ.

Definition 2.3 The degree of a sentence.
Let L be an arbitrary first order language and let L[⋅] be the quotational lan-
guage obtained from L by quotational closure. Let σ ∈ Sen(L[⋅]). The degree of
σ equals n(≥ 0) if and only if σ ∈ Sen(Ln) and σ /∈ Sen(Ln−1). ◻

2.3.4 The language L
[⋅]
B and a formal solution for the riddle

We now define the language L
[⋅]
B , ‘the quotational language of the Brothers’

mentioned at the end of Section 2.3.2.

Definition 2.4 The language L
[⋅]
B .

Let LB = {l, r, cn, cy, bT , bL, b1, b2, fA,G}, where the first 8 symbols are constant
symbols, where fA is a binary function symbol and where G is a unary predicate

symbol. L
[⋅]
B is the language obtained by quotational closure from LB. ◻

The intended interpretation of L
[⋅]
B can be ‘read off from its symbolism’ so to

speak. In the intended interpretation, l refers to the left road, r refers to the
right road, cy refers to ‘yes’, cn refers to ‘no’, bT refers to the truth telling
brother and bL refers to the lying brother. The constant symbols b1 and b2 are
alterative names, in some order for the lying and the truth telling brother. For
instance, one may think of b1 as denoting the brother “standing on the left”,
while b2 refers to the brother “standing on the right”. As we will see, the names
b1 and b2 replace the indexical phrases ‘you’ and ‘your brother’ in the natural
language solutions to the riddle. The predicate symbol G is interpreted as ‘being
the good road’ and the intended interpretation of the binary function symbol

fA is as follows. Let c1, c2, c3 be constant symbols of L
[⋅]
B . Then:

‘fA(c1, c2) = c3’ is interpreted3 as ‘the answer of c1 to c2 is c3’.

Next, we use L
[⋅]
B to describe the riddle via the theory K ⊆ Sen(L[⋅]B ), which

consists of the following axioms / axiom schemes. Below, and in the rest of the
paper, all axiom schemes are understood to range over all the sentences of the
quotational language under consideration.

Definition 2.5 The set of axioms K.
K is defined as the following theory in L

[⋅]
B

:

K1 ∶ G(l)↔¬G(r).
3Thus, we have ‘garbage sentences’ as e.g. ‘the answer of the left road to the right road

is the truth-teller’. I do not regard it is a defect of our approach, as the syntax of natural
language allows for similar constructions.
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K2 ∶ (b1 = bT ∧ b2 = bL) ∨ (b1 = bL ∧ b2 = bT ).
K3 ∶ cy /= cn
K4 ∶ fA(bT , [σ]) = cy ∨ fA(bT , [σ]) = cn
K5 ∶ fA(bT , [σ]) = cy ↔ fA(bL, [σ]) = cn
K6 ∶ σ↔ fA(bT , [σ]) = cy ◻

The content of the axioms is clear from the intended interpretation of L
[⋅]
B

. Note
that the axioms tell us that the brothers are omniscient. That is, every true

sentence of L
[⋅]
B is answered correctly by the truth-teller and is answered falsely

by the liar.
A solution to the riddle is a single question which allows us to find out which

road is good. Assuming that the question is addressed to b1, a solution to the

riddle is a sentence σ of L
[⋅]
B such that (2.1) and (2.2) can be inferred4 from K:

G(r)↔ fA(b1, [σ]) = cy (2.1)

G(l)↔ fA(b1, [σ]) = cn (2.2)

A person who knows K and who is able to carry out inferences in first order
logic can solve the riddle, as the following theorem shows.

Proposition 2.1 Solving the riddle.
Let K be as in Definition 2.5 and let Γ ⊢K σ mean that there is a derivation of
σ from Γ using the inference rules of first order logic and the sentences in K as
axioms. It holds that:

⊢K G(r)↔ fA(b1, [fA(b2, [G(l)]) = cy]) = cy
⊢K G(l)↔ fA(b1, [fA(b2, [G(l)]) = cy]) = cn
Proof: Left to the reader. ◻

We gave a set of axioms K, modeling the knowledge of a person who is invited
to solve the riddle, and showed how such a person can solve the riddle; this is
modeled by the derivation from K exemplified in Theorem 2.1. Are we done?
Have we successfully modeled the semantic phenomenon under consideration?
When K is an inconsistent set of axioms, our derivation comes down to a mere

triviality, for then we can derive any sentence of L
[⋅]
B

from K. And when it comes
to inconsistency, K is suspect. The reason for this is that K’s axiom scheme
K6 closely resembles the well-known T -scheme. When L is an interpreted (first
order) language, the T -scheme for L is as follows:

T -scheme : σ↔ T (⟨σ⟩) for all σ ∈ L

Here, T is a truth predicate and ⟨σ⟩ is any closed term of L that refers to σ (or
a code for σ) in the intended interpretation. From the literature on truth, it is
well known that a theory ∆ formulated in a language L such that ∆ represents
the syntax of L and such that ∆ derives the T -scheme cannot be consistent.

Although K does not represent the syntax of L
[⋅]
B , it does derive a T -scheme in

4Of course, interchanging cy and cn in (2.1) and (2.2) also constitutes a solution. Further,
(2.1) and (2.2) are equivalent with respect to K.
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disguise. The last feature turns K into a suspect of inconsistency and unless
we succeed in proving its innocence, our Theorem 1 is no satisfactory solution
to the riddle. In the appendix, I prove that K is innocent. The proof that K
is consistent is a modification of a proof by Gupta ([23]). Basically, the result
obtained by Gupta was that quotational languages which are weak in their
expressive resources, can consistently contain the T -scheme. In the appendix,
we show how Gupta’s proof can be adapted to construct a classical model for K,
thus proving its consistency. The techniques employed there can also be used to
prove the consistency of all other theories that will be considered in this paper.

2.3.5 Alternative solutions and the fundamental principle

In Section 2.3.4, we solved the riddle of the yes-no brothers by asking the ques-
tion ‘fA(b2, [G(l)]) = cy’, to b1, which is the formal analogue of question Q1

that was discussed in Section 2.3.1. Thus, in the terminology introduced by
Definition 3, we solved the riddle by a sentence of degree 1. An interesting
question to ask is for which degrees we can find solutions to the riddle. More
precisely, we want to know for which n we can find σ ∈ Ln

B such that:

⊢K G(r)↔ fA(b1, [σ]) = cy (2.3)

To construct sentences of arbitrary high degree (n ≥ 1) that do the job is triv-
ial. As the answer of the addressed brother is determined solely by the truth
or falsity of the sentence asked, we can, as the reader may verify, ‘upgrade’
the sentence ‘fA(b2, [G(l)]) = cy’ by taking its conjunction with tautologies
of arbitrary high degree. The remaining question is thus whether there exists
a sentence of degree 0 that solves the riddle. There do exist such solutions.
Solutions of degree 0 correspond with instances of what Smullyan ([49]) calls
the fundamental principle. Let us quote the puzzle-master on the fundamental
principle; remember that for Smullyan a knight is always speaking the truth
whereas a knave always lies.

The last two problems imply a very important principle well known
to ‘knight-knave’ experts. As seen in the solutions of the last two
problems, if P is any statement at all, whose truth or falsity you
wish to ascertain, if a person known to be a knight or knave knows
the answer to P , then you can find out from him in just one question
whether P is true or false. You just ask him, ‘Is the statement that
you are a knight equivalent to the statement that P is true?’ If he
answers ‘Yes’ then you know that P is true; if he answers ‘No’, then
you know that P is false. This principle will be used in the solution
of the next three problems; we shall refer to it as the fundamental
principle. (Smullyan [49, p126])

Applied to our riddle, Smullyan’s fundamental principle teaches us that the
following question Q0 allows us to reach the destination of our travel with cer-
tainty:

Q0 : You are the truth-speaker if and only if left is the good road?
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When we translate Q0 in L
[⋅]
B , we can show (as the reader may wish to verify)

that we have a solution of degree 0:

⊢K G(r)↔ fA(b1, [G(l)↔ b1 = bT ]) = cn
⊢K G(l)↔ fA(b1, [G(l)↔ b1 = bT ]) = cy

We thus arrived at a solution of degree 0 by translating the solution Q0 (ob-
tained from Smullyan’s fundamental principle) and by realizing that the trans-
lation Q0 is of degree 0. In fact, K derives Smullyan’s fundamental principle.

Proposition 2.2 Fundamental 0-principle

Let σ ∈ Sen(L[⋅]B ). Then:

1. ⊢K σ↔ fA(b1, [b1 = bT ↔ σ]) = cy
2. ⊢K ¬σ↔ fA(u, [b1 = bT ↔ σ]) = cn

Proof : Left to the reader. ◻

We refer to Proposition 2.2 as the fundamental 0-principle because from it, the
degree 0 solution to the riddle of the yes-no brothers immediately follows. Q1,
the degree 1 solution to the riddle presented in Section 2.3.1, follows immediately

from the fact that for every σ ∈ Sen(L[⋅]B ) we have that:

⊢K σ↔ fA(b1, [fA(b2, [σ]) = cy]) = cn
⊢K ¬σ↔ fA(b1, [fA(b2, [σ]) = cy]) = cy

We can also obtain a degree 1 solution by asking a brother to reflect on his own
habits. Let us call this result the fundamental 1-principle.

Proposition 2.3 Fundamental 1-principle

Let σ ∈ Sen(L[⋅]B ). Then:

1. ⊢K σ↔ fA(b1, [fA(b1, [σ]) = cy]) = cy
2. ⊢K ¬σ↔ fA(b1, [fA(b1, [σ]) = cy]) = cn

Proof: Left to the reader. ◻

Proposition 2.3 is a formal analogue of what Rabern and Rabern ([43]) call the
“Embedded Question Lemma”. In natural language, Proposition 2.3 says that
we can reveal the truth-value of σ by addressing the following question to a
brother:

Is your answer to question ‘σ’ ‘yes’?

2.3.6 The riddle of the da-ja brothers.

In this section, we introduce and discuss the riddle of the da-ja brothers. It is
stated as follows.

Suppose that the two brothers of Section 2.3.1, while they understand English, answer

all yes-no questions with the words ‘da’ and ‘ja’ which mean ‘yes’ and ‘no’, but not

necessarily in that order. You do not know which word means which. Besides this
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curiosity, the story is as in Section 2.3.1; you want to know whether the left or right

road is good. Again, one of the brothers is a liar, the other is a truth speaker and

you do not know which brother is which. Under these circumstances, can you find out

which road is good by asking a single yes-no question?

To formalize the riddle of the da-ja brothers, we define the language LB∗ =

LB ∪ {cd, cj} and the language L
[⋅]
B∗

, which is obtained from LB∗ by means of
quotational closure. Here, cd and cj are constant symbols having ‘da’ and ‘ja’
as their respective intended interpretations. The riddle of the da-ja brothers is
represented by K∗5.

Definition 2.6 The set of axioms K∗.
K∗ is defined as the following theory in L

[⋅]
B∗ :

K∗
1 ∶ G(l)↔ ¬G(r).

K∗
2 ∶ (b1 = bT ∧ b2 = bL) ∨ (b1 = bL ∧ b2 = bT )

K∗
3 ∶ cd /= cj

K∗
4 ∶ fA(bT , [σ]) = cd ∨ fA(bT , [σ]) = cj

K∗
5 ∶ fA(bT , [σ]) = cd ↔ fA(bL, [σ]) = cj

K∗
6 ∶ cd = cy ↔ (σ↔ fA(bT , [σ]) = cd)

K∗
7 ∶ (cd = cy ∨ cd = cn) ∧ ¬(cd = cy ∧ cd = cn)

K∗
8 ∶ (cj = cy ∨ cj = cn) ∧ ¬(cj = cy ∧ cj = cn)

K∗
9 ∶ cd = cy ↔ cj = cn ◻

Analogous to the fundamental 0-principle for K, we can prove a principle for K∗

from which a solution for the riddle of the da-ja brothers easily follows. There
is also an analogue to the fundamental 1-principle for K. Interestingly, the last
principle allows us to determine the truth-value of sentences without having to
talk about the meaning of the words ‘da’ and ‘ja’ at all.

Proposition 2.4 The fundamental da-ja 0-principle

Let σ be a sentence of L
[⋅]
B∗ . We have that:

1. ⊢K∗ σ↔ fA(b1, [cd = cy ↔ (b1 = bT ↔ σ)]) = cd
2. ⊢K∗ ¬σ↔ fA(b1, [cd = cy ↔ (b1 = bT ↔ σ)]) = cn

Proof: Left to the reader. ◻

Proposition 2.5 The fundamental da-ja 1-principle

Let σ be a sentence of L
[⋅]
B∗ . We have that:

1. ⊢K∗ σ↔ fA(b1, [fA(b1, [σ]) = cd]) = cd
2. ⊢K∗ ¬σ↔ fA(b1, [fA(b1, [σ]) = cd]) = cj

Proof: Left to the reader. ◻

At this point, the reader may wonder how the solutions to the riddles, whose
correctness is easily verified, are actually obtained. In the next section, we
discuss the method of possible worlds, which is constructive tool to obtain such
solutions.

5The consistency of K∗ easily follows from the consistency of K.
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2.3.7 The method of possible worlds

In this section, we present a constructive method, the method of possible worlds,
by which solutions to the riddles can be obtained. Let us illustrate the method
for the riddle of the yes-no brothers. Here, a riddle-solver knows that the actual
world is one out of four possible worlds6. A possible world specifies whether left
or right is the good road and also, whether b1 is the truth speaker or the liar.
We refer to the worlds as MlT ,MlL,MrT and MrL, where:

- MlT ⊧ G(l) ∧ b1 = bT MlL ⊧ G(l) ∧ b1 = bL
- MrT ⊧ G(r) ∧ b1 = bT MrL ⊧ G(r) ∧ b1 = bL

The four possible worlds MlT ,MlL,MrT and MrL correspond with the first,
second, third and fourth column of Table 1 respectively.

G(l) 1 1 0 0
b1 = bT 1 0 1 0

fA(b1, [Q]) = cy 1 1 0 0
Q 1 0 0 1

G(l)↔ b1 = bT 1 0 0 1

Table 1

The table is read as follows. An entry of 1 (0) means that the sentence written
on the same row as that entry is true (false). So the leftmost column corresponds
with MlT ; the world in which left is the good road and in which b1 is the truth-
speaker. The third row is made up by me. Whatever question Q we come
up with, we want to be able to separate G(l) worlds from non-G(l) worlds
by addressing the question Q to the brother we are facing (b1) in that world.
The separation is based on the yes-no answer we get on Q. Hence, whatever
question Q we address to b1, when Q allows us to separate worlds we should
get a different answer in G(l) worlds than in non-G(l) worlds. To assure this, I
filled the truth table in such a way that the sentence fA(b1, [Q]) = cy is true in
G(l) worlds and that it is false in non-G(l) worlds.7 Fix a column. The entry
in the fourth row follows from the entries in the second and third row using the
fact that the column represents a model of K. The fourth row tells us that we
are after a sentence Q that is true in MlT and MrL, while false in MlL and in
MrT . In the fifth row, we construct a sentence that has the same truth value as
Q in each possible world. As we construct the sentence from degree 0 sentences,
we arrive at a solution for the riddle that is itself of degree 0 . We say that we
found the solution ‘G(l)↔ b1 = bT ’ using the possible worlds method.

The pay-off of the possible worlds method is more vividly illustrated by the
riddle of the da-ja brothers. Table 2 has the same rationale as Table 1.

6The notion of a possible world and actual world can be made precise in terms of the
models that are constructed, in the appendix, to prove the consistency of K. However, we
feel that doing so only distracts from the main idea.

7Of course reversing the truth /falsity ascription would work equally well.
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G(l) 1 1 1 1 0 0 0 0
b1 = bT 1 1 0 0 1 1 0 0
cd = cy 1 0 1 0 1 0 1 0

fA(b1, [Q]) = cd 1 1 1 1 0 0 0 0
fA(b1, [Q]) = cy 1 0 1 0 0 1 0 1

Q 1 0 0 1 0 1 1 0
b1 = bT ↔ G(l) 1 1 0 0 0 0 1 1

cd = cy ↔ (b1 = bT ↔ G(l)) 1 0 0 1 0 1 1 0

Table 2

The interpretation of the first three rows is clear. The fourth row of the table
is made up by me with the same rationale as the third row of Table 1; now the
da-ja answer we receive should allow us to separate G(l) worlds from non-G(l)
worlds. The fifth row is a translation of the answer of the addressed person
(‘da’or ‘ja’) to Q in terms of the familiar ‘yes’ and ‘no’. The fifth row is a
convenient intermediate step to arrive at the sixth row. The sixth row contains
the truth value of Q in each world. As in Table 1, this row is obtained by
‘backwards engineering’. The seventh row is a convenient intermediate step for

arriving at the eight row; a sentence of L
[⋅]
B∗ that has the same truth-value in

each world as Q. Thus, ‘cd, cy ↔ b1 = bT ↔ G(l)’ is the question we are after.
In natural language:

‘da’ means yes iff (you are the truth-speaker iff left is the good road)

2.4 The Hardest Logic Puzzle Ever

2.4.1 The riddle

Now that we know how to solve the riddle of the da-ja brothers, we are ready
to discuss the Hardest Logic Puzzle Ever (HLPE) that was stated in the in-
troduction. As discussed there, Rabern and Rabern observed that there is an
ambiguity with respect to instruction (B3), so that we have to distinguish be-
tween a syntactic and semantic version ofHLPE. Moreover, Uzquiano observed
the need to distinguish between a version of HLPE in which True and False
have the ability to predict the outcome of the random coin flip occurring in
Random’s head and one in which they do not have this ability. As the two dis-
tinctions are independent, we have four distinct versions of HLPE, which are
denoted HLPEomn

syn , HLPEran
syn , HLPEomn

sem and HLPEran
sem. As stated in the

introduction, we will not formalize HLPEran
sem for, as will become clear, there is

no interest in doing so. Moreover, in the rest of this paper, we will not study the
three HLPE variants as presented in the introduction, but rather their ‘yes-no’
versions. That is, in the HLPE variants that we will actually study, the gods
are assumed to answer with ‘yes’ and ‘no’ instead of with ‘da’ and ‘ja’. This
is not a real restriction, as all our observations also go through for the da-ja
setting by modifications similar to those that were involved in Section 2, were
the riddle of the da-ja brothers was seen to be a modification of the riddle of
the yes-no brothers; we simply gain in economy of presentation without missing
any relevant conceptual issue involved in the structure of HLPE. As Boolos
([9]) remarks in a footnote (my italics):
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The extra twist of not knowing which are the gods’ words for ‘yes’
and ‘no’ is due to the computer scientist John McCarthy.

Indeed, the da-ja feature is nothing but an extra twist which can safely be ne-
glected for our purposes. As we will see, the three-question solutions due to
Boolos and Roberts can be obtained in each of the three considered versions of
HLPE. Their solutions have the following three stage structure.

A Ask a question Q1 to B the answer to which allows you to identify a non-Random

god X (X is either A or C).

B Ask a question Q2 to X the answer to which allows you to determine whether X is

True or False.

C Ask a question Q3 to X the answer to which allows you to determine the identity

of god B. You now know the identity of two gods, so you also know the identity of

the third, and you thus solved the riddle.

The solutions of Boolos and Roberts, adapted to suit the yes-no versions of
HLPE, are as follows:

QB1 ∶ you are True iff A is Random?
QB2 ∶ A is True or A is not True?
QB3 ∶ B is Random?

QR1 ∶ If I asked you if A was Random would you answer ‘yes’?
QR2 ∶ If I asked you if you were True would you answer ‘yes’?
QR3 ∶ If I asked you if B was Random would you answer ‘yes’?

First, we will show how to derive these solutions in a formal presentation of
HLPEomn

syn .

2.4.2 Modeling HLPEomn
syn : the theory Osyn

In this section, we model HLPEomn
syn as a theory, called Osyn, which is formu-

lated in L
[⋅]
G , the“ language of the Gods”. L

[⋅]
G is obtained from the language

LG = {a, b, c, gT , gF , gR, cy, cn, fA} by quotational closure. Here a, b, c are con-
stant symbols for god A, god B and god C and gT , gF and gR are constant
symbols for True, False and Random. The constant symbols, cy and cn and
the binary function symbol fA are interpreted as in Section 2.3.4. In order to
introduce the axioms below, we introduce the following notation. We use σpqr

(where p, q, r are constant symbols of L
[⋅]
G ) as shorthand for sentences of L

[⋅]
G in

the following way:

σpqr ∶= p = gT ∧ q = gF ∧ r = gR

Definition 2.7 The set of axioms Osyn

Osyn consists of the following axioms / axiom schemes of L
[⋅]
G

.
O

syn
1 ∶ σabc ∨ σacb ∨ σbac ∨ σbca ∨ σcab ∨ σcba

O
syn
2 ∶ gR /= gT ∧ gR /= gF

O
syn
3 ∶ cy /= cn

O
syn
4 ∶ fA(µ, [σ]) = cy ∨ fA(µ, [σ]) = cn (µ ∈ {gT , gF , gR})
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O
syn
5 ∶ fA(gT , [σ]) = cy ↔ fA(gF , [σ]) = cn

O
syn
6 ∶ σ↔ fA(gT , [σ]) = cy ◻

We can formulate the QBi and QRi questions of the previous section in the

language L
[⋅]
G and show that these questions constitute a solution for HLPE

by derivations in Osyn. To do so, it is convenient to have the following two
propositions at our disposal.

Proposition 2.6 The fundamental Osyn 0-principle

Let σ be a sentence of L
[⋅]
G . Let λ ∈ {a, b, c}. Then:

1. ⊢Osyn λ /= gR → (σ↔ fA(λ, [λ = gT ↔ σ]) = cy)
2. ⊢Osyn λ /= gR → (¬σ↔ fA(λ, [λ = gT ↔ σ]) = cn)

Proof: Left to the reader. ◻

Proposition 2.7 The fundamental Osyn 1-principle

Let σ be a sentence of L
[⋅]
G and let λ ∈ {a, b, c}. Then:

1. ⊢Osyn λ /= gR → (σ↔ fA(λ, [fA(λ, [σ]) = cy]) = cy)
2. ⊢Osyn λ /= gR → (¬σ↔ fA(λ, [fA(λ, [σ]) = cy]) = cn)

Proof: Left to the reader. ◻

We now illustrate how Osyn allows us to formalize Boolos’ solution. Below,
QB1, QB2 and QB3 are the formalizations of Boolos’ questions QB1, QB2 and
QB3 that were mentioned in the previous subsection.

A Identifying a non-random god:

1. ⊢Osyn fA(b, [b = gT ↔ a = gR]) = cy → c /= gR

2. ⊢Osyn fA(b, [b = gT ↔ a = gR]) = cn → a /= gR

This follows from Proposition 2.6 and the fact that b is either gT , gF or gR .
Thus, by asking QB1 ∶= b = gT ↔ a = gR to b we identify a god (a or c) as
non-Random.

B Determining the identity of the non-Random god.
Let λ be the god (either a or c) that is known to be non-Random.

1. ⊢Osyn fA(λ, [a = gT ∨ a /= gT ]) = cy → a = gT

2. ⊢Osyn fA(λ, [a = gT ∨ a /= gT ]) = cn → a = gF

This is an immediate consequence from the fact that we address a non Random
god and the behavior of True and False. Thus, by askingQB2 ∶= a = gT∨a /= gT to
the non-Random god, we reveal the identity (True or False) of the non-Random
god.

C Determining the identity of another god.
Let λ be the god that is either known to be True or known to be False. Suppose
that λ turned out to be True (otherwise interchange cy and cn below).
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1. ⊢Osyn fA(λ, [b = gR]) = cy → b = gR

2. ⊢Osyn fA(λ, [b = gR]) = cn → b /= gR

Thus by asking QB3 ∶= b = gR to λ we reveal whether or not b is Random.
Clearly, the information obtained by the three questions determines the iden-
tity of all three gods.

In a similar way, now using Proposition 2.7 rather than Proposition 2.6, we
can show that Osyn derives the solution of Roberts. The translations of his
questions into L

[⋅]
G are as follows:

QR1 ∶= fA(b, [a = gR]) = cy
QR2 ∶= fA(λ, [b = bT ]) = cy
QR3 ∶= fA(λ, [b = bR]) = cy
Here, λ is either a or c depending on whether the answer on QR1 revealed that
respectively a or c is non-Random. Observe that Roberts questions all have
degree 1, while those of Boolos all have degree 0. In section 2.4.4, where we
discuss HLPEran

syn , we point out some consequences of this difference.

2.4.3 Modeling HLPEomn
sem : the theory Osem

Remember that a semantic Random behaves according to the following protocol.
Whenever we ask a question Q to Random, he flips a coin and then, depending
on the outcome of the coin-flip, he answers Q truly or falsely. Elaborating on
suggestions in ([43]), we think of the coin-flip as determining the mental state in
which Random answers Q. The mental state, on its turn, determines whether
Random answers Q correctly or falsely. I take the following three claims as
meaning-constitutive for the concept of a mental state. The third statement
can be seen as a more precise specification of the semantic protocol, couched in
terms of mental states. I shall refer to it as the mental-state protocol.

1. There are two mental states, call them T and F .

2. The lying /truth telling behavior of Random on answering a question Q
is determined by the mental state he has just before he answers Q. When
that state is T he answers Q truthfully, when that state is F he lies.

3. When a question Q is addressed to Random, first a coin-flip determines
his mental state and then, being in this mental state, Random answers Q
.

In this section, we will model HLPEomn
sem as a theory, called Osem, in the lan-

guage L
[⋅]
G′ , the quotational closure of LG′ = LG ∪ {T,F}, where T and F are

two binary predicate symbols such that T (gR) reads as ‘Random is in mental
state T ’ and F (gR) is interpreted similarly.

Definition 2.8 The theory Osem

Osem consists of the following axioms / axiom schemes of L
[⋅]
G′ .

1. All of Osyn (For n = 1 − 6, set Osem
n = Osyn

n ).
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2. The following additional axiom (schemes) specifying Random’s behavior:

Osem
7 : (T (gR) ∨F (gR)) ∧ ¬(T (gR) ∧F (gR))

Osem
8 : T (gR)→ (fA(gR, [σ]) = fA(gT , [σ]))

Osem
9 : F (gR)→ (fA(gR, [σ]) = fA(gF , [σ])) ◻

So according to Osem
7 Random is either in mental state T or F . Axiom scheme

Osem
8 tells us that whenever Random is in mental state T , his answer on a

question is the same as the answer of True, while axiom scheme Osem
9 tells us

that whenever Random is in mental state F , his answer is the same as that
of False. Due to the presence of the additional axioms (Osem

7 ,Osem
8 ,Osem

9 ) we
are in fact always addressing a truth speaker or a liar and hence the proviso
of Proposition 2.6 and Proposition 2.7, which specified that we are addressing
a god that is non-Random, can be removed. That is, the fundamental Osem

0-principle and Osem 1-principle are as follows:

Proposition 2.8 The fundamental Osem 0-principle

Let σ be a sentence of L
[⋅]
G′ . Let λ ∈ {a, b, c}. Then:

1. ⊢Osem σ↔ fA(λ, [λ = gT ↔ σ]) = cy
2. ⊢Osem ¬σ↔ fA(λ, [λ = gT ↔ σ]) = cn

Proof: Left to the reader. ◻

Proposition 2.9 The fundamental Osem 1-principle

Let σ be a sentence of L
[⋅]
G′ and let λ ∈ {a, b, c}. Then:

1. ⊢Osem σ↔ fA(λ, [fA(λ, [σ]) = cy]) = cy
2. ⊢Osem ¬σ↔ fA(λ, [fA(λ, [σ]) = cy]) = cn

Proof: Left to the reader. ◻

Observe that we can easily derive Boolos’ and Roberts’ solution in Osem. More-
over, due to the availability of propositions 2.8 and 2.9, additional and “simpler”
solutions are available in Osem than in Osyn. In particular, the following three
questions, after Rabern and Rabern, constitute a solution in Osem but not in
Osyn.

1. First ask ‘fA(a, [a = gT ]) = cy’ to a. From Proposition 2.9, it follows that
when a answers with ‘yes’, a is True, whereas an answer of ‘no’ indicates
that a is not True.

2. i) If a answers the first question with ‘yes’, i.e., if a is True, ask ‘b = gF ’
as a follow up question to a, the answer to which allows you to determine
the identity of all three gods.
ii) If a answers the first question with ‘no’, i.e., if a is not True, ask
‘fA(a, [a = gF ]) = cy’ as a follow up question to a. From Proposition 2.9,
it follows that when a answers with ‘yes’, a is False, whereas an answer of
‘no’ indicates that a is not False, from which it follows, as a is not True,
that a is Random.
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3. Ask ‘fA(a, [b = gT ]) = cy’ to a as a follow up question to 2ii). From
Proposition 2.9, it follows that a’s answer allows you to determine whether
or not b is True.

The solution thus essentially involves applications of the fundamental Osem

1-principle. A similar solution can be obtained via the fundamental Osem 0-
principle. Note that in these “Rabern and Rabern solutions”, all three questions
are asked to the same god. This is not the case for the solutions of Boolos and
Roberts, for which it is essential that different gods are addressed. A more
significant distinction between the two types of solutions is revealed when we
compare them on the basis of the average number of questions that have to be
addressed in order to solve the puzzle. To solve HLPEomn

sem via the questions
of Rabern and Rabern, we may—if the first question is answered with ‘yes’—
only need to ask two questions. As the probability that the first question is
answered with ‘yes’ is 1

3
, the average number of questions needed by the Rabern

and Rabern solution is 1
3
⋅ 2+ 2

3
⋅ 3 = 2 2

3
. In contrast, to solve HLPEomn

sem via the
questions of Boolos and Roberts, we always need to ask three questions.

2.4.4 Modeling HLPEran
syn : the theory Rsyn

In this section, we will model HLPEran
syn , in which Random behaves according to

the syntactic protocol and in which True and False do not have the ability to pre-
dict Random’s answers. We will compare the solutions of Boolos and Roberts,
which also go through for HLPEran

syn , and reveal an interesting dissimilarity in
their solutions: for Roberts’ solution to go through, it is necessary that the
gods know their own answers to the questions, whereas this is not a necessary
condition for Boolos’ solution. Moreover, we will contrast the three-question so-
lutions of Boolos and Roberts with a two-question solution for HLPEran

syn that
is due to Uzquiano. The latter solution explicitly exploits the fact that True and
False cannot predict the answers given by Random. As a consequence, True and
False will reply to some questions—about Random’s answers—with an ‘I don’t
know’. We will see that Uzquiano’s solution, just like Boolos’ solution, does not
depend on the assumption that the gods know their own answers. However, in
order to derive Uzquiano’s solution for HLPEran

syn formally, we need, in contrast
to Boolos’ solution, two additional axioms which state explicitly that True and
False do not know the answers of Random.

In HLPEomn
syn , True and False can predict the behavior of Random. For-

mally, this is guaranteed by Osyn, as for every sentence σ of L
[⋅]
G , we have that:

⊢Osyn fA(gR, [σ]) = cy ↔ fA(gT , [fA(gR, [σ]) = cy]) = cy
Indeed, Osyn ensures that True and False are omniscient with respect to the

sentences of L
[⋅]
G . To obtain a formal representation ofHLPEran

syn , we will restrict
the knowledge of True and False. In order to do so, we add a single knowledge
predicate, K(x), to our language, that can be read as ‘True (False) knows x’.
That is, we assume that the knowledge of True and False coincide. Making the
answers of the gods True and False dependent on their knowledge, we need to
make a decision concerning the answers of those gods on questions on which
they do not know the answer. We say that True and False give a ‘don’t know’
answer to such questions, and the constant symbol c? will be used to model
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this answer. The formal language of this section is denoted as L
[⋅]
G∗ , which is

obtained from LG ∪ {c?,K} by means of quotational closure. HLPEran
syn will be

modeled via the theory Rsyn, which consists of two parts, one part modeling the
behavior of the knowledge predicate K (the epistemological knowledge, so to
speak) one part modeling the riddle. To describe the behavior of the knowledge
predicate, we use the epistemological rule of inference EI, as indicated below.
Thus, in addition to the inference rules of first order logic, we employ another
rule of inference. We use ⊢Rsyn σ to indicate that σ can be derived from the set
of first order sentences Rsyn using the inference rules of first order logic and EI.
As usual, the rule EI can only be used in categorical, and not in hypothetical
derivations.

Definition 2.9 The theory Rsyn

The theory Rsyn consists of axiom schema’s E1,E2 and E3, inference rule EI
(modeling the epistemological knowledge) and axioms / axiom schema’sR1−R10

(modeling the riddle specific knowledge). In R5, R8 and R10, µ ∈ {gT , gF }.
E1 ∶ K([σ])→ σ

E2 ∶ K([K([σ])→ σ])
E3 ∶ K([σ → θ]) → (K([σ]) →K([θ]))
EI ∶ If ⊢Rsyn σ then ⊢Rsyn K([σ])
R1 ∶ K([σabc]) ∨K([σacb]) ∨K([σbac]) ∨K([σbca]) ∨K([σcab])∨K([σcba])
R2 ∶ gR /= gT ∧ gR /= gF

R3 ∶ cy /= cn ∧ c? /= cy ∧ c? /= cn
R4 ∶ fA(gR, [σ]) = cy ∨ fA(gR, [σ]) = cn
R5 ∶ fA(µ, [σ]) = cy ∨ fA(µ, [σ]) = cn ∨ fA(µ, [σ]) = c?
R6 ∶ K([σ])↔ fA(gT , [σ]) = cy
R7 ∶ K([¬σ])↔ fA(gT , [σ]) = cn
R8 ∶ ¬K([σ]) ∧ ¬K([¬σ])↔ fA(µ, [σ]) = c?
R9 ∶ fA(gT , [σ]) = cy ↔ fA(gF , [σ]) = cn
R10 ∶ fA(µ, [σ]) = ν ↔K([fA(µ, [σ]) = ν]) ν ∈ {cy, cn, c?}
R11 ∶ ¬K([fA(gR, [σ]) = cy]) ∧ ¬K([¬fA(gR, [σ]) = cy])
R12 ∶ ¬K([fA(gR, [σ]) = cn]) ∧ ¬K([¬fA(gR, [σ]) = cn]) ◻

E1 tells us that knowledge is factive, i.e. that knowledge implies truth. E2 states
that it is known (by True and False) that knowledge is factive, while E3 tells us
that the knowledge of True and False is closed under logical consequence. The
inference rule EI states that whatever can be inferred from Rsyn is known by
the non-Random gods. Note that, with EI thus stated, E2 is in fact superfluous
as an axiom, as it can be derived from E1 using EI.8 The axioms R1 −R12 are
self-explanatory. In the next section, R10, R11 and R12 will be discussed in more
detail. Below, we state the analogues of Proposition 2.6 and 2.7 for the theory
Rsyn.

8When the inference rule EI and axiom scheme E1 are added to a theory of arithmetic
(PA say), the resulting system becomes inconsistent. This is the paradox of the Knower.
Roughly, the inconsistency is established via a self-referential sentence and the unavailability
of such sentences in our formal framework is what saves us from this paradox.
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Proposition 2.10 The fundamental syntactic Rsyn 0-principle

Let σ be a sentence of L
[⋅]
G∗

and let λ ∈ {a, b, c}. Set θ ∶= λ = gT ↔ σ. Then:

1. K([θ]) ∨K([¬θ]) ⊢Rsyn λ /= gR → (σ↔ fA(λ, [θ]) = cy)
2. K([θ]) ∨K([¬θ]) ⊢Rsyn λ /= gR → (¬σ↔ fA(λ, [θ]) = cn)

Proof: Left to the reader. ◻

Proposition 2.11 The fundamental syntactic HLPE 1-principle

Let σ be a sentence of L
[⋅]
G∗ and let λ ∈ {a, b, c}. Set κ ∶= fA(λ, [σ]) = cy. Then:

1. K([κ]) ∨K([¬κ]) ⊢Rsyn λ /= gR → (σ↔ fA(λ, [κ]) = cy)
2. K([κ]) ∨K([¬κ]) ⊢Rsyn λ /= gR → (¬σ↔ fA(λ, [κ]) = cn)

Proof: Left to the reader. ◻

The antecedent of the derivation relation involved in the statements of both
propositions can be seen as the condition under which we can determine whether
or not σ by asking a single question to a god that is not Random. We shall refer
to these antecedents of Proposition 2.10 and 2.11 as the application condition for
the θ-strategy and the κ-strategy respectively. Let us now turn to a comparison
of Boolos and Roberts solution in Rsyn.

Comparing Boolos and Roberts solutions in Rsyn

As we saw in Section 3.2, the derivation of the Boolos and Roberts solution in
system Osyn depended essentially (in step A) on an application of Proposition
2.6 respectively Proposition 2.7. The analogues of Proposition 2.6 and 2.7 for
the system Rsyn are Proposition 2.10 and 2.11 respectively and so, the Osyn

derivations of the Boolos and Roberts solution can be easily translated into Rsyn

derivations, when the application conditions of the θ and κ strategy are fulfilled
with σ ∶= a = gR and λ ∶= b. In fact, these conditions are fulfilled. For, as the
reader may wish to verify, we have that:

⊢Rsyn K([b = gT ↔ a = gR]) ∨K([¬(b = gT ↔ a = gR)]) (2.4)

⊢Rsyn K([fA(b, [a = gR]) = cy]) ∨K([¬fA(b, [a = gR]) = cy]) (2.5)

And so, the solutions of Boolos and Roberts can be obtained in Rsyn as well.
However, as we will show, for the solution of Roberts to go through, R10, which
specified that the gods know their own answers, is needed, while this is not the
case for the solution of Boolos.

Let R∗ denote the system that is obtained by removing R10 (and R11, R12)
from Rsyn and by modifying EI accordingly. Then:

⊢R∗ K([b = gT ↔ a = gR]) ∨K([¬(b = gT ↔ a = gR)]) (2.6)

/⊢R∗ K([fA(b, [a = gR]) = cy]) ∨K([¬fA(b, [a = gR]) = cy]) (2.7)

Thus, Roberts’ solution essentially depends on axiom schema R10 while Boolos’
solution can also be derived in the weaker system R∗. The proof of (2.6) is an
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easy derivation that can be obtained from R1 and the epistemological axioms.
It is left to the interested reader. We give a model-theoretic argument for (2.7).

Consider the structure M = ⟨D,I⟩ with D = Sen(L[⋅]G∗)∪{gT,gF,gR,cy,cn,c?}.
Let I([σ]) = σ for every σ ∈ Sen(L[⋅]G∗), I(a) = gT, I(b) = gF, I(c) = gR and let
the constants gT , gF , gR, cy, cn, c? be interpreted by their bold-faced correlates.
We define I(K) and I(fA) as follows.

1. I(fA)(d1, d2) = c? whenever (d1, d2) /∈ {gT,gF,gR} × Sen(L[⋅]G∗)
2. I(fA)(gR, σ) = cn

3. If ⊢R∗ σ then: σ ∈ I(K) and I(fA)(gT, σ) = cy and I(fA)(gF, σ) = cn

4. If ⊢R∗ ¬σ then: ¬σ ∈ I(K) and I(fA)(gT, σ) = cn and I(fA)(gF, σ) = cy

5. If σabc ⊢ σ then: σ ∈ I(K) and I(fA)(gT, σ) = cy and I(fA)(gF, σ, n) = cn

6. If σabc ⊢ ¬σ then: ¬σ ∈ I(K) and I(fA)(gT, σ) = cn and I(fA)(gF, σ) = cy

7. Except for the sentences of steps 3,4,5,6 no other objects are in I(K). For
every σ /∈ I(K) we have that:I(fA)(gT, σ) = I(fA)(gF, σ) = c?

It is easily established that the structure M is a model for R∗. The rationale
behind the construction is as follows. In step 3 and 4 we put the sentences in
I(K) that are forced upon us by EI and we interpret fA accordingly. Then, we
make sure that the structure M validates axiom R1. We do so by putting the
sentence σabc in the extension of K, as well as all of its first order consequences
and by interpreting fA accordingly. We put the first order consequences of σabc

in I(K) to validate the epistemological axioms E1,E2 and E3. With respect to
equation (2.7) we observe that ‘fA(b, [a = gR]) = cy’ is not in I(K), as it it can
not be derived in R∗ and as it is no first order consequence of σabc. Similar for
‘¬fA(b, [a = gR]) = cy’. Hence we have that:

M /⊧K([fA(b, [a = gR]) = cy]) ∨K([¬fA(b, [a = gR]) = cy]) (2.8)

Thus, for Roberts solution to go through we explicitly need R10, stating that
the gods True and False are self-reflective, in the sense that they know their
own answers to the questions they are asked.

Uzquiano’s two-question solution for HLPEran
syn in Rsyn

In HLPEran
syn , there are questions, such as ‘does Random answer ‘snow is white’

with ‘yes’?’ which neither True nor False can answer. As Random—who be-
haves according to the syntactic protocol—has no problems with answering any
question whatsoever, the fact that a god fails to answer a question indicates
that he is not Random. Uzquiano cleverly exploits the knowledge restriction
of True and False into a two-question solution for HLPEran

syn . In this section,
we represent this solution in Rsyn. To do so, we employ the following proposi-
tion. As its proof is somewhat more complicated than the proofs of the other
propositions in this paper, it is given in the appendix.
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Proposition 2.12 Uzquiano’s lemma
Let λ, δ ∈ {a, b, c} and set Qλ

δ ∶= fA(λ, [cy = cn]) = fA(δ, [cy = cn]). Question
Qλ

δ will be addressed to λ and, as such, asks λ whether his answer to the false
sentence ‘cy = cn’ is the same as the answer of δ to that sentence. Here is
Uzquiano’s lemma:

⊢Rsyn δ = gR ↔ fA(λ, [Qλ
δ ]) = c?

Proof: See appendix. ◻

As the reader can verify in the appendix, the right to left direction of Uzquiano’s
lemma can be obtained in the theory R∗ that was discussed in the previous
section, i.e., in Rsyn minus R10 and R11. To obtain the left to right direction
however, R11 and R12 (but not R10) is needed. Now for Uzquiano’s solution.
First, we ask Qa

b to a. We can show that:

⊢Rsyn fA(a, [Qa
b ]) = c? → b = gR (2.9)

⊢Rsyn fA(a, [Qa
b ]) = cy → (a = gR ∨ (a = gF ∧ b = gT )) (2.10)

⊢Rsyn fA(a, [Qa
b ]) = cn → (a = gR ∨ (a = gT ∧ b = gF )) (2.11)

Equation (2.9) is an instantiation of the right to left direction of Uzquiano’s
lemma. To prove (2.10) and (2.11), which we also do in the appendix, we need
the left to right direction of the lemma. We see that the three possible answers
allow us identify a god that is not Random: if Qa

b is answered with c?, b is
Random (and so a is not), otherwise, b is not Random. As a follow up question
we ask, with λ ∈ {a, b} a god that we now know that is not Random, Qλ

c to λ.
We now get that:

⊢Rsyn fA(λ, [Qλ
c ]) = c? → c = gR (2.12)

⊢Rsyn fA(λ, [Qλ
c ]) = cy → (λ = gF ∧ c = gT ) (2.13)

⊢Rsyn fA(λ, [Qλ
c ]) = cn → (λ = gT ∧ c = gF ) (2.14)

The proof of equations (2.12), (2.13) and (2.14) is similar to the proof of (2.9),
(2.10) and (2.11). If Qλ

c is answered with c?, c is Random. But then b is not
Random and so the answer to our first question, Qa

b , was cy or cn. If the answer
to our first question was cy, a is False and b is True, whereas if the answer was
cn, a is True and b is False. If Qλ

c is answered with cy or cn, we clearly know
the identity of all three gods.

Uzquiano thus solves HLPEran
syn by asking only two (non-self-referential)

questions. A distinguishing feature of Uzquiano’s solution with all other so-
lutions to HLPE, is that, when the second question is answered with c?, we
have to refer back to the answer we got on our first question to determine the
identity of all three gods. Although we presented this “backtracking argument”
in our meta-language, it is clear that it can be represented directly in Rsyn as
well. As we will see, the self-referential solution of Uzquiano to HLPEomn

syn , to
be presented in the next section, also involves “backtracking”.
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2.5 Self-referential solutions to HLPE

The formal systems that modeled the various riddles discussed in this paper all
have a common feature; self-referential sentences cannot be formulated in those
systems and hence self-referential questions cannot be asked to the gods. This is
somewhat disappointing, as when it is allowed to ask self-referential questions,
HLPEomn

sem can be solved by asking only two questions to the gods, as pointed
out by Rabern and Rabern. Although their solution does not carry over to
HLPEomn

syn , Uzquiano has shown that this riddle allows for a self-referential
two-question solution as well. In this section, we discuss the self-referential
solutions of Rabern and Rabern and Uzquiano and sketch a possible formal
treatment of those solutions.

2.5.1 The self-referential solution of Rabern and Rabern

The essential feature of the two-question solution of Rabern and Rabern for
HLPEomn

sem is given by their Tempered Liar Lemma ([43], p110). The lemma
can be stated as follows. Suppose that there is some object, which is either
red, yellow or green. You have no idea what the actual color is and your task
is to find this out by asking questions to True. Clearly, two questions suffice
to find out the color of the object. However, Rabern and Rabern point out
that the availability of self-referential questions allow you to identify the color
of the object (with certainty) by asking a single question. To arrive at this
conclusion, Rabern and Rabern observe that there are self-referential questions
which True cannot answer with ‘yes’ or ‘no’ according to his nature (which is to
speak truly). An example of such a question is L, which is phrased as follows:

L ∶ is your answer to L ‘no’?

If True answers L with either ‘yes’ or ‘no’, he can be accused of lying. Thus,
True cannot answer question L in accordance with his nature and we may
assume that he remains silent on such unanswerable questions. Whether or not
a question is unanswerable for True may depend on the empirical circumstances.
In particular, to return to our riddle, it may depend on the color of the object.
Let R(o), Y (o) and G(o) be sentences that state that the object is red, yellow
and green respectively. Now ask the following question to True.

Q ∶ (is your answer to Q ‘no’ and R(o) ) or Y (o) ?

Rabern and Rabern argue that the response of True to Q ( answering ‘yes’, ‘no’
or remaining silent) allows you to identify the color of the object. They reason
as follows, using reductio ad absurdum.

1. Suppose True answers Q with ‘yes’ and ¬Y (o). Then, as True speaks
truly, the left disjunct of Q must be true. In particular, this means that
True’s answer to Q is ‘no’. Contradiction. Hence, if True answers Q with
‘yes’, the object is yellow.

2. Suppose True answers Q with ‘no’ and ¬G(o). Then, as True speaks
truly, Q must be false, and in particular, we have ¬Y (o). From ¬G(o)
and ¬Y (o), we conclude R(o). As R(o) and as True answered Q with
‘no’, the left disjunct of Q, is true, and so it follows that True’s answer to
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Q must be ‘yes’. Contradiction. Hence, if True answers Q with ‘no’, the
object is green.

3. Suppose True remains silent on Q and ¬R(o). If Y (o), Q would be true
and so True would answer Q with ‘yes’, which would contradict the as-
sumption that he remains silent. Thus, ¬Y (o). From ¬R(o) and ¬Y (o)
it follows that Q is false and hence that True must answer Q with ‘no’.
Contradiction. Hence, if True remains silent on Q, the object is red.

The proof of the Tempered Liar Lemma certainly sounds convincing. However,
the semantical paradoxes testify that reasoning with self-referential sentences
is tricky business. And indeed, a closer look reveals that there is something
odd about the proof of the Tempered Liar Lemma. For consider the following
“proof” of the claim that True never remains silent when he is asked Q.

4. Suppose True remains silent on Q. If Y (o), Q would be true and so True
would answer Q with ‘yes’, which would contradict the assumption that
he remains silent. Thus, ¬Y (o). From the fact that True remains silent
on Q it follows that he does not answer Q with ‘no’ and hence the left
disjunct of Q is false. As ¬Y (o), Q itself is false and hence True must
answer Q with ‘no’. Contradiction. Hence, True does not remain silent
on Q.

If we accept, as I do, the (intuitive) validity of the Tempered Liar Lemma, we
have to explain why the reasoning in 3 is legitimate while that in 4 is not. The
following two (intuitive) principles allow us to do so.

i σ is true ⇒ True answers σ with ‘yes’ if in doing so he will not contradict
himself.

ii σ is false ⇒ True answers σ with ‘no’ if in doing so he will not contradict
himself.

Thus, the “proof” that True does not remain silent on Q, i.e., 4, is blocked by
principle ii. Although the assumption that True remains silent on Q renders Q
false, from the falsity of Q we cannot conclude that he answers Q with ‘no’, as
in doing so, he contradicts himself. Although an appeal to principle ii allows us
to understand the Tempered Liar Lemma as intuitively valid, ultimately, we are
interested in a formal account of the validity of the Tempered Liar Lemma. In
[64], I gave a model theoretic account of the Tempered Liar Lemma according
to which it is valid. Below, I sketch the essentials of the approach taken.

The formal framework of this paper forbids the formulation of questions like
L and Q. However, when we remove the restriction that sentences can only
be denoted by quotational constants, formal analogues of L and Q are readily
available. For instance, the formal analogue of L is obtained by introducing a
constant, say θ, and by specifying that it denotes the sentence fA(gT , θ) = cn
(which is then addressed to True). In fact, we can “hard-wire” the information
that θ denotes fA(gT , θ) = cn in our theory by using quotational names:

θ = [fA(gT , θ) = cn] (2.15)

One can think of (2.15) as a definition, by a riddle-solver, of a self-referential
question. We may use such definitions to give a formal representation of the
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Tempered Liar Lemma. Let L[⋅] be the quotational closure of the language
L = {R,Y,G, o, θ0, fA, cy, cn, c?}. The sentence σR ∶= (R(o) ∧ ¬Y (o) ∧ ¬G(o))
abbreviates the sentence which states that the object is red (and not yellow and
green) and σY and σG are defined similarly. Consider the theory T, consisting
of the following two sentences of L[⋅].

T0: θ0 = [(fA(gT , θ0) = cn ∧R(o)) ∨ Y (o)]
T1: σR ∨ σY ∨ σG

Thus, T0 is the formal definition of question Q, while T1 represents your knowl-
edge about the object before you have asked any question. A base model for L[⋅]

is a sentence structure for L− = L[⋅] − {fA}. Thus, a base model is a classical
model in which every sentence σ of L[⋅] is denoted by [σ] and which validates
T. The answering function fA does not have an interpretation in a base model.
There are three relevant (classes of) base models, associated with the three pos-
sible colors of the object. The idea of [64] was to combine techniques of Kripke
and Gupta to extend a base model for L[⋅] to a (partial) model for L[⋅] and to
formalize the intuitive notion of validity present in the proof of the Tempered
Liar Lemma in terms of the extended base models. Very roughly, the conversion
of a base model M to its extension M proceeds as follows.

1. Take a base model M and use Kripke’s Strong Kleene minimal fixed point
construction to obtain a partial model M ′ of L[⋅] − {c?}.

2. Take M ′ and use a Gupta revision construction to obtain the extended
(partial) model M for L[⋅].

The first stage of the construction declares all sentences of L[⋅] −{c?} to be true
(t), false (f) or ungrounded (u). The second stage reflects on this first stage
and ensures that True remains silent on a sentence just in case that sentence
is declared to be ungrounded in the first stage. That is, remaining silent is,
but answering with ‘yes’or ‘no’ not, modeled as a classical property. Moreover
the second stage guarantees that when True is asked whether he remains silent
on some sentence, he answers truthfully. The details of the construction do
not matter for our purposes. M denotes the class of all extended models for
L[⋅], one for each base model. An extended model M ∈ M defines a valuation
VM ∶ Sen(L[⋅]) → {t,u, f}. We use VM to define a notion of validity in terms of
truth preservation in extended models. That is:

α ⊧ β⇔ ∀M ∈M ∶ VM(α) = t ⇒ VM(β) = t

For every sentence σ of L[⋅], we have that:

⊧ fA(gT , [σ]) = c? ∨ ¬fA(gT , [σ]) = c?
That is, True either explodes on σ or he does not. This is guaranteed by the
second stage of the construction of an extended model. However, we do not
have that:

⊧ fA(gT , [σ]) = cy ∨ ¬fA(gT , [σ]) = cy
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This is a consequence of the fact that fA(gT , [σ]) = cy may be ungrounded and
the behavior of the Strong Kleene schema. With respect to θ0, the question of
interest, we get that:

fA(gT , θ0) = cy ⊧ Y (o) (2.16)

fA(gT , θ0) = cn ⊧ G(o) (2.17)

fA(gT , θ0) = c? ⊧ R(o) (2.18)

These three equations capture the three argument cases of the Tempered Liar
Lemma.

Our formal representation of the Tempered Liar Lemma via equations (2.16),
(2.17) and (2.18) essentially relies on a meta-linguistic notion of validity. That
is, although we have (2.16), we also have:

/⊧ fA(gT , θ0) = cy → Y (o) (2.19)

To see this, let M be an extended model in which the object is red. Then
fA(gT , θ0) = cy is ungrounded in M while Y (o) is false. Accordingly, the ma-
terial implication of (2.19) is ungrounded in M. On the other hand, due to the
classical behavior of remaining silent, we do have object languages implications
that come close to (2.16), (2.17) and (2.18):

⊧ ¬fA(gT , θ0) = c? ∧ fA(gT , θ0) = cy → Y (o) (2.20)

⊧ ¬fA(gT , θ0) = c? ∧ fA(gT , θ0) = cn → G(o) (2.21)

⊧ fA(gT , θ0) = c? → R(o) (2.22)

The actual solution that Rabern and Rabern provide for HLPEomn
sem consist

of embedding a question of the same type as θ0 in another question in accor-
dance with Proposition 2.3. In our terminology, their first question consists of
addressing question θR to god a.

θR = [fA(a, [(fA(a, θR) = cn ∧ b = gT ) ∨ b = gF ]) = cy]
By asking this question to a, we can reveal the identity of god b in one step.
Thereafter, another (non self-referential) question suffices to solve the puzzle.
This solution for HLPEomn

sem can be represented in a similar manner as the Tem-
pered Liar Lemma.

I take it that (2.16), (2.17) and (2.18) come pretty close to a satisfactory
formal representation of the Tempered Liar Lemma. On the other hand, I do
not want to claim that the formal method used is an adequate way to model
the behavior of True in a general setting. Here are two limitations.

A The Kripke-Gupta construction that was developed in [64] explicitly excludes
self-referential sentences which are formed with c?. As an example, it is forbid-
den to define question υ by letting:

υ = [fA(gT , υ) = cn ∨ fA(gT , υ) = c?]
Although neither the self-referential solution of Rabern and Rabern, nor that of
Uzquiano, relies on asking such “forbidden questions”, ultimately, we want an
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account of the answering function of True and False with respect to all kinds of
self-referential sentences.
B The Kripke-Gupta approach does not distinguish between ungrounded sen-
tences. For instance, let

τ = [fA(gT , τ) = cy]
If we ask question τ to True, we ask him ‘is your answer to this question ‘yes’?’.
Now True can answer with either ‘yes’ or ‘no’; both count as speaking truly. Yet
according to our approach, True will remain silent on τ as τ will be valuated as
ungrounded.

To overcome these limitations, and several other, is the topic of further research.

2.5.2 The self-referential solution of Uzquiano

Uzquiano’s (non-self-referential) two question solution for HLPEran
syn depended

on the fact that, due to a restriction of their knowledge, there are questions that
neither True nor False can answer. His two question solution for HLPEomn

syn also
uses a question that, depending on the circumstances, neither True nor False can
answer. This time, it is not the lack of knowledge of True and False that renders
the question unanswerable but rather, just as in the Rabern and Rabern solution
to HLPEomn

sem , the self-reference involved in the question. In HLPEomn
syn , no

question is unanswerable for Random however, as he will simply flip a coin
when asked any question and will answer with ‘yes’ or ‘no’ depending on the
outcome of the coin flip. Thus, when we ask a question to a god on which we get
no answer, we know that the god under consideration is not Random. Uzquiano
exploits this observation to construct a two-question solution forHLPEomn

syn . We
will present his solution using our formal terminology, as it is more convenient
to do so than in natural language. First, ask the following question to a:

υ1 = [fA(a, [(b /= gR ∧ a = gF ) ∨ (b = gR ∧ fA(a, υ1) = cn)]) = cy]
Uzquiano argues that:

fA(a, υ1) = c? ⇔ b = gR

fA(a, υ1) = cy ⇒ (a = gR) ∨ (a = gF ∧ b = gT )
fA(a, υ1) = cn ⇒ (a = gR) ∨ (a = gT ∧ b = gF )

So, if a answers υ1 with c?, we know that a is not Random, (as b is) whereas if
he does not answer with c?, we know that b is not Random. Suppose that we
find out that a is not Random. Then ask a question υ2 :

υ2 = [fA(a, [(c /= gR ∧ a = gF ) ∨ (c = gR ∧ fA(a, υ2) = cn)] = cy]
Uzquiano argues that:

fA(a, υ2) = c? ⇔ c = gR

fA(a, υ2) = cy ⇒ a = gF ∧ c = gT

fA(a, υ2) = cn ⇒ a = gT ∧ c = gF
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These answers allow us to determine the identity of all three gods by an ar-
gument that is similar to the one given for Uzquiano’s two-question solution
for HLPEran

syn . Thus, Uzquiano’s choice of self-referential questions, together
with the “backtracking technique” (see Section 3.4.2) allow him to obtain a
two-question solution for HLPEomn

syn . The techniques that were used to formal-
ize the Tempered Liar Lemma can also be used, mutatis mutandis, to formalize
Uzquiano’s two-question solution.

2.5.3 Concluding remarks

We defined a formal framework for riddles about truth which was applied, in
particular, to various versions of HLPE. The defined framework allows us to
formalize all non self-referential solutions to HLPE that are currently present
in the literature. By applying our framework, we revealed some interesting
dissimilarities between those solutions that were hidden due to their previous
formulation in natural language. In the last section, we sketched a possible way
to formalize the self-referential solutions to HLPE as well.

Appendix

I: Consistency proof of K

We begin with the specification of a base-structure M0 for L
[⋅]
B

. The base-
structure is no model for K, but it is trivially a model for K1-K3.

Definition 2.10 The base-structure M0.
Let L

[⋅]
B be the language of Definition 2.4. The sentence-structure M0 = ⟨D,I0⟩

for L
[⋅]
B is defined as follows.

1. D = {l, r,bT,bL,y,n} ∪ Sen(L[⋅]B
).

2. We divide the interpretation function I0 into a fixed and a revision part.

2a) The fixed part of I0:

• I0(l) = l, I0(r) = r, I0(cy) = y, I0(cn) = n, I0(bT ) = bT,
I0(bL) = bL.

• I0([σ]) = σ, for all σ ∈ Sen(L[⋅]B )
• I0(fA)(d1, d2) = n if d1 /∈ {bT,bL} or d2 /∈ Sen(L[⋅]B )
• I0(b1) = bT, I0(b2) = bL.

• I0(G) = {l}
2c) The revision part of I0:

• I0(fA)(d1, d2) = l if d1 ∈ {bT,bL} and d2 ∈ Sen(L[⋅]B ) ◻

Clearly, the structure M0 is a model for K1 −K3 and equally clearly, it is not a
model for K. But using a revision process, we can find a model for K starting
from our base-structure. The revision process is defined as follows.
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Definition 2.11 The revision process
With M0 = ⟨D,I0⟩ as in Definition 2.10 and with α ∈ On, the sentence-structure
Mα = ⟨D,Iα⟩ is just like M0 except for the revision part of I(fA). Hence, we
may write Mα =M0 + Iα(fA). The revision part of Iα(fA) is defined as follows:

• When α = β + 1 for some β ∈ On: (σ ∈ Sen(L[⋅]B ))
1. Iβ+1(fA)(bT, σ) = y iff Mβ ⊧ σ

2. Iβ+1(fA)(bT, σ) = n iff Mβ ⊧ ¬σ,

3. Iβ+1(fA)(bL, σ) = y iff Mβ ⊧ ¬σ,

4. Iβ+1(fA)(bL, σ) = n iff Mβ ⊧ σ,

• When α is a limit ordinal: (σ ∈ Sen(L[⋅]B ),b ∈ {bL,bT})
1. Iα(fA)(b, σ) = y ⇔ ∃γ∀β(γ ≤ β < α → Iβ(fA)(d1, d2) = y)
2. Iα(fA)(b, σ) = n ⇔ ∃γ∀β(γ ≤ β < α→ Iβ(fA)(d1, d2) = n)
3. Iα(fA)(b, σ) = l otherwise. ◻

To prove that the revision process stabilizes, we need the following lemma that
essentially states that when a sentence of degree n is made true by Mn+1, it is
made true by all models Mα with α ≥ n + 1.

Lemma 2.1 Preservation of In+2 w.r.t Sen(Ln
B) higher up.

With b ∈ {bT,bL}, σ ∈ Sen(Ln
B) and α ∈ On ∶ α ≥ n + 2 we have that:

In+2(fA)(b, σ) = Iα(fA)(b, σ)
Proof: As the proof is similar to the proof of Gupta’s Main Lemma ([23], p11)
we only comment on the structure of the proof, which is as follows. Suppose
that the lemma is false. Let n∗ be the least natural number for which there
exists an ordinal such that the lemma fails. Let α∗ be the least such ordinal.
Clearly, α∗ has to be a successor ordinal, say α∗ = β + 1. Thus, n∗ and α∗ are
such that there exists a σ ∈ Sen(Ln

∗

B ) such that:

M0 + In∗+1(fA) ⊧ σ & M0 + Iβ(fA) /⊧ σ (2.23)

Now one constructs an isomorphism between the structures Mn∗+1 and Mβ in

the language Ln∗

B contradicting (1) and hence contradicting the supposition that
the lemma is false. ◻

From the lemma it easily follows that the ωth structure of the revision process
is a model for K:

Theorem 2.1 Mω ⊧K.
First, we show that Iω(fA) = Iω+1(fA). We only need to show that the revi-
sion parts of the interpretation functions coincide. So let (b, σ) ∈ {bT,bL} ×
Sen(L[⋅]B ). Let the degree of σ equal n. By Lemma 2.1 it follows that In+2(fA)(b, σ) =
Iω(fA)(b, σ) = Iω+1(fA)(b, σ). Hence Iω(fA) = Iω+1(fA) and thus Mω =Mω+1.
It is now clear that Mω is a model for K1 −K5. What remains to be shown is
that it is a model for K6.
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Pick an arbitrary sentence σ. Either Mω ⊧ σ or Mω ⊧ ¬σ. Suppose Mω ⊧ σ.
Then, by definition of our revision process, Iω+1(fA)(bT, σ) = y and hence
Mω+1 ⊧ fA(bT , [σ]) = cy. So, asMω =Mω+1, we have thatMω ⊧ fA(bT , [σ]) = cy
and so Mω ⊧ σ↔ fA(bT , [σ]) = cy. Suppose that Mω ⊧ ¬σ. Then, by definition
of our revision process, Iω+1(fA)(bT, σ) = n and hence Mω+1 ⊧ fA(bT , [σ]) = cn.
So, as Mω = Mω+1, we have that Mω ⊧ fA(bT , [σ]) = cn and so Mω ⊧ ¬σ ↔
fA(bT , [σ]) = cn. ◻

II: Deriving Uzquiano’s solution

Proposition 12 Uzquiano’s lemma
Let λ, δ ∈ {a, b, c} and set Qλ

δ ∶= fA(λ, [cy = cn]) = fA(δ, [cy = cn]). Question
Qλ

δ will be addressed to λ and, as such, asks λ whether his answer to the false
sentence ‘cy = cn’ is the same as the answer of δ to that sentence. We have that:

⊢Rsyn δ = gR ↔ fA(λ, [Qλ
δ ]) = c? (2.24)

Proof: Observe that we can assume that λ ∈ {gT , gF }, as Random is guaranteed,
by (R3 and) R4 not to answer with c?. For sake of concreteness, we show that
(2.24) holds for QgT

b
. That is, we will show that:

⊢Rsyn b = gR ↔ fA(gT , [QgT

b
]) = c?, (2.25)

where QgT

b
∶= fA(gT , [cy = cn]) = fA(b, [cy = cn]). The generalization of (2.25) to

(2.24) can safely be left to the reader. First, we prove the left to right direction
of (2.25):

1. ⊢Rsyn fA(gT , [cy = cn]) = cn (R3,EI, R7)

2. ⊢Rsyn Q
gT

b
→ fA(b, [cy = cn]) = cn (1)

3. ⊢Rsyn K([QgT

b
→ fA(b, [cy = cn]) = cn]) (2,EI)

4. ⊢Rsyn K([QgT

b
]) →K([fA(b, [cy = cn]) = cn]) (3,E3)

5. ⊢Rsyn K([fA(b, [cy = cn]) = cn])→ b /= gR (R12)

6. ⊢Rsyn K([QgT

b
]) → b /= gR (4,5)

7. ⊢Rsyn ¬Q
gT

b
→ ¬fA(b, [cy = cn]) = cn (1,R3,R4)

8. ⊢Rsyn K([¬QgT

b
]) → b /= gR (7 and steps similar to 3,4,5)

9. ⊢Rsyn b = gR → ¬K([QgT

b
]) ∧ ¬K([¬QgT

b
]) (5, 8)

10. ⊢Rsyn b = gR → fA(gT , [QgT

b
]) = c? (9,R8)

Now we establish the right to left direction of (2.25):

1. ⊢Rsyn fA(gT , [cy = cn]) = cn ∧ fA(gF , [cy = cn]) = cy (R3,EI, R6, R7)

2. ⊢Rsyn b = gF → ¬Q
gT

b
(1,R3)

3. ⊢Rsyn K([b = gF → ¬Q
gT

b
]) (EI)

4. ⊢Rsyn b = gF →K([b = gF ]) (R1)
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5. ⊢Rsyn b = gF →K([¬QgT

b
]) (3,4,E3)

6. ⊢Rsyn b = gF → ¬fA(gT , [QgT

b
]) = c? (5,R7,R3)

7. ⊢Rsyn b = gT →K([QgT

b
]) (steps similar to 1-5)

8. ⊢Rsyn b = gT → ¬fA(gT , [QgT

b
]) = c? (6,R7,R3)

9. ⊢Rsyn b /= gR → ¬fA(gT , [QgT

b ]) = c? (5,7,R1) ◻

Observe that our proof of the left to right direction of (2.25), and hence of
(2.24), involves axiom schema’s R11 and R12, whereas this is not the case for
the right to left direction. For Uzquiano’s solution to go through however, we
need both directions of (2.24) and so we cannot do without R11 and R12.

Deriving equations (2.10) and (2.11)
We will only establish (2.10), as the proof of (2.11) is similar. That is, we show
that

⊢Rsyn fA(a, [Qa
b ]) = cy → (a = gR ∨ (a = gF ∧ b = gT )) (10)

From the left to right direction of Uzquiano’s lemma, it follows that:

fA(a, [Qa
b ]) = cy ⊢Rsyn b /= gR (2.26)

Moreover, from R4,R6 and R7, we have that:

fA(a, [Qa
b ]) = cy ⊢Rsyn θT ∨ θF ∨ (a = gR), (2.27)

where θT ∶= (K([Qa
b ]) ∧ a = gT ) and θF ∶= (K([¬Qa

b ]) ∧ a = gF ). As knowledge
is factive (E1), we get that:

fA(a, [Qa
b ]) = cy, θT ⊢Rsyn Qa

b ∧ a = gT (2.28)

From (2.26) and (2.28),it follows that the antecedent of (2.28) implies that
b = gF . From the definition of Qa

b , it thus follows that:

fA(a, [Qa
b ]) = cy, θT ⊢Rsyn fA(gT , [cn = cy]) = fA(gF , [cn = cy]) (2.29)

As Rsyn proves the negation of the consequent of (2.29), we can conclude from
(2.27) that:

fA(a, [Qa
b ]) = cy ⊢Rsyn θF ∨ (a = gR),

from which we obtain (2.10).
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Chapter 3

On the Behavior of True
and False

3.1 Abstract

Uzquiano [53] showed that the Hardest Logic Puzzle Ever (HLPE) (in its
amended form due to Rabern and Rabern [43]) has a solution in only two ques-
tions. Uzquiano concludes his paper by noting that his solution strategy natu-
rally suggests a harder variation of the puzzle which, as he remarks, he does not
know how to solve in two questions. Wheeler and Barahona [56] formulated a
three question solution to Uzquiano’s puzzle and gave an information theoretic
argument to establish that a two question solution for Uzquiano’s puzzle does
not exist. However, their argument crucially relies on a certain conception of
what it means to answer self-referential yes-no questions truly and falsely. We
propose an alternative such conception which, as we show, allows one to solve
Uzquiano’s puzzle in two questions. The solution strategy adopted suggests an
even harder variation of Uzquiano’s puzzle which, as we will show, can also be
solved in two questions. Just as all previous solutions to versions of HLPE, our
solution is presented informally. The second part of the paper investigates the
prospects of formally representing solutions to HLPE by exploiting theories of
truth.

3.2 Introduction

Recall Boolos’ formulation of the Hardest Logic Puzzle Ever (HLPE):

The Puzzle: Three gods A, B and C are called, in some order, True,
False, and Random. True always speaks truly, False always speaks
falsely, but whether Random speaks truly or falsely is a completely
random matter. Your task is to determine the identities of A, B,
and C by asking three yes-no questions; each question must be put
to exactly one god. The gods understand English, but will answer
all questions in their own language, in which the words for ‘yes’ and
‘no’ are ‘da’ and ‘ja’ in some order. You do not know which word
means which. Before I present the somewhat lengthy solution, let me
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give answers to certain questions about the puzzle that occasionally
arise:

• (B1) It could be that some god gets asked more than one ques-
tion (and hence that some god is not asked any question at
all).

• (B2) What the second question is, and to which god it is put,
may depend on the answer to the first question. (And of course
similarly for the third question).

• (B3) Whether Random speaks truly or not should be thought
of as depending on the flip of a coin hidden in his brain: if the
coin comes down heads, he speaks truly, if tails, falsely.

• (B4) Random will answer ‘da’ or ‘ja’ when asked any yes-no
question. (Boolos [9, p62])

Rabern and Rabern [43] point out the need to distinguish HLPE as liter-
ally formulated by Boolos from a version of HLPE which is closely related
to it and, as pointed out by Rabern and Rabern, is more properly called ‘the
hardest logic puzzle ever’. The distinction between the puzzle as formulated
by Boolos—which we call HLPEsem, for semantic HLPE—and the amended
puzzle—which we call HLPEsyn, for syntactic HLPE—only concerns the way
in which Random reacts to questions. Suppose that we address a question to
Random. Depending on the version of HLPE under consideration, he reacts as
follows:

- HLPEsem: Random flips a coin and then, depending on the outcome of
the coin-flip, answers the question either truly or falsely.

- HLPEsyn: Random flips a coin and then, depending on the outcome of
the coin-flip, answers the question with either ‘da’ or ‘ja’.

Rabern and Rabern show that HLPEsem allows for a solution (in three ques-
tions) which is so simple that it almost trivializes the puzzle. Previous com-
mentators (such as Boolos [9] and Roberts [47]) did not realize the possibility
of such a simple solution and Rabern and Rabern plausibly suggest that this
is due to the fact that these commentators implicitly assumed that Random
worked along the lines of HLPEsyn. Accordingly, we may regard HLPEsyn

as a corrected version of HLPEsem which is more properly called ‘the hardest
logic puzzle ever’.

Besides pointing out the distinction between HLPEsem and HLPEsyn,
Rabern and Rabern come up with a solution to HLPEsem which exploits only
two (!) questions. To realize their solution, Rabern and Rabern ask the gods
self-referential questions, which, as they observe, is not prohibited by Boolos’
guidelines. However, their solution does not carry over to HLPEsyn and so the
question arises whether HLPEsyn allows for a two-question solution as well.

Uzquiano [53] shows that HLPEsyn has a two-question solution1. His solu-
tion strategy is inspired by Rabern and Rabern’s observation that, given their

1Actually, Uzquiano distinguishes two versions of HLPEsyn and gives two-question solu-
tions for both versions. The versions differ with respect to the abilities of True and False to
predict the answers of Random. The first version assumes that True and False cannot predict
Random’s answers (which seems reasonable given that Random answers randomly), while the
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nature, True and False cannot answer all yes-no questions with ‘da’ and ‘ja’.
In Uzquiano’s framework, True and False are said to remain silent on questions
that they cannot answer with ‘da’ or ‘ja’. Assuming for simplicity that the gods
understand and answer in English, an example of a question on which True
must remain silent is given by λ.

λ ∶ Is it the case that: your answer to λ is ‘no’?

In answering λ with either ‘yes’ or ‘no’, True can be accused of lying and so
True cannot answer λ “in accordance with his nature”. Accordingly, True will
remain silent when asked λ. This illustrates that in HLPEsyn, True and False
are thought of as having three reactions to questions; besides answering with
‘da’ and ‘ja’ they may also remain silent. However, HLPEsyn models Random
as a random variable over only two of these reactions: answering with ‘da’ or
answering with ‘ja’. As Uzquiano observes, a more natural way to model Ran-
dom in HLPEsyn then, is as a ternary random variable, the outcome of which
determines whether Random answers ‘da’, ‘ja’ or remains silent. HLPE2

syn and

HLPE3
syn will be used to denote the original version and Uzquiano’s version of

HLPEsyn respectively. Uzquiano solves HLPE2
syn in two questions, but with

respect to HLPE3
syn, he remarks that: ‘I, for one, do not know how to solve

this puzzle in two questions.’
Wheeler and Barahona [56] give a three-question solution to HLPE3

syn and

give an information theoretic argument which establishes that HLPE3
syn can-

not be solved in less than three questions. Although their argument is certainly
correct, it crucially relies on the assumption that there are three distinct ways
in which the gods answer yes-no questions. But now consider what happens if
we ask the following question to True.

τ ∶ Is it the case that: your answer to τ is ‘yes’?

Indeed, just as λ is (when asked to True) an interrogative version of the Liar, so
τ is (when asked to True) an interrogative version of the Truthteller. And just as
the Truthteller may be valuated as either true or false, so True can answer τ with
either ‘yes’ or ‘no’. However, doing so is, in both cases, completely arbitrary.
Questions like τ do not have a role to play in previous solutions to HLPE, and
none of the mentioned papers discusses how True answers such questions. In
this paper however, questions like τ will have a crucial role to play: they give
rise to a fourth answer. Exploiting a four-valued answering repertoire, we will
show how to solve HLPE3

syn in two questions.
Our alternative account of how True and False answer yes-no questions

makes the arbitrariness of answering τ with either ‘yes’ or ‘no’ explicit. Ac-
cording to our account, True gives the following answers to λ and τ :

λ can neither be answered with ‘yes’ nor with ‘no’

τ can be answered both with ‘yes’ and ‘no’

second version assume that True and False can predict Random’s answers (which seems rea-
sonable as True and False are omniscient). Uzquiano’s solution to the second version is also
a solution to the first version but not vice versa. For our purposes, the distinction does not
matter: we give a solution that works for both versions.
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There is a clear intuitive sense in which answering λ and τ as such is speaking
truly. False will answer the mentioned questions as follows.

λ can both be answered with ‘yes’ and with ‘no’

τ can be answered neither with ‘yes’ nor with ‘no’

Again, there is a clear intuitive sense in which answering λ and τ as such is
speaking falsely. A possible justification of working with a four-valued (in con-
trast to a three-valued) answering repertoire is that the four (linguistic) answers
allow us, even in the presence of self-reference, to respect Boolos’ instructions,
which state that ‘True always speaks truly’ and ‘False always speaks falsely’. On
the other hand, we can also interpret our two non-standard answers in non-
linguistic terms, along the following lines: on questions like λ, the algorithm
which describes True’s behavior yields no solutions, while on questions like τ it
yields two solutions. In such cases, True does not answer with ‘yes’ or ‘no’, but
its two (non-linguistic) answers reflect, respectively, the lack and abundance of
solutions. Although we will work with the linguistic version of our non-standard
answers, i.e., with ‘both’ and ‘neither’, we will return to the two distinct justi-
fications of a four-valued answering repertoire (cf. Section 3.4.3).

An answering repertoire of four answers naturally suggests an “even harder”
variation of the hardest logic puzzle ever, HLPE4

syn, in which Random is mod-
eled as a four-valued random variable over the possible answers. As we will see,
HLPE4

syn can also be solved in two questions. In fact, we will only show how

to solve HLPE4
syn in two questions as our solution to HLPE4

syn is easily seen

to solve HLPE3
syn as well2.

All previous solutions to HLPE are presented (informally) in natural lan-
guage and our solution toHLPE4

syn, as presented in Section 3.3, is no exception.
However, given the nature of the gods True and False, one would expect that
solutions to HLPE allow for a formal representation that is based on a (formal)
theory of truth. In Section 3.4, we explore the prospects of such a formal repre-
sentation, exploiting (Kripkean) fixed point theories of truth. We will see that,
using a restricted formal language, the previous solutions to HLPE as well as
the solution put forward in Section 3.3, can be given a formal representation.
The formal representations are illuminative as they clearly lay bare the differ-
ences between the previous solutions to HLPE and the present one. Although
our formalization allows us to represent the (informal) solutions to HLPE, nev-
ertheless there are some reasons for not being completely satisfied with it, as
will be explained Section 3.4. Section 3.4 concludes by discussing the infor-
mation theoretic argument of [56], which establishes that (given a three-valued
answering repertoire) HLPE3

syn cannot be solved in less than three questions.
Section 3.5 concludes the paper.

3.3 Solving the puzzles

3.3.1 Gods who answer with ‘yes’ and ‘no’

In this section, we solve HLPE4
syn under the assumption that the gods speak

English: they use ‘yes’ and ‘no’ to answer positively and negatively respectively.

2Note that HLPE3
syn and HLPE4

syn (deliberately) violate Boolos’ instruction (B4).
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In the next section we give up this simplifying assumption and show how to solve
HLPE4

syn itself, in which the gods answer with ‘da’ and ‘ja’.
We use the following abbreviations. A,B and C will be used as in Boolos’

guidelines and T,F and R will be used to denote True, False and Random
respectively. With x an arbitrary question, N(x) reads as ‘your answer to x

is ‘no”, while Y (x) reads as ‘your answer to x is ‘yes”3. Before we state our
solution to (the English version of) HLPE4

syn, we first briefly comment on the
algorithm that gives rise to the answers of True and False. First, True and False
calculate how their yes/no answers to a question Q influence the truth-value4

of Q, in light of which they judge these yes/no answers to be correct (✓) or
incorrect (X). Exploiting the correctness / incorrectness of their yes-no answers
with respect to Q, they then determine which of the four possible answers (‘yes’,
‘no’, ‘both’, ‘neither’) they give to Q. The process is illustrated by the following
table.

Table 3.1: Reactions of True and False
Q(uestion) Y /N V(Q) ✓/ X True False

Y (sw) true ✓
sw ∶ snow is white

N(sw) true X
yes no

Y (sb) false X
sb ∶ snow is black

N(sb) false ✓
no yes

Y (λ) false X
λ ∶ N(λ)

N(λ) true X
neither both

Y (τ) true ✓
τ ∶ Y (τ)

N(τ) false ✓
both neither

Clearly, the yes-no answers of the gods to sw do not influence its truth-value
(which is true). Accordingly, answering sw with ‘yes’ is correct while answer-
ing with ‘no’ is incorrect. Accordingly, True will answer sw with ‘yes’ while
False answers it with ‘no’. The yes-no answers of the gods to λ do influence its
truth-value. As illustrated by Table 3.1, answering λ with either ‘yes’ or ‘no’ is
incorrect. As a consequence, True will answer λ with ‘neither’, while False will
answer with ‘both’. The answers to questions sb and τ are explained similarly.
In Section 3 we will return to this procedure in more detail. Let us now move
forward to our solution to the puzzle.

Our two-question solution has the following structure. First, we ask a ques-
tion which allows us to identify a god which is not Random. Then, we ask a
follow up question to the god which we know not to be Random, and use the
answer we get to determine the identity of all three gods.

Finding a god that is not Random
Our first question, α1, is defined as follows:

α1 ∶ (N(α1) and A = R) or (Y (α1) and B = R) or C = R

Table 3.2 investigates the consequences of answering α1 with ‘yes’ or ‘no’ relative

3We could use two place answering predicates and remove the indexical “your”. However,
as this results in a less streamlined presentation, we chose not to do so.

4We treat yes-no questions on par with their associated yes-no statements. That is sloppy,
but also very convenient.
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to the world under consideration (first column ) and reports the reactions of True
and False to α1, which are a function of those consequences as we illustrated
above.

Table 3.2: Reactions of True and False on α1

world Y /N V(α1) ✓/ X True False

Y (α1) false X
A = R

N(α1) true X
neither both

Y (α1) true ✓
B = R

N(α1) false ✓
both neither

Y (α1) true ✓
C = R

N(α1) true X
yes no

Let’s explain the first two rows. When A is Random and α1 is answered with
‘yes’, α1 is false—as all its three disjuncts are—and so answering α1 with ‘yes’ is
incorrect when A is Random. Similarly, when A is Random and α1 is answered
with ‘no’, α1 is true and so when A is Random, answering α1 with ‘no’ is incor-
rect as well. So, when A is Random, True will answer α1 with ‘neither’, while
False will answer it with ‘both’. The other entries in the table are explained
similarly. We address α1 to A and extract the following information from his
answers.

Table 3.3: Conclusions based on A’s answer to α1

A’s answer Conclusion 1 Conclusion 2

yes (A = T and C = R) or A = R B /= R

no (A = F and C = R) or A = R B /= R

neither (A = R and A = T ) or (A = F and B = R) or A = R C /= R

both (A = R and A = F ) or (A = T and B = R) or A = R C /= R

Conclusion 1 is only an intermediate stage for arriving at Conclusion 2, which,
as a function of A’s answer to α1, states which god is not Random. Table 3.3
is, in combination with Table 3.2, self-explanatory.

Determining the identity of A, B and C by a follow up question
By asking question α1 to A, we either learn that B is not Random or that C is
not Random. We assume that we learn that B is not Random, the case where C
is not Random being similar. As B is not Random, exactly one of the following
four statements is true:

p1 ∶= B = T and A = F and C = R. p2 ∶= B = T and A = R and C = F .
p3 ∶= B = F and A = T and C = R. p4 ∶= B = F and A = R and C = T .

We will ask B, whom we know not to be Random, question α2:

α2 ∶ (N(α2) and p1) or (Y (α2) and p2) or p3

Table 3.4 has exactly the same rationale as Table 3.2:
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Table 3.4: Reactions of True and False on α2

world Y/N V(α2) status Y/N True False

Y (α2) false X
p1

N(α2) true X
neither both

Y (α2) true ✓
p2

N(α2) false ✓
both neither

Y (α2) true ✓p3
N(α2) true X

yes no

Y (α2) false Xp4
N(α2) false ✓

no yes

Table 3.5 below, which has exactly the same rationale as Table 3.3, shows that
B’s answer to α2 allows us to determine whether p1, p2, p3 or p4 is the case,
which means that B’s answer allows us to determine the identity of all three
gods.

Table 3.5: Conclusions based on B’s answer to α2

B’s answer Conclusion 1 Conclusion 2

yes (B = T and p3) or (B = F and p4) p4

no (B = T and p4) or (B = F and p3) p3

neither (B = T and p1) or (B = F and p2) p1

both (B = F and p2) or (B = F and p1) p2

3.3.2 Gods who answer with ‘da’ and ‘ja’

We will now solve HLPE4
syn, in which the gods answer positively and nega-

tively by using, in some order, the words ‘da’ and ‘ja’. The methods of the
previous section easily carry over to this slightly more complicated puzzle. Let
M(d, y) and M(d,n) abbreviate “da’ means ‘yes” and “da’ means ‘no” respec-
tively. Further, with x an arbitrary question, D(x) reads as ‘your answer to x
is ‘da”, while J(x) reads as ‘your answer to x is ‘ja”.

Finding a god that is not Random
Our first question, β1, is defined as follows:

β1 ∶M(d, y) iff ((D(β1) and A = R) or (J(β1) and B = R) or C = R)
In Table 3.6, we investigate the consequences of answering β1 with ‘da’ or ‘ja’
relative to a world in which Random is A, B or C and to a language in which
‘da’ means either ‘yes’ or ‘no’. The table, depicted below, reports the reactions
of True and False to β1, which are a function of the investigated consequences.
Due to our uncertainty with respect to the meaning of ‘da’ and ‘ja’, Table 3.6
has 12 (rather than 6) rows. Let us compare row 1 with row 7. The first row tells
us that when A is Random and ‘da’ means ‘yes’, answering β1 with ‘da’ renders
β1 true. As on the first row ‘da’ means ‘yes’, answering ‘da’ to β1 under the
conditions of the first row is correct. Row 7 tells us that, when A is Random and
‘da’ means ‘no’, answering ‘da’ to β1 renders β1 false. Accordingly, answering
‘da’ to β1 under the conditions of the seventh row is correct. From Table 3.6, it
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easily follows that asking β1 to A allows us to determine the identity of a god
which is not Random. Drawing the “conclusion table” associated with Table
3.6 is left to the reader.

Table 3.6: Reactions of True and False on β1

world language D/J V(β1) ✓/ X True False

D(β1) true ✓
A = R M(d, y)

J(β1) false ✓
both neither

D(β1) false X
B = R M(d, y)

J(β1) true X
neither both

D(β1) true ✓
C = R M(d, y)

J(β1) true X
da ja

D(β1) false ✓
A = R M(d,n)

J(β1) true ✓
both neither

D(β1) true X
B = R M(d,n)

J(β1) false X
neither both

D(β1) false ✓
C = R M(d,n)

J(β1) false X
da ja

Determining the identity of A, B and C by a follow up question
By asking question β1 to A, we either learn that B is not Random or that C is
not Random. Again, we assume that we learn that B is not Random, the case
where C is not Random being similar. When B is not Random, exactly one of
p1, p2, p3 and p4 is true. As a follow up question to β1, we will ask β2 to the
non Random god B.

β2 ∶M(d, y) iff ((D(β2) and p1) or (J(β2) and p2) or p3)
Table 3.7, which is depicted below, describes the reactions of True and False to
β2 relative to the world and language under consideration. From Table 3.7, it
follows that asking β2 to B, which is not Random, allows us to determine the
identity of all three gods. Drawing the “conclusion table” associated with Table
3.7 is left to the reader.

3.4 Formalizations via Theories of Truth

As noted in the introduction, all the previous solutions to HLPE are presented
informally using natural language. In the previous section, we likewise intro-
duced our four-valued conception of True and False informally by showing how
it can be applied to solve HLPE4

syn. In this section, we discuss the prospects of
formally representing the present and previous solutions to HLPE. The behav-
ior of the gods True and False in HLPE suggests that a formalization of their
behavior can fruitfully be based upon a formal theory of truth. In this section,
we follow this suggestion by basing ourselves upon Strong Kleene (Kripkean)
fixed point theories of truth. To be sure, there are various theories of truth;
we could also work with an account of True and False that is based on say,
a revision theory of truth (cf. [24]) or on fixed points that are constructed in
accordance with the Supervaluation schema. We choose to work with Strong
Kleene theories because such theories are very well-known, easy to present and,
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Table 3.7: Reactions of True and False to β2

world language D/J V(β2) ✓/ X True False

D(β2) true ✓
p1 M(d, y)

J(β2) false ✓
both neither

D(β2) false X
p2 M(d, y)

J(β2) true X
neither both

D(β2) true ✓
p3 M(d, y)

J(β2) true X
da ja

D(β2) false X
p4 M(d, y)

J(β2) false ✓
ja da

D(β2) false ✓
p1 M(d,n)

J(β2) true ✓
both neither

D(β2) true X
p2 M(d,n)

J(β2) false X
neither both

D(β2) false ✓
p3 M(d,n)

J(β2) false X
da ja

D(β2) true X
p4 M(d,n)

J(β2) true ✓
ja da

importantly, they allow us to represent the solutions to HLPE in a sense that
will be made clear below5.

In fact, we will not apply our formal modeling to HLPE itself, but rather to
the four roads riddle, presented in Section 3.4.1. The four roads riddle may be
considered as a simplified version of HLPE while containing HLPE’s essential
features: our formalization of the four roads riddle is easily seen to carry over
to (versions of) HLPE. The formal language in which we will study the four
roads riddle contains a ‘yes’ and a ‘no’ predicate, but no “non-standard” answer
predicates, such as predicates for ‘both’, ‘neither’, ‘silence’ or what have you.
As none of the solutions to HLPE involves questions that are formed using
non-standard answer predicates, the expressive limitations of our language do
not prevent us from representing these solutions. To be sure, ultimately one
wants an account of the behavior of True and False in a more expressive lan-
guage which does contain non-standard answer predicates. In Section 3.4.3, we
will briefly comment on the prospects of such an account.

After presenting the four roads riddle in Section 3.4.1, Section 3.4.2 is con-
cerned with formalizations of the riddle. Section 3.4.3 critically looks back at
what has been achieved in Section 3.4.2. Section 3.4.4 discusses the information
theoretic argument of [56] that was mentioned in the introduction.

3.4.1 The four roads riddle

3.1.1 The riddle You arrive at a cross roads at which you can head either
north, south, east or west. You know that only one of the four roads, call it
the good road, leads to your destination. Unfortunately, you have no clue as
to which road is good. However, two gods, call them a and b, are situated at
the cross roads. You know that one of these gods is True while the other god
is False, but you have no clue as to whether a or b is True. The four roads

5Which is not to say that other theories of truth do not allow such representation.
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riddle is as follows. Given the circumstances just sketched, can you come up
with a single question that, when posed to either one of the gods, allows you to
determine which road is good?

3.1.2 The language LB and its ground models We start out by introducing
a restricted formal language in which we will study the four roads riddle. Our
basic formal language is a quantifier free6 predicate language with identity LB,
consisting of the following non-logical vocabulary7.
Constant symbols:

• a and b, which denote, in some order, True and False.

• gT and gF , which denote, respectively, True and False.

• n,w, e, s, which denote, respectively, the north, west, east and south
road.

• {[σ] ∣ σ ∈ Sen(LB)}: quotational constant symbols8; for each σ ∈ Sen(LB),[σ] denotes σ.

• C = {c1, c2, . . . , cn}: non-quotational constant symbols, which denote (arbi-
trary) elements of Sen(LB) and which can be used to define self-referential
sentences9.

Predicate symbols:

• G(x), interpreted as ‘x is the good road’.

• Y (x, y) and N(x, y), interpreted as ‘the answer of x to y is ‘yes” and ‘the
answer of x to y is ‘no” respectively.

A ground model M = (D,I) is an interpretation of the “yes/no predicate free
fragment of LB” which respects the intuitive interpretation of LB that is given
above. More precisely, a ground model M = (D,I) is a classical model for
L−B = LB − {Y,N} which respects the following clauses:

1. D = {Tr,Fa,no,ea, so,we} ∪ Sen(LB)
2. I(gT ) =Tr , I(gF ) = Fa, I(n) = no, I(e) = ea, I(w) = we, I(s) = so

3. I([σ]) = σ for all σ ∈ Sen(LB), I(ci) ∈ Sen(LB) for all ci ∈ C

4. Either (I(a) = Tr and I(b) = Fa) or (I(b) =Tr and I(a) = Fa)

5. Either I(G) = {no} or I(G) = {ea} or I(G) = {so} or I(G) = {we}.
6We do so for sake of simplicity: the definition of the three- and four-valued answering

functions below are easily seen to carry over to quantified languages.
7We will use =,∧,∨,¬,→ and ↔ as logical symbolism, the interpretation of which is as

expected.
8The set of quotational constant symbols has a joint recursive definition together with

Sen(LB), the set of sentences of LB . The definition of these sets can safely be left to the
reader.

9For instance, when posed to god a, the sentence Y (a, c1) may be paraphrased as: ‘Is it
the case that: your answer to this question is ‘yes’?’, provided that the denotation of c1 is
Y (a, c1).
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For any ground model M , we will use CM ∶ Sen(L−B) → {0,1} to denote the
(classical) valuation of L−B that is induced by M . A ground model fixes all the
relevant facts; facts about the world on the one hand and facts about sentential
reference on the other. As such, an account of the behavior of True and False
owes us an explanation of how True and False answer (arbitrary) LB sentences
relative to a ground model. Below, we are concerned with such explanations.

3.4.2 Formalizations

A three-valued answering function for LB

Clearly, the predicates Y (gT , ⋅) and N(gT , ⋅) bear a close similarity with, re-
spectively, a truth predicate and a falsity predicate. Similarly, the predicates
Y (gF , ⋅) and N(gF , ⋅) bear a close similarity with, respectively, a falsity pred-
icate and a truth predicate. When we treat our yes /no predicates as truth
/falsity predicates in the sense alluded to, Kripke’s fixed point techniques, as
described in [33], may be readily applied in the present setting. In this section,
those techniques will be applied to define a three-valued answering function of
True and False with an eye on satisfying the following two desiderata:

A (The construction of) the answering function allows us to represent the
previous (three-valued) solutions to HLPE.

B The answering function gives the intuitive correct verdict with respect to
LB questions that are not considered in those solutions.

Here we go. By a (Strong Kleene) fixed point valuation for LB over a ground
model M , KM ∶ Sen(LB) → {0, 1

2
,1}, we mean a three-valued valuation of LB

which respects the following five clauses. Below, σ is an arbitrary constant of
LB (quotational or non-quotational) which denotes σ ∈ Sen(LB).

1. KM(σ) = CM(σ) for all σ ∈ Sen(L−B)
KM respects the ground model M .

2. KM(Y (gT , σ)) = KM(σ), KM(N(gT , σ)) = 1 −KM(σ)
Fixed point condition for Y (gT , ⋅) and N(gT , ⋅).

3. KM(Y (gF , σ)) = 1 −KM(σ), KM(N(gF , σ)) = KM(σ)
Fixed point condition for Y (gF , ⋅) and N(gF , ⋅).

4. KM(Y (t1, t2)) = KM(N(t1, t2)) = 0, when I(t1) /∈ {Tr,Fa} or
I(t2) /∈ Sen(LB).
Only questions receive answers and only gods answer questions.

5. (a) KM(¬σ) = 1 −KM(σ)
(b) KM(α ∧ β) = min{KM(α),KM (β)}
(c) KM(α ∨ β) = max{KM(α),KM(β)}
KM is Strong Kleene.

In general, a ground model M allows us to define various fixed point valuations
over it10. We could define an answering function for True and False that is based

10In the present setting, the number of fixed point valuations over M depends on the
denotations of the members of C; if, say, I(c) = (gT = gT ) for every c ∈ C, there is a unique
fixed point valuation over M .
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on, say, the minimal fixed point valuation over M or, say, the maximal intrinsic
fixed point valuation. As will be clear from the discussion below, these answering
functions allow us to represent previous solutions to HLPE (A) but, arguably,
they do not give the intuitive correct verdict with respect to LB questions that
are not considered by those solutions (B). In order to justice to both A and
B, we define the valuation function K⋆

M ∶ Sen(LB) → {0, 1
2
,1} by quantifying

over all Strong Kleene fixed point valuations over M . K⋆
M is defined as follows,

where the quantifiers range over all Strong Kleene fixed point valuations over
M .

- K⋆
M(σ) = 1 ⇔ ∃KM ∶ KM(σ) = 1 & /∃ KM ∶ KM(σ) = 0

- K⋆
M(σ) = 1

2
⇔/∃ KM ∶ KM(σ) = 1 & /∃ KM ∶ KM(σ) = 0

- K⋆
M(σ) = 0 ⇔ ∃KM ∶ KM(σ) = 0

The valuation K⋆
M is used to define an answering function for True and False as

follows.

Answering function based on K⋆
M :

i True (False) answers σ with ‘yes’ just in case K⋆
M(σ) = 1 (K⋆

M(σ) = 0).

ii True (False) answers σ with ‘no’ just in case K⋆
M(σ) = 0 (K⋆

M (σ) = 1).

iii True and False remain silent on σ just in case K⋆
M(σ) = 1

2
.

Let us first point out why we choose to work with K⋆
M and not with, say, the

minimal or maximal intrinsic fixed point. To do so, consider the following three
questions:

θ ∶ Is your answer to θ ‘yes’ or ‘no’?

λ ∶ Is your answer to λ ‘no’?

τ ∶ Is your answer to τ ‘yes’?

To remove the indexical ‘your’, we assume that the questions are addressed to
god a. In order to represent the questions in LB then, we let θ, λ and τ be non-
quotational constants such that I(θ) = Y (a, θ) ∨N(a, θ), I(λ) = N(a,λ) and
I(τ) = Y (a, τ). The following table describes how K⋆

M valuates these questions:

Table 3.8: Values of K⋆
M for I(θ), I(τ), I(λ).

World K⋆
M(I(θ)) K⋆

M(I(τ)) K⋆
M(I(λ))

a = gT 1 0 1

2

a = gF 1 1

2
0

Consider question θ. First note that the K⋆
M account of True and False pre-

scribes that True answer θ with ‘yes’ and that False answers θ with ‘no’. I take
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it that this is how it, intuitively, should be11. This provides a reason for prefer-
ring the K⋆

M account of True and False above an account that is based on the
minimal fixed point; as θ is ungrounded, the minimal fixed point will valuate it
as 1

2
, implying that both True and False must remain silent on θ according to

the minimal fixed point. To see how θ obtains its K⋆
M value, note that Y (gT , ⋅)

and N(gF , ⋅) are truth predicates in disguise, whereas Y (gF , ⋅) and N(gT , ⋅) are
disguised falsity predicates. Thus, when posed to True, question θ allows for the
alethic paraphrase ‘this very sentence is true or false’, whereas, when addressed
to False, the paraphrase becomes ‘this very sentence is false or true’. Clearly
then, there is a fixed point in which these sentences are true while there is no
fixed point in which they are false; K⋆

M(I(θ)) = 1, irrespective of whether we
address θ to True or False.

The maximal intrinsic fixed point also valuates θ as 1 and so an account of
True and False based on it would prescribe the same answers to θ as the K⋆

M

account. We prefer the K⋆
M account over the account based on the maximal

intrinsic fixed point due to the answers that are prescribed to question τ . Ac-
cording to the K⋆

M account of True and False, True answers question τ with
‘no’, whereas False remains silent on τ . Intuitively—as also remarked in [43]—
False must indeed remain silent on τ , as he cannot answer it “in accordance
with his nature”, which is to speak falsely. Although the previous solutions to
HLPE do not discuss how True should answer τ , their authors do state that
the gods remain silent on a question when they cannot answer that question
“in accordance with their nature”. But True clearly can answer τ with either
‘yes’ or ‘no’ “in accordance with his nature”—although doing so is completely
arbitrary—and so the question arises how True should answer τ . Now, one may
take the arbitrariness of a yes / no answer to τ as a further reason for True
to remain silent. However, this is not what the authors of previous solutions
seem to have in mind12. So an account of True and False which prescribes that
True answers τ with a yes /no answer seems more in line with the spirit of the
previous solutions to HLPE. The K⋆

M account13 is such an account, whereas
an account based on the maximal intrinsic fixed point is not.

Note that, due to the relations between yes/no predicates and truth /fal-
sity predicates, τ behaves like a Truthteller (‘this very sentence is true’) when
addressed to True while it behaves like a Liar (‘this very sentence is false’)
when addressed to False. As there is a fixed point in which the Trutheller is
false, we get that K⋆

M(I(τ)) = 0 when a is True. As there is no fixed point in
which the Liar is true and no fixed point in which the Liar is false, we get that
K⋆

M(I(τ)) = 1
2

when a is False. The K⋆
M valuation of question λ receives a dual

explanation.

11I take it that question θ reveals an interesting dissimilarity between positively answering
a yes-no question and asserting its alethic counterpart: while ‘yes’ is clearly a truthful answer
to θ, the ungroundedness of ‘this very sentence is true or false’ may deems its assertion
inappropriate. More concretely, answering θ with ‘yes’ makes it true, while asserting ‘this
very sentence is true or false’ does not render the asserted sentence true.

12In [44], Rabern and Rabern comment on the answering function that they had in mind
in their published paper: according to this function, True gives a classical (yes /no) answer
to questions like τ .

13Although the K⋆
M

account prescribes that True answers τ with ‘no’, we do not think that
there is any further reason to prefer such an account over an account according to which
True answers τ with ‘yes’. Further, some obvious modifications to K⋆

M
will yield just such an

account.
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Putting K⋆
M to work

Suppose that—in the setting of the four roads riddle—we (only) want to find
out whether or not the north road is good. Asking the question ‘is the north
road good?’ is useless; we do not know whether we address True or False when
asking a question. However, a little reflection shows that the following question,
when addressed to, say, god a, allows us to find out whether or not the north
road is good:

Is your answer to the question ‘is the north road good?’ ‘yes’? (3.1)

The LB translation of question (3.1) is given by the sentence Y (a, [G(n)]). The
following table explains, in terms of K⋆

M , why asking question (3.1) suffices to
find out whether or not the north road is good.

Table 3.9: Reactions of a to Y (a, [G(n)]).

World K⋆
M(Y (a, [G(n)])) Answer of a

a = gT ,G(n) 1 yes

a = gT ,¬G(n) 0 no

a = gF ,G(n) 0 yes

a = gF ,¬G(n) 1 no

The table explains that ‘yes’ indicates that the north road is good and that ‘no’
indicates that the north road is not good. Question (3.1) is an instance of what
is called the Embedded Question Lemma (EQL) in [43].

EQL Let E be the function that takes a question Q to the question ‘Is your
answer to the question ‘Q’ ‘yes’?’ When either True or False are asked E(Q),
an answer of ‘yes’ indicates that Q whereas an answer of ‘no’ indicates that not
Q.
Proof: Both a double positive and a double negative make a positive.

Suppose that you addressed question (3.1) to a and that you received ‘no’ as an
answer. So, now you know that either the south, east or west road is good—
whereas you don’t know whether a is True or False. Hence, we are left with the
“three roads riddle”. Next, we will show how to solve the three roads riddle via
a single question, ρ, that is similar to the (crucial) questions that are exploited
by previous (informal) self-referential solutions to HLPE. In the spirit of those
solutions, we define ρ by referring to ρ in the argument place of the embedding
function E of the EQL:

ρ ∶ E((Is your answer ‘no’ to ρ and the south road is good) or the
west road is good)

Questions like ρ, which refer to themselves in the argument place of the em-
bedding function E, we call self-embedded questions. Note that the solution to
HLPE4

syn that was given in the previous section does not rely on self-embedded
questions. We’ll return to this observation in Section 3.4.3. In order to explain
why the answer to ρ allows us to find out which of the three roads is good, it is
convenient to first translate it into LB. To do so, we let ρ be a non-quotational
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constant whose denotation is as follows:

Y (a, [(N(a, ρ) ∧G(s)) ∨G(w)])
Here is an intuitive explanation of why ρ does the job. If west is the good road,
the embedded question, i.e., (N(a, ρ)∧G(s))∨G(w), will be true. Hence, True
will answer the embedded question with ‘yes’ and False will answer it with ‘no’.
Thus, when asked whether they answer the embedded question with ‘yes’, i.e.,
when asked ρ, True and False will both answer with ‘yes’. Similar reasoning
shows that if east is the good road, True and False will both answer with ‘no’.
Finally, when south is the good road, question ρ reduces to a question which
has the same answerhood conditions as the self-embedded question ρ1:

ρ1: Is your answer ‘yes’ to the question of whether your answer to ρ1 is ‘no’?

As observed by [53], neither True nor False can answer ρ1 in accordance with
his nature; they must remain silent on ρ. Similarly, when south is the good
road, both True and False must remain silent on ρ1. The following table—
whose construction can safely be left to the reader—shows that our K⋆

M based
answering function yields the same verdict with respect to the answers of True
and False to I(ρ) = Y (a, [(N(a, ρ) ∧G(s)) ∨G(w)]).

Table 3.10: Reactions of a to I(ρ).

World K⋆
M(I(ρ)) Answer of a

a = gT ,G(w) 1 yes

a = gT ,G(e) 0 no

a = gT ,G(s) 1

2
silence

a = gF ,G(w) 0 yes

a = gF ,G(e) 1 no

a = gF ,G(s) 1

2
silence

Table 3.10 reveals the sense in which the K⋆
M account of True and False allows

us to give a formal representation of the informal solution to the “three roads
riddle”. The principles at work in the solution to the “three roads riddle”
are similar to the principles at work in the previous self-referential solutions
to HLPE. Accordingly, the K⋆

M account of True and False can be used to
represent these solutions as well.

Putting a four-valued answering function for LB to work

We start by defining a four-valued valuation function of LB, K●
M ∶ Sen(LB) →{0,+,−,1}, in a similar manner as we defined K⋆

M , i.e., by quantifying over all
Strong Kleene fixed point valuations. We then define a four-valued answering
function for True and False based on K●

M and show how it can be invoked to give
a formal representation of a solution to the four roads riddle. The principles
at work in our solution to the four roads riddle are similar to the principles at
work in our solution to HLPE4

syn that was presented in Section 3.3. Hence, the
K●

M account can also be used to give a formal representation of our solution to
HLPE4

syn.
Here is the definition of K●

M :
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- K●
M(σ) = 1 ⇔ ∃KM ∶ KM(σ) = 1 & /∃ KM ∶ KM(σ) = 0

- K●
M(σ) = −⇔/∃ KM ∶ KM(σ) = 1 & /∃ KM ∶ KM(σ) = 0

- K●
M(σ) = +⇔ ∃KM ∶ KM(σ) = 1 & ∃KM ∶ KM(σ) = 0

- K●
M(σ) = 0 ⇔/∃ KM ∶ KM(σ) = 1 & ∃KM ∶ KM(σ) = 0

The following table illustrates how K●
M valuates questions θ, τ and λ, i.e., here

is the K●
M version of Table 3.7.

Table 3.11: Values of K●
M for I(θ), I(τ), I(λ).

World K●
M(I(θ)) K●

M(I(τ)) K●
M(I(λ))

a = gT 1 + −

a = gF 1 − +

According to the four-valued conception of True and False put forward in this
paper, True answers τ with ‘both’, whereas False answers τ with ‘neither’. Sim-
ilarly, according to this conception, True answers λ with ‘neither’, whereas False
answers λ with ‘both’. This suggests the following answering function:

Answering function based on K●
M :

i True (False) answers σ with ‘yes’ just in case K●
M(σ) = 1 (K●

M(σ) = 0).

ii True (False) answers σ with ‘no’ just in case K●
M(σ) = 0 (K●

M (σ) = 1).

iii True and False answer σ with ‘neither’ just in case K●
M(σ) = −.

iv True and False answer σ with ‘both’ just in case K●
M(σ) = +.

Suppose that that we want to solve the four roads riddle. It is not hard to
calculate that, using the methods of Section 3.3, question γ does the job, where
γ denotes:

a = gT ↔ (N(a, γ) ∧G(n)) ∨ (Y (a, γ) ∧G(s)) ∨G(w)
By applying the methods of Section 3.3—which can safely be left to the reader—
we see that an answer of ‘yes’ indicates that west is the good road, ‘no’ indicates
that east is good, ‘neither’ indicates that north is good and ‘both’ indicates that
south is good. The K●

M based answering function True and False yields exactly
the same verdicts. To see why, we will consider (only) the case where the north
road is good. So, suppose that the north road is good and that you address γ to
True. Under these circumstances, the answerhood conditions of γ are equivalent
to the answerhood conditions of the following question:

γ1 ∶ gT = gT ↔ N(gT , γ1)
As the left-hand side of γ1 is true, γ1 is true just in case its right-hand side,
i.e., N(gT , γ1) is true. But N(gT , ⋅) functions as a falsity predicate and so,
N(gT , γ1) is true just in case γ1 is false; we get that γ1 is true just in case it is
false. Hence, γ1 is paradoxical. In other words, when a is True and the north
road is good, we get that K●

M(I(γ1) = − and so True replies γ1 with ‘neither’.
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Now suppose that the north road is good and that you address γ to False.
Under these circumstances, the answerhood conditions of γ are equivalent to
the answerhood conditions of the following question:

γ2 ∶ gF = gT ↔ N(gF , γ1)
As the left-hand side of γ2 is false, γ2 is true just in case its right-hand side,
i.e., N(gF , γ2) is false. But N(gF , ⋅) functions as a truth predicate and so,
N(gF , γ2) is false just in case γ2 is false; we get that γ2 is true just in case it is
false. Hence, γ2 is paradoxical. In other words, when a is False and the north
road is good, we get that K●

M(I(γ1) = − and so False replies γ2 with ‘neither’.
So, when the north road is good, both True and False reply to γ with ‘neither’.
The other three cases are reasoned out similarly and so the answers of True (and
False) to γ as obtained according to the method of Section 3.3 are the same as
the answers that are obtained via the K●

M based answering function. Similarly,
one can show that the solution to HLPE4

syn that was presented in Section 3.3,
allows for a formal representation using our K●

M based answering function.
Note that our solution to the four roads riddle, i.e., question γ, is not a

self-embedded question. Likewise, none of the questions discussed in Section
3.3 are self-embedded. In contrast, our solution to the three roads riddle, i.e.,
question ρ, is a self-embedded question and so are the (crucial) questions invoked
in previous self-referential solutions to HLPE. In the next section, we will
explain, amongst others, in which sense self-embedded questions give rise to a
problem for the intuitive interpretation of the answers ‘both’ and ‘neither’ that
was sketched in the introduction.

3.4.3 Critical Remarks on Formalizations

‘Both’, ‘neither’ and self-embedded questions

In Section 3.4.2, we discussed the self-embedded question ρ1, whose LB trans-
lation is as follows:

ρ1 ∶ Y (a, [N(a, ρ1)])
Due to the self-embedding that is present in ρ1, it is not clear how the methods
of Section 3.3 should be applied to calculate the answers of True and False to
it; a yes/no answer to ρ1 does not (immediately) render the statement true or
false. However, it is clear how K●

M valuates ρ1. Exploiting the similarity between
yes /no predicates and truth /falsity predicates, we see that, when addressed to
True, ρ1 may be paraphrased in alethic terms as ‘it is true that this very sentence
is false’. When addressed to False, the paraphrase becomes ‘it is false that this
very sentence is true’. Clearly then, we have that K●

M(I(ρ1)) = −, irrespective
of whether we address ρ1 to True or False. But this means that both True and
False will answer ρ1 by replying ‘ρ1 can neither be answered with ‘yes’ or ‘no”.
Observe that this K●

M prescription is at odds with our original interpretation of
the answers ‘neither’ and ‘both’, according to which True, in answering ‘neither’
to question λ speaks truly, whereas False, in answering λ with ‘both’ speaks
falsely. Indeed, as ρ1 can neither (on pain of a self-contradiction) be answered
with ‘yes’ or ‘no’, False, in replying with ‘neither’ cannot be said to answer ρ
falsely.

87



So, although the method of Section 3.3 does not prescribe how the answers
to ρ1 should be calculated, the answers to ρ1 that are prescribed by K●

M do not
fit in with intended interpretation of ‘both’ and ‘neither’. Thus, two options
suggest themselves, which are associated with two distinct conceptions of True
and False:

1. Stick to the intended interpretation of ‘both’ and ‘neither’ and extend the
method of Section 3.3 such that it becomes applicable to self-embedded
questions and such that, in particular, the answer given by False to ρ1 is
‘both’. This option is naturally associated with an informative conception
of True and False in which, in answering our questions, they intend to
convey information. For instance, in answering a Liar question λ with
‘neither’ True intends to convey the information that he can’t answer λ
with ‘yes’ or ‘no’.

2. Use the K●
M account of True and False and give up the interpretation of

‘both’ and ‘neither’. For instance, say that if K●
M(σ) = −, True and False

reply to σ with an explosion, while if K●
M(σ) = +, they remain silent.

On this account, the non-linguistic actions of exploding and remaining
silent have their origin in the “paradoxality” and the “arbitrariness” of
the possible yes/ no answers. Being non-linguistic actions, exploding and
remaining silent are not to be evaluated in terms of ‘speaking truly’ and
‘speaking falsely’. This option is naturally associated with an algorithmic
conception of True and False in which, in answering our questions, they do
not intend to convey any information, but rather, they follow an algorithm.
Explosions and silences, on this conception, are best thought of as two
distinct ways in which the algorithm can fail, due to the non-existence
of solutions (paradoxality) and the abundance of solutions (arbitrariness)
respectively. On the algorithmic conception of True and False, explosions
and silences are not genuine answers, but rather, states that the gods end
up in due to their processing of certain questions.

In a sense, it is more natural to speak of the failure of an algorithm due to
the lack of solutions (paradoxality) than due to the lack of the abundance of
solutions (arbitrariness). As such, the algorithmic conception of True and False
is, arguably, more naturally associated with the 3-valued account of True and
False that is underlying the previous solutions to HLPE14.

I take it that option 1 is preferable; I take it that an account of True and False
according to which these gods can be understood as always speaking, respec-
tively, truly and falsely, is preferable over an account on which they sometimes
do not speak at all. Such an account simply seems to do more justice to Boolos’
remarks that ‘True always speaks truly’ and ‘False always speaks falsely’. To be
sure, Boolos may not have envisioned the possibility to ask self-referential ques-
tions. Then again, I take it that an account of True and False which manages to
respect Boolos’ instructions, even in the presence of self-reference, is preferable
to an account which does not.

14As pointed out by an anonymous referee, it can be argued that a 3-valued algorithmic
conception of True and False does not require that we introduce a predicate in our language
that represents failures of the algorithm as such failures do not belong to the language of
the gods. In other words, it can be argued that the problem of expressive completeness (see
below) does not arise on a 3-valued algorithmic conception of True and False.
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Although it is beyond the scope of this paper to carry out option 1 in a
rigorous way, here is a hint of how one may proceed. The crucial aspect of the
method of Section 3.3 was that True and False calculate how their yes/no an-
swers to a question σ influence the truth-value of σ, in light of which they judge
these yes/no answers to be correct / incorrect. Based on those judgements, they
then decide which answer they actually give to σ. So according to the method
of Section 3.3, the patterns of reasoning of True and False leading up to the cor-
rect / incorrect judgement are exactly the same; they only differ in how these
judgements are converted into answers. In particular, with respect to questions
like λ and τ , True and False find exactly the same judgements. In a sense, this
means that False first calculates whether answering with yes /no is objectively
correct /incorrect and then decides to lie about these judgements. This idea, of
False first calculating whether a yes/no answer is objectively correct and then
lying about his findings, can be put to work in extending the method of Section
3.3 to bear on self-embedded questions. Here is a table which will be used to
explain how True (and False) calculate their answer to ρ1 in this manner.

Table 3.12: Reactions of True and False on ρ1

Y /N V(N(a, ρ1)) V(Y (a, [N(a, ρ1)])) ✓/ X True False

Y (a, ρ1) false false X

N(a, ρ1) true true X
neither both

Let us explain. The first row supposes that ρ1 is answered with ‘yes’ (by a).
As a consequence, the embedded question ‘N(a, ρ1)’ is false, as indicated in the
second column. But this means that the objectively correct answer to the embed-
ded question is ‘no’. Accordingly, Y (a, [N(a, ρ1)])—which may here be thought
of as ‘the answer that should be given to ‘N(a, ρ1)’ is ‘yes”—is false, as indi-
cated in the third column. Hence, as I(ρ1) = Y (a, [N(a, ρ1)]), answering ‘yes’
to ρ1 is incorrect. The second row receives a similar explanation. Accordingly,
True answers ρ1 with ‘neither’ while False answers with ‘both’. So according to
the envisioned method for processing self-embedded questions, False finds out
whether answering with yes/no is objectively correct—and not, say “correct
for False”—and lies about his findings. Using exactly the same principles, the
answer to “deeper” embedded questions, such as ρ2, can be calculated.

ρ2 ∶ Y (a, [N(a, [Y (a, ρ2)])])
Although these remarks on self-embedded questions do not define a rigorous

algorithm for calculating the answers of True and False, I take it that they
illustrate that, despite our possibility to ask self-embedded questions, there are
hopes for developing a formal account of True and False according to which
they can be understood in accordance with Boolos’ instructions. However, self-
embedded questions aside, a satisfying formal account of True and False faces
more issues that have to be resolved. Below we discusses two such issues.

Expressive incompleteness

As noted before, none of the solutions to HLPE exploits non-standard ques-
tions, i.e., questions that are formed with “non-standard answer predicates”.
In particular, LB only contains answer predicates associated with ‘yes’ and ‘no’
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and, in that sense, LB may be called expressive incomplete. Although none of
the solutions exploits non-standard questions, it seems reasonable to ask how
True and False answer such questions. For instance, how do True and False
answer questions like:

µ1 ∶ Is your answer to µ1 ‘no’ or ‘neither’?

µ2 ∶ Do you answer ’yes’ to the question of whether you answer ‘neither’ to µ2?

Theories of truth typically do not contain predicates associated with the non-
classical semantic values they employ in their meta-language. As such, we can-
not expect much guidance from theories of truth in developing a formal account
of how True and False answer non-standard questions. However, the methods
of Section 3.3 do give us some guidance here. Using ‘NE(x, y)’ to abbreviate
x answers y with ‘neither’, we can translate questions µ1 and µ2 by letting
I(µ1) =N(a,µ1)∨NE(µ1) and I(µ2) = Y (a, [NE(a,µ2)]). Here are the tables
which explain how True and False answer µ1 and µ2:

Table 3.13: Reactions of True and False on µ1

Y /N V(N(a,µ1) ∨NE(µ1)) ✓/ X True False

Y (a,µ1) false X

N(a,µ1) true X
neither both

Table 3.13 is self-explanatory. Note that, as True answers µ1 with ‘neither’, µ1 is
true. Still, True does not answer µ1 with ‘yes’ as in doing so he can be accused of
lying. This situation with respect to µ1—despite being true not being answered
with ‘yes’ by True—has a clear rationale in terms of truthfully answering yes-no
questions. However, it also points to a further15 dissimilarity between yes-no
questions and their alethic counterparts. For, consider µ′1, which is the alethic
counterpart of µ1:

µ′1 ∶ Sentence µ′1 is false or (neither true nor false)

In treating µ1 and µ′1 alike, we are bound to conclude that µ′1 is ‘neither true
nor false’. But this exactly what µ′1 says, and so µ′1 is true and so not ‘neither
true nor false’. In sum, accepting that µ′1 is ‘neither true nor false’ seems to be
tantamount to accepting a contradiction, while accepting that True answers µ1

with ‘neither’ has a clear rationale in the (assumed) nature of True.
Table 3.14 below explains how question µ2, which is a self-embedded ques-

tion, is answered. Table 3.14 is to be understood along familiar lines. On the
first line of Table 3.14, the consequences of answering with ‘yes’ are considered.
Answering µ1 with ‘yes’ renders NE(a,µ2) false, which ensures that the cor-
rect answer to NE(a,µ2) is ‘no’. Accordingly, Y (a, [NE(a,µ2)] is false and so
answering µ2 with ‘yes’ is incorrect.

Table 3.14: Reactions of True and False on µ2

Y /N V(NE(a,µ2)) V(Y (a, [NE(a,µ2)])) ✓/ X True False

Y (a,µ2) false false X

N(a,µ2) false false ✓
no yes

15For further dissimilarities, see footnote 11.
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Tokens or Types?

Consider the following two questions and suppose that we both address them
to True.

λ ∶ Is your answer to λ ‘no’?

λ1 ∶ Is your answer to λ ‘no’?

Question λ is familiar: True answers it with ‘neither’. Question λ1 asks whether
True answers question λ with ‘no’. As True answers λ with ‘neither’ (hence, not
with ‘no’), the truthful answer to λ1 is ‘no’. Hence, True should answer λ1 with
‘no’. Or so it seems. Yet if we base our account of True and False on, say K●

M ,
we get different predictions. Fixed point theories of truth satisfy what is called
the intersubstitutability of truth16. As a consequence, Y (gT , σ) and σ have the
same semantic value according to K●

M , whenever σ denotes σ. In particular
then, we have that K●

M(Y (gT , λ)) = K●
M(Y (gT , λ1)) = − and so according to

the K●
M account, True will answer both λ and λ1 with ‘neither’.

It is often argued that theories of truth should satisfy the intersubstitutabil-
ity of truth, cf. Field [15] or Beall [5]. In a nutshell, the argument is that
if truth does not satisfy the intersubstitutability property, it can not play its
stereotypical role of serving as a device of generalization. Let’s accept this ar-
gument pertaining to theories that describe the behavior of a truth (and falsity)
predicate. Does the argument carry over to a theory that describes the behavior
of a ‘answers with yes’ (and ‘answers with no’) predicate? Not necessarily. For
one thing, it is not clear that the stereotypical role of a ‘answers with yes’ pred-
icate is to serve as a device of generalization and so the typical argument for the
intersubstitutablity breaks down: although the analogy between true /falsity
predicates and yes/no predicates is close, it is not perfect, as we also noted in
the previous subsection. I take the intuitive reasoning with respect to λ and λ1

that was given above convincing and I do not see why the intersubstitutablity
of truth should lead us to dismiss that reasoning. Accordingly, I take it that
a fully satisfying formal account of the behavior of True and False should be
token-sensitive.

As the reader may have noticed, questions λ and λ1 constitute an (inter-
rogative version of) what Gaifman [18] calls the “two lines puzzle”. In fact,
Gaifman’s pointer semantics is an example of a token-sensitive theory of truth
which gives up the intersubstitutability property and which yields (in alethic
terms) similar conclusions with respect to the status of λ and λ1 as the intu-
itive reasoning above. As such, it seems promising to develop a token-sensitive
account of True and False on the basis of Gaifman’s work. Clearly, doing so is
far beyond the scope of this paper.

3.4.4 The Wheeler and Barahona argument

Wheeler and Barahona [56] argued that HLPE3
syn cannot be solved in less than

three questions. Their argument relies on the following lemma from Information
Theory.

16Meaning that T (σ) and σ are intersubstitutable (without change of semantic value) in
every non opaque context.
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(QL) If a question has n possible answers, these answers cannot distinguish
m > n different possibilities.

Using QL, we see that when True and False have a three-valued answering
repertoire, we cannot solve the four roads riddle by asking a single question. In
a similar vein—though in a more complicated setting—Wheeler and Barahona
appealed to QL to argue that HLPE3

syn cannot be solved in less than 3 ques-
tions, where they assumed that True and False have a three-valued answering
repertoire.

When True and False have a four-valued answering repertoire however, QL
tells us that we may be able to solve the four roads riddle by asking a single
question. Of course, whether or not we are actually able to do so depends on
our ability to find questions such that their four possible answers are correlated
to the four relevant states of affairs in a suitable way. We showed how to solve
the four roads riddle by a single question. So, by moving from a three- to a four-
valued answering repertoire, we can escape the QL based conclusion that “the
four roads riddle cannot be solved in a single question”. Similarly, by moving
from a three- to a four-valued answering repertoire, we escaped the conclusion
of [56] that HLPE3

syn cannot be solved in less than three questions.
Clearly then, the number of questions that is needed to solve “Smullyan

like riddles” crucially depends on the number of answers that True and False
have available. For instance, QL establishes that the five roads riddle—which
is defined just as you expect it to be—cannot be solved (in one question) when
True and False have a four-valued answering repertoire. However, QL leaves
open the possibility that the five roads riddle can be solved in a setting in which
True and False are assumed to have a five-valued answering repertoire. Here
is such a setting. Assume that True and False are not omniscient and that,
besides answering with ‘yes’, ‘no’, ‘both’ and ‘neither’, they remain silent when
they are asked a question to which they do not know the answer. So, they
now have a five-valued answering repertoire. Here is how to solve the five roads
riddle. Let p1, . . . , p5 be five sentences such that pi states that the ith road is
good and let p? be an unknowable (by True and False) sentence. The answer
to question π, whose structure—a biconditional flanked by an atomic statement
and a statement in disjunctive normal form—mirrors the structure of question
γ that was used to solve the four roads riddle, allows you to find out which of
the five roads is good:

π ∶ a = gT ↔ (N(a,π) ∧ p1) ∨ (Y (a,π) ∧ p2) ∨ (p? ∧ p3) ∨ p4

When p3 is false, True and False know that (p? ∧ p3) is false and so, depending
on whether p1, p2, p4 or p5 is true, question π receives a similar treatment as
question γ: the answers ‘neither’, ‘both’, ‘yes’ and ‘no’ are received just in case,
respectively, p1, p2, p4 and p5 is true. However, when p3 is true, the answerhood
conditions of π reduce to those of a = gT ↔ (p? ∧ p3). As True and False do not
know the truth value of p?, they do not know the truth value of (p? ∧ p3) and
so they do not know the truth value of a = gT ↔ (p? ∧ p3). As a consequence,
they must remain silent on π. Puzzle solved.

Let me conclude this section by stating a puzzle, HLPE4∗
syn, which I do

not know how to solve (in two questions) and which is not unsolvable on the
basis of QL. HLPE4∗

syn is defined just like HLPE4
syn, apart from the following
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difference. The gods react to your questions with ‘huh’, ‘duh’, ‘da’ and ‘ja’. As
before, ‘da’ and ‘ja’ mean, in some order, ‘yes’ and ‘no’. But now ‘huh’ and
‘duh’ mean, in some order, ‘neither’ and ‘both’. Can we solve HLPE4∗

syn in two
questions?

3.5 Concluding remarks

We put forward an alternative conception of how True and False answer yes-no
questions, resulting in a four-valued answering repertoire. We then showed how
this conception could be invoked to solve HLPE4

syn in two questions. Our four-
valued (in contrast to a three-valued) answering repertoire allowed us to escape
the argument of Wheeler and Barahona [56], which established that HLPE3

syn

cannot be solved in less than three questions.
The second part of the paper was concerned with formalizations of (the

present and previous) solutions to versions of HLPE, that were all presented
informally. We showed how—by appealing to Strong Kleene fixed point theories
of truth and by working in a restricted setting—to give a formal representation
of the solutions to HLPE. Although in an important sense our formalization
“gets the job done”, we discussed some desiderata of a formalization of the
behavior of True and False that were not met by the one that was presented.
To develop a formal account of True and False that meets these desiderata—i.e.,
a token-sensitive account for an expressive complete language in which True and
False can be understood as, respectively, “always speaking truly” and “always
speaking falsely”—is postponed to future work.
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Chapter 4

Assertoric Semantics and
the Computational Power
of Self-Referential Truth

4.1 Abstract

There is no consensus as to whether a Liar sentence is meaningful or not. Still,
a widespread conviction with respect to Liar sentences (and other ungrounded
sentences) is that, whether or not they are meaningful, they are useless. The
philosophical contribution of this paper is to put this conviction into question.
Using the framework of assertoric semantics, which is a semantic valuation
method for languages of self-referential truth that has been developed by the
author, we show that certain computational problems, called query structures,
can be solved more efficiently by an agent who has self-referential resources
(amongst which are Liar sentences) than by an agent who has only classical
resources; we establish the computational power of self-referential truth. The
paper concludes with some thoughts on the implications of the established result
for deflationary accounts of truth.

4.2 The Useless Liar Conviction

The aim of this paper is to discredit a conviction—widely shared among philoso-
phers and laypersons alike—concerning the Liar, i.e., the following sentence:

(L) L is not true.

The conviction, which I will call the Useless Liar Conviction (ULC ), can be
stated as follows:

ULC : The Liar is useless within (our) language.

The term ‘within’ in the formulation of ULC is put in italics to distinguish the
sense of usefulness alluded to in ULC from another sense of usefulness that can
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be explicated as follows. The Liar is regarded, by the author and by lots of
other philosophers, as useful because it discredits our Naive Theory of truth1

and thereby forces us to come up with a better theory of truth. But this last
sense of ‘useful’, useful in teaching us something about truth (and language),
is to be distinguished from ULC ’s notion of usefulness, which was described as
useful within our language. The sense in which the Liar is useless according to
ULC may be illustrated by the following ULC argument:

Arguably, the Liar does not express a proposition. Accordingly, the assertion
one makes by uttering the Liar, if any, is an infelicitous or useless one. As it
seems clear that the Liar cannot be used to realize any other speech act, the
Liar is useless within our language.

The ULC argument overlooks, I will argue, the fact that the Liar can be used
to realize another speech act. I hold that by uttering the Liar with interrogative
force, as in (4.1), one does ask a genuine question.

Is L true ? (4.1)

My reason for holding that (4.1) does not fail as a question is that I think that
(4.1) has a truthful (correct) answer, which has the following form.

(4.1) can neither be answered positively nor negatively (4.2)

At this point a ULC proponent may shrug his shoulders. “Fair enough,” he may
say, “let’s grant that your Liar question is a (genuine) question; it is—in a sense
of usefulness which is clear enough—a useless question anyway”. Wittgenstein
was, at some point, shrugging his shoulders about the Liar in a way quite similar
to the ULC proponent.

If the question is whether this [The Liar] is a statement at all, I
reply: You may say that it is not a statement. Or you may say that
it is a statement, but a useless one. ([68], p209)

In this paper I will discredit the ULC by showing that the Liar (question) is
useful within our language. To be sure, I do not claim that asking the Liar in
isolation, i.e., that asking (4.1) is useful. Asking (4.1) is useless because the
truthful answer to (4.1) does not convey any information (about the world).
Similarly, I regard the question whether snow is white or not white to be a
useless one, as no information is conveyed by a truthful answer to that ques-
tion either. The usefulness of the Liar will be established by showing that in
a language which contains the Liar (and the Truthteller2), information can be
retrieved more efficiently than in a language without such self-referential re-
sources. Or, to use a nice slogan, the usefulness of the Liar will be established
by revealing the Computational Power of Self-Referential Truth (CPSRT ). Be-
fore we explain in which sense self-referential truth has computational power,
we sketch the contours of the semantic framework, that of assertoric semantics,
in which the CPSRT result is obtained.

1The Naive Theory of truth may be thought of as the (smallest) class consisting of all
instances of the T -schema and closed under the inference rules of classical logic.

2By the Truthteller we mean the sentence: (T) T is true.
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Assertoric semantics is a semantic valuation method for languages of self-
referential truth which is developed by the author. Assertoric semantics is a
four valued semantics and the assertoric value of a sentence σ reports whether
or not it is allowed to assert σ and also, whether or not it is allowed to deny σ.
The assertoric norms that are constitutive for assertoric semantics are captured
by the assertoric formula.

Assertoric formula: it is allowed to assert (deny) σ just in case by asserting
(denying) σ one does not assert a falsehood, deny a truth, or contradict oneself.

To save some notation, in the rest of this paper we will use ‘it is allowed to
assert σ’ as shorthand for ‘it is allowed to assert σ according to the norms that
are expressed by the assertoric formula’. A similar remark applies to the phrase
‘it is allowed to deny σ’. In general, the assertoric value of a sentence is deter-
mined by two factors: by the world on the one hand and by the assertoric rules
of one’s language on the other. Roughly, the assertoric rules of a language are
the inferential rules—for the logical constants, including the truth predicate, of
the language—under an assertoric interpretation. Let us sketch how the Liar
receives its semantic value according to assertoric semantics. If one asserts the
Liar, i.e., if one asserts ‘L is not true’, one is committed (by the assertoric rules)
to the denial of ‘L is true’ which commits one to the denial of L, i.e., to the
denial of the Liar. So, in asserting the Liar one is committed, by the assertoric
rules, to the assertion and to the denial of the Liar: we will say that in asserting
the Liar, one contradicts oneself. Accordingly, it is not allowed (in any world) to
assert the Liar. Similarly, it is not allowed to deny the Liar. Thus, it is neither
allowed to assert nor to deny the Liar (in any world). A similar argument gives
us the assertoric value of the Truthteller: in any world, it is allowed to assert,
and it is allowed to deny, the Truthteller. In the actual world, it is allowed to
assert ‘snow is white’ as in doing so one does not violate any of the three con-
straints mentioned by the assertoric formula. It is not allowed to deny ‘snow is
white’ in the actual world though, as in doing so, one denies a truth. Similarly,
it is allowed to deny but not to assert ‘snow is black’ in the actual world. In the
next section, the framework of assertoric semantics will be explicated in more
detail. Let us now turn to a sketch of the CPSRT result.

The CPSRT is nicely illustrated by the following riddle. Suppose that some
flag is either red, yellow, green or black and that it is your task to find out
which of those four colors the flag has. You can ask yes-no questions to an
oracle, which is an omniscient entity that truthfully answers all and only yes-no
questions. Thus, questions like ‘what is the color of the flag?’ are not answered
by the oracle. By a truthful answer to σ we mean an answer that reveals the as-
sertoric value of σ. For instance, (4.2) is a truthful answer to (4.1), as it reveals
that it is neither allowed to assert nor to deny the Liar. The riddle is as follows.
How many questions do you have to ask the oracle in order to be sure that, after
the oracle has answered your questions, you know the flag’s color? Two classical
questions will certainly suffice; first ask whether the flag is (red or yellow) after
which you either ask whether the flag is red (if the oracle answered with ‘yes’)
or whether the flag is green (if the oracle answered with ‘no’). However, when
we have a language which contains self-referential resources, such as Liars and
Truthtellers, we can come up with a single question that allows us to determine
the color of the flag. With L and T names for the Liar and the Truthteller
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respectively, an example of such a “one shot question” is the following question.

Is it the case that: (L is not true and the flag is red) or (T is true and the flag
is yellow) or (the flag is green)?

Thus, though asking the Liar question by itself is not useful, within a language,
that is in combination with other questions, the Liar can be used to create very
efficient questions.3

This paper is organized as follows. In Section 4.3 we sketch the main ideas
of assertoric semantics and we develop a version of assertoric semantics which
is tailor made for deriving the CPSRT result. Section 4.4 is devoted to the
CPSRT . There we define the notion of a query structure, in which an agent
can gain information by querying an oracle. The oracle answers the agent’s
questions truthfully, which is formalized by assuming that the answer of the
oracle to a question σ is the assertoric value of σ. The CPSRT will be estab-
lished by showing that the magical query complexity of certain query structures
is lower than their classical query complexity. The magical query complexity
is a measure of the efficiency of information retrieval by an agent which has
self-referential resources (questions) at his disposal, while the classical query
complexity measures the efficiency of information retrieval of an agent without
these self-referential resources. In Section 4.5 we step back and reflect on the
significance of the CPSRT result. In particular, we address the question in what
sense the CPSRT result is really a result about computation; is our notion of
magical query complexity a natural notion of computational (query) complex-
ity? Finally, we discuss the implications of the CPSRT result for deflationary
accounts of truth.

4.3 Assertoric semantics

4.3.1 Quotational closures and truth languages

In this paper, we will develop an assertoric semantics for a (quantifier free)
truth language L. A truth language L = ⟨L̄, π⟩ consists of a (quantifier free)
quotational closure L̄ together with a reference list π. These notions are defined
as follows.

Definition 4.1 Quotational closures and their classical fragment
A quotational closure L̄ has {∨,∧,¬, T} as its logical symbolism, where ‘T ’ is a
unary truth predicate. Its non-logical symbolism consists, amongst others, of:

1. A set P = {p1, p2, . . .} of propositional atoms.

2. A finite set C = {c1, c2, . . . , cn} of non-quotational constant symbols.

Besides the non-quotational constant symbols C, L̄ also contains a set of quo-
tational constant symbols [C] = Con(L̄) −C. The set Con(L̄), consisting of all

3Inspiration for this paper is taken from Rabern and Rabern [43], who solve (in natural
language) a 1-out-of-3 riddle by asking a single question to an oracle. For an evaluation of
their solution in a completely distinct formal framework than that of this paper, see Wintein
[58].
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the constant symbols (quotational or not) of L̄ is jointly defined with Sen(L̄)4,
the set of sentences of L̄. Sen(L̄) and Con(L̄) are the smallest sets satisfying:

• P ⊆ Sen(L̄), C ⊆ Con(L̄).
• α ∈ Sen(L̄)⇒ [α] ∈ Con(L̄).
• t ∈ Con(L̄)⇒ T (t) ∈ Sen(L̄).
• α,β ∈ Sen(L̄)⇒ ¬α, (α ∧ β), (α ∨ β) ∈ Sen(L̄).

We let LP = ⟨P,{∨,∧,¬}⟩ denote the propositional language over P . LP is called
the classical fragment of L̄. ◻

A quotational closure thus has, corresponding with each σ ∈ Sen(L̄), a quo-
tational constant symbol [σ]. In a truth language L = ⟨L̄, π⟩, we have that
π([σ]) = σ and we say that the quotational constant symbol [σ] refers to σ.

Definition 4.2 Truth languages, their classical fragment and worlds
A truth language L = ⟨L̄, π⟩ is a pair consisting of a quotational closure L̄ and a
function π ∶ Con(L̄)→ Sen(L̄), called a reference list, which satisfies

π([σ]) = σ for all σ ∈ Sen(L̄)
When L is a truth language, we let Con(L) = Con(L̄) and we let Sen(L) =
Sen(L̄). Also, we say that LP is the classical fragment of L. By a world
w ∈W = P(P ) we mean a set of propositional atoms. We think of a world as a
model for LP . ◻

Throughout the paper, ‘λ’ and ‘τ ’ will be used as non-quotational constant
symbols satisfying (4.3).

π(λ) = ¬T (λ), π(τ) = T (τ) (4.3)

Under this convention, ¬T (λ)models the Liar, whereas T (τ)models the Truthteller.

4.3.2 Assertoric values, -rules and -trees

In this paper we will only be concerned with assertoric semantics for truth lan-
guages as defined in Section 4.3.1. In what follows, L will denote an arbitrary
such language.

An assertoric valuation function is a function V ∶ Sen(L) ×W → {0,1}2,
taking a sentence σ and a world w as input and returning an element of{0,1}2, which is interpreted as the assertoric value of σ in w. That is, with
V(σ,w) = (x, y), we have that:

x = 1 ⇔ the assertion of σ is allowed in w .
y = 1 ⇔ the denial of σ is allowed in w.

Here and elsewhere in the text ‘allowed’ is used as shorthand for ‘allowed ac-
cording to the assertoric norms which are expressed by the assertoric formula’.

4Sentences that are constructed using connectives in {→,↔} are officially in the meta-
language; the translation of them to “official sentences” is achieved in the usual manner.
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Whether or not is is allowed to assert (deny) a sentence σ in a world w is
determined by two factors; by the world w on the one hand and by the assertoric
rules of L on the other. The assertoric rules of L are basically the inferential
rules of L under an assertoric reading. In order to present the rules and their
interpretation, we define X , the set of assertoric sentences of L.

X = {Xσ ∣X ∈ {A,D}, σ ∈ Sen(L)}
Aσ symbolizes the assertion of σ, while Dσ symbolizes the denial of σ. We can
rephrase the interpretation of an assertoric valuation function as follows. With
V(σ,w) = (x, y), we have:

x = 1 ⇔ Aσ is allowed in w.
y = 1 ⇔ Dσ is allowed in w.

A sentence σ ∈ Sen(L) has either one of the following five forms: p, (α ∧
β), (α ∨ β),¬α or T (t). The form of an assertoric sentence Xσ is specified by
its sign, X ∈ {A,D}, and by the form of σ. Thus, there are 10 possible forms
of assertoric sentences or, in other words, there are ten assertoric forms. With
each of the assertoric forms we associate an assertoric rule. An assertoric rule
is either of conjunctive type ⊓ or of disjunctive type ⊔. Depending on its type,
an assertoric rule is depicted in either one of the following two ways.

Xσ

Π(Xσ) ⊔
Xσ

Π(Xσ)⊓
Formally, the assertoric rule R(AF) associated with assertoric form AF can be
thought of as a rule associating each assertoric sentence of form AF with its
set of immediate π sentences Π(Xσ), in either a conjunctive way (⊓) or in a
disjunctive way (⊔). The ten assertoric rules for L are, together with their type,
displayed in the following table.

A¬α{Dα}⊓
D¬α{Aα}⊓

A(α∨β)

{Aα,Aβ}⊔
D(α∨β)

{Dα,Dβ}⊓
A(α∧β)

{Aα,Aβ}⊓
D(α∧β)

{Dα,Dβ}⊔
AT (t)

{Aπ(t)}⊓
DT (t)

{Dπ(t)}⊓
Ap{Ap}⊓

Dp{Dp}⊓
The assertoric rules are thus the usual tableau rules for ∧,∨,¬ in terms of signed
statements (as in Smullyan[50]), augmented with rules that govern the truth
predicate and the (trivial) rules for propositional atoms. It will be convenient
to apply the notion of type (⊔ or ⊓) not only to rules but also to assertoric
sentences in accordance with the table above. For instance, we will say that
the type of a sentences of form A(α∨β) and D(α∧β) is ⊔. We distinguish three
readings of the assertoric rules. We call them the L(⇒), L(⇐) and L(⇔) rules
respectively.
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Definition 4.3 The L(⇒), L(⇐) and L(⇔) rules
Let AF be an assertoric form and let R(AF) be the associated assertoric rule.
Depending on the type, ⊔ or ⊓, of R(AF), the L(⇒) rule associated with R(AF)
is as follows. For any Xσ of form AF:

⊓: one is committed to Xσ ⇒ one is committed to Yα for all Yα ∈ Π(Xσ).
⊔: one is committed to Xσ ⇒ one is committed to Yα for some Yα ∈ Π(Xσ).

The L(⇐) rule and L(⇔) rule associated with R(AF) are obtained by replacing,
in the L(⇒) rule, ‘⇒’ with ‘⇐’ and ‘⇔’ respectively. Each of the ten assertoric
forms has an L(⇒) rule associated with it and by the L(⇒) rules we mean the
collection of ten L(⇒) rules. The notions of L(⇐) rules and L(⇔) rules are
defined similarly. The term L(⋅) rules will be used as a variable that ranges
over the L(⇒), L(⇐) and L(⇔) rules. ◻

As an example, consider the rule associated with A¬α. As A¬α has type ⊓ and
as Π(A¬α) = {Dα}, the L(⇒) rule associated with the assertion of a negation
reads as follows:

one is committed to A¬α
⇒ one is committed to Dα.

So, if one is committed to the assertion of ¬α, one is committed to the denial
of α. There are two ways in which one can be committed to the assertion
(denial) of a sentence σ. One is by actually asserting (denying) σ. The other
is by asserting or denying some other sentence, say σ0, which then induces a
commitment to the assertion (denial) of σ via the assertoric rules. For instance,
if I assert (α ∧ β) I am committed to the assertion of (α ∧ β), as I (actually)
asserted (α∧β). However, I am also committed, via the assertoric rules, to the
assertion of α and to the assertion of β, although I did not actually assert α or β.
Before we expand on these remarks, we define the notion of a valuation function
V ∶ Sen(L) ×W → {0,1}2 validating a set of L(⋅) rules. In this definition, we
use the two projection functions VX ∶ Sen(L) ×W → {0,1} of V where, with
V(σ,w) = (x, y) we have that VA(σ,w) = x and VD(σ,w) = y.
Definition 4.4 Validity of L(⋅) rules with respect to V

Let V ∶ Sen(L)×W → {0,1}2. We say that the L(⇒) rules are valid with respect
to V just in case we have, for each assertoric sentence Xσ ∈ X and for each world
w ∈W that:

type of Xσ is ⊓: VX(σ,w) = 1 ⇒ VY (α,w) = 1 for all Yα ∈ Π(Xσ). (4.4)

type of Xσ is ⊔: VX(σ,w) = 1 ⇒ VY (α,w) = 1 for some Yα ∈ Π(Xσ).
(4.5)

The conditions for the validity of the L(⇐) and L(⇔) rules with respect to V

are obtained by replacing, in (4.4) and (4.5), ‘⇒’ with, respectively, ‘⇐’ and
‘⇔’. ◻

The L(⇒) rules transmit assertoric commitments in the sense that the com-
mitment to the assertion or denial of a certain sentence is translated, via the
L(⇒) rules, into assertoric commitments with respect to other sentences. In
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order to keep track of the sum total of assertoric commitments that are in-
volved with the assertion or denial of a certain sentence σ, we define, for each
σ ∈ Sen(L), its two assertoric trees, consisting of σ’s assertion tree T

σ
A and its

denial tree T
σ
D. We think of an assertoric tree T

σ
X as the set which consists of

all the branches of Xσ.

Definition 4.5 Branches of Xσ

A set B ⊆ X is a branch of Xσ just in case conditions 1, 2 , 3 and 4 hold.

1. Xσ ∈ B

2. (Yα ∈ B and Yα has type ⊓) ⇒ Zβ ∈ B for all Zβ ∈ Π(Yα)
3. (Yα ∈ B and Yα has type ⊔) ⇒ Zβ ∈ B for some Zβ ∈ Π(Yα)
4. For no S ⊂ B, condition 1,2 and 3 are satisfied.

A branch of Xσ is thus a set containing Xσ which is (downwards) saturated
under the L(⇒) rules and minimal in the sense that no strict subset of B
contains Xσ and is (downwards) saturated under the L(⇒) rules. ◻

We are now ready to define the two assertoric trees, T
σ
A and T

σ
D, of a sentence

σ ∈ Sen(L).
Definition 4.6 Assertoric trees
Let σ ∈ Sen(L). Its assertion tree T

σ
A and its denial tree T

σ
D are defined as

follows:

T
σ
A = {B ∣ B is a branch of Aσ}

T
σ
D = {B ∣ B is a branch of Dσ}

An assertoric tree is thus a set of sets of assertoric sentences. ◻

Although assertoric trees are officially sets of sets of assertoric sentences, we will
depict them as “genuine trees”. For instance, we do so in the following example.

Example 4.1 Assertoric trees
Below we depict T

γ
A and T

γ
D, where γ ∶= (¬T (λ) ∧ p1) ∈ Sen(L).

A(¬T (λ)∧p1)

A¬T (λ)

Ap1

DT (λ)

D¬T (λ)

AT (λ)

branch A1

D(¬T (λ)∧p1)

D¬T (λ)

AT (λ)

A¬T (λ)

DT (λ)

branch D1

Dp1

branch D2

Due to the finiteness of C, an assertoric tree is a finite object, being a finite set
whose elements are finite sets of sentences. ◻
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The remark made at the end of Example 4.1 is Proposition 4.1.

Proposition 4.1 T
σ
X is a finite set whose elements are finite sets.

Proof: See appendix. Roughly, the proof follows from the assumption that C is
finite and that L is quantifier free. ◻

4.3.3 Inducing valuation functions by closure conditions

In this subsection, we describe how closure conditions for branches are used to
induce a valuation function V ∶ Sen(L) ×W → {0,1}2. Here, we describe the
general form of these inducements, while the next subsection describes a con-
crete such inducement.

By closure conditions for branches, we mean necessary and sufficient con-
ditions which specify under which circumstances a branch is called closed in a
world w, while a branch is called open in w just in case it is not closed in w.
We write Cw(B) and Ow(B) as shorthand for ‘branch B is closed in world w’
and ‘branch B is open in world w’ respectively. Closure conditions for branches
define closure conditions for assertoric trees according to the following schema.

Cw(Tσ
X)⇔def Cw(B) for all B ∈ T

σ
X (4.6)

Equivalently, we can phrase this as:

Ow(Tσ
X)⇔def Ow(B) for some B ∈ T

σ
X (4.7)

Closure conditions induce a valuation function V ∶ Sen(L)×W → {0,1}2 accord-
ing to the following definition.

Definition 4.7 V induced by closure conditions
Closure conditions for branches induce a valuation function V ∶ Sen(L) ×W →{0,1}2. We define V in terms of its projector functions VX as follows:

VX(σ,w) = 1 ⇔ Ow(Tσ
X),

where the closure conditions for trees derive from the closure conditions for
branches as specified by equation (4.6) or (4.7). ◻

Any set of closure conditions can be used to induce a valuation function in ac-
cordance with Definition 4.7. However, not any set of closure conditions induces
a valuation function that can properly be called an assertoric valuation func-
tion. In order to induce an assertoric valuation function, the closure conditions
should be an adequate formal representation of the assertoric norms expressed
by the assertoric formula. In other words, the closure conditions should capture
the assertoric formula. Closure conditions which capture the assertoric formula
allow us to explain the closure of an assertoric tree along the following lines. In
asserting σ one takes up assertoric commitments that are summarized by the
assertion tree of σ. The closure of the assertion tree of σ means that one is not
able, judged by the standards of the assertoric formula, to live up to the in-
volved assertoric commitments. For instance, if the assertion tree of σ is closed
in world w it is the case that, intuitively, in asserting σ in w one is committed
to the assertion of a falsehood, the denial of a truth, or to contradict oneself.
Similar remarks apply to the (closure of the) denial tree of σ. Conversely, if
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the assertion (denial) tree of σ is open, one can live up to the commitments of
asserting (denying) σ and, accordingly, it is allowed to assert (deny) σ.

In the next section we will define the assertoric closure conditions. The as-
sertoric closure conditions capture the assertoric formula and are used to induce
the valuation function Vas. As we will see, Vas validates the L(⇒) rules, but
not the L(⇐) rules.

4.3.4 The assertoric valuation function Vas

We now define the assertoric closure conditions for sets of assertoric sentences.
By extension, we thereby define closure conditions for branches.

Definition 4.8 Assertoric closure conditions
Let w ∈ W and let S ⊆ X . S is open in w according to the assertoric closure
conditions, denoted Oas

w (S), iff S is not closed in w according to those conditions.
S is closed in w according to the assertoric closure conditions, denoted Cas

w (S),
iff the disjunction of 1, 2 and 3 is true.

1. There is a p ∈ P such that Ap ∈ S and p /∈ w.

2. There is a p ∈ P such that Dp ∈ S and p ∈ w.

3. There is a σ ∈ Sen(L) such that Aσ ∈ S and Dσ ∈ S. ◻

The assertoric closure conditions capture the assertoric formula which says that
one is allowed to assert (deny) a sentence σ just in case in asserting σ one does
not assert a falsehood (condition 1), deny a truth (condition 2) or contradict
oneself (condition 3). We let Vas be the valuation function which is induced by
the assertoric closure conditions according to Definition 4.7.

Proposition 4.2 Vas validates the L(⇒) rules
Proof: We illustrate that the L(⇒) rule of Aα∧β is valid with respect to Vas. The
L(⇒) validity of the other assertoric rules can be shown by a similar argument.
Thus, we will prove that:

Vas

A (α ∧ β,w) = 1 ⇒ Vas

A (α,w) = 1 and Vas

A (β,w) = 1

We proceed by reductio. Suppose that Vas

A (α∧β,w) = 1, i.e. that Oas
w (Tα∧β

A ) and

suppose that not Vas

A (α,w) = 1, i.e. that Cas
w (Tα

A). Observe that for all B ∈ T
α∧β
A

there exists a B′ ∈ T
α
A such that B′ ⊂ B. From Oas

w (Tα∧β
A ) it follows that there

exists a branch, say B, of T
α∧β
A

such that Oas
w (B). By our observation, B is the

superset of some branch B′ of T
α
A. As, by hypothesis, we have that Cas

w (Tα
A)

it follows that Cas
w (B′). As it is impossible to have B′ ⊂ B with Cas

w (B′) and
Oas

w (B) we are done. ◻

Example 4.2 Vas does not validate the L(⇐) rules
Let π(τ) = T (τ), i.e. T (τ) is a Truthteller. Observe that, with w an arbitrary
world, we have that:

V
as(T (τ),w) = (1,1), V

as(¬T (τ),w) = (1,1)
V

as(T (τ) ∧ ¬T (τ),w) = (0,1)
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These assertoric values falsify the L(⇐) rule of A∧, as:

Vas

A (α ∧ β,w) = 1 /⇐ (Vas

A (α,w) = 1 and Vas

A (β,w) = 1)
Thus, Vas does not validate the L(⇐) rules and so, a fortiori neither does Vas

validate the L(⇔) rules. ◻

Interestingly, an (arbitrary) valuation function V ∶ Sen(L) ×W → {0,1}2
validates the L(⇔) rules just in case V is compositional with respect to FOUR≤,
where the structure FOUR≤ = ⟨{0,1}2,≤⟩, familiar from o.a. ([7]), partially
orders the four assertoric values according to the following Hasse diagram.

(1,0)

(1,1)(0,0)

(0,1)

≤

Figure 4.1: Four≤

Definition 4.9 FOUR≤ compositionality
V ∶ Sen(L)×W → {0,1}2 is said to be FOUR≤ compositional just in case condi-
tions a, b, c and d are fulfilled, where t ∈ Con(L) and w ∈W .

a. 1. V(α,w) = (1,0)⇔ V(¬α,w) = (0,1)
2. V(α,w) = (0,1)⇔ V(¬α,w) = (1,0)
3. V(α,w) = (0,0)⇔ V(¬α,w) = (0,0)
4. V(α,w) = (1,1)⇔ V(¬α,w) = (1,1)

b. V(T (t),w) = V(π(t),w)
c. V(α ∨ β,w) = sup≤({V(α,w),V(β,w)})
d. V(α ∧ β,w) = inf ≤({V(α,w),V(β,w)}) ◻

The following proposition is an immediate consequence of Definition 4.4 and
Definition 4.9.

Proposition 4.3 V ∶ Sen(L) ×W → {0,1}2 validates the L(⇔) rules just
in case V is FOUR≤ compositional.

Proof: We illustrate the proof by considering conjunction only as all other cases
are treated similarly. The L(⇔) rules of asserting and denying a conjunction
are validated by V just in case we have that, for each world w:

VA(α ∧ β,w) = 1 ⇔ VA(α,w) = 1 and VA(β,w) = 1 (4.8)

VD(α ∧ β,w) = 1 ⇔ VD(α,w) = 1 or VD(β,w) = 1 (4.9)
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A row of the following “assertoric table” is understood as a possible way to
satisfy equations (4.8) and (4.9) simultaneously. The table as a whole represents
all possible ways of doing so.

V(α,w) V(β,w) V(α ∧ β,w)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 1) (0, 1)
(0, 0) (1, 0) (0, 0)
(0, 0) (1, 1) (0, 1)
(0, 1) (0, 0) (0, 1)
(0, 1) (0, 1) (0, 1)
(0, 1) (1, 0) (0, 1)
(0, 1) (1, 1) (0, 1)
(1, 0) (0, 0) (0, 0)
(1, 0) (0, 1) (0, 1)
(1, 0) (1, 0) (1, 0)
(1, 0) (1, 1) (1, 1)
(1, 1) (0, 0) (0, 1)
(1, 1) (0, 1) (0, 1)
(1, 1) (1, 0) (1, 1)
(1, 1) (1, 1) (1, 1)

The values in the table testify that V is FOUR≤ compositional with respect to
∧. To see that V is FOUR≤ compositional with respect to the other connectives
one reasons similarly. ◻

And so, Proposition 4.3 and Example 4.2 tell us that Vas is not FOUR≤ com-
positional, which can also be observed by inspecting the following assertoric
values:

V
as(T (τ),w) = (1,1), V

as(¬T (τ),w) = (1,1)
V

as(T (τ)∧ T (τ),w) = (1,1), V
as(T (τ) ∧ ¬T (τ),w) = (0,1)

The specified assertoric values illustrate that the Vas value of a conjunction
is not determined by the Vas values of its conjuncts, which means that Vas is
not (FOUR≤) compositional. The non compositionality of Vas implies that Vas

cannot be characterized as a Kripkean fixed point (described in [33]) that is ob-
tained by the Strong (or Weak) Kleene scheme, for the Kleene valuation schemes
are compositional. The specified assertoric values leave open the possibility to
characterize Vas as Kripkean fixed point that is obtained by the Supervaluation
scheme. For the Supervaluation scheme is a non compositional valuation scheme
in which the conjunction of a sentence with its negation is always valuated as
“false”—where (roughly) “false” is the analogue of our value (0, 1). However,
although Vas is not compositional, it does not have the property of assigning the
value (0,1) to each conjunction of a sentence with its negation, as is testified
by the Liar sentence T (λ):

V
as(T (λ)∧ ¬T (λ),w) = (0,0)

And so, Vas cannot be characterized as a Kripkean fixed point that is obtained by
the Supervaluation scheme either. For a detailed comparison of Kripkean fixed
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point semantics with assertoric semantics, the reader is referred5 to Wintein
[63].

We conclude our discussion of Vas by observing that, though Vas cannot
be characterized as a Kripkean fixed point, it does have the most interesting
property possessed by the Kripkean fixed points: according to Vas the assertoric
value of a sentence σ is equal to the assertoric value of a sentence which says of
σ that it is true. That is, Vas shares the semantic intersubstitutability of truth
property with the Kripkean fixed points.

Proposition 4.4 ∀t ∈ Con(L),∀w ∈W ∶ Vas(T (t),w) = Vas(π(t),w)
Proof:. First observe that the claim is equivalent to the claim that, with t ∈

Con(L), w ∈W and X ∈ {A,D} we have that:

Oas

w (TT (t)
X
)⇔ Oas

w (Tπ(t)
X
)

⇒ By reductio. Suppose that Oas
w (TT (t)

X ) and suppose that Cas
w (Tπ(t)

X ). Observe

that for all B ∈ T
T (t)
X there exists a B′ ∈ T

π(t)
X such that B′ ⊂ B. FromOas

w (TT (t)
X )

it follows that there exists a branch, say B, of T
T (t)
X such that Oas

w (B). By our

observation, B is the superset of some branch B′ of T
π(t)
X . As, by hypothesis, we

have that Cas
w (Tπ(t)

X ) it follows that Cas
w (B′). As it is impossible to have B′ ⊂ B

with Cas
w (B′) and Oas

w (B) we are done.

⇐. We only give the proof for X = A as the proof for X = D is similar. Proof

by reductio. Suppose that Oas
w (Tπ(t)

A ) and that Cas
w (TT (t)

A ). Note that:

T
T (t)
A = {B ∪ {AT (t)} ∣ B ∈ T

π(t)
A }

From our reduction hypothesis it thus follows that there has to exist a B such
that Oas

w (B) and such that Cas
w (B ∪ {AT (t)}). As T (t) /∈ P and as B is (asser-

torically) open it follows that the closure of B ∪ {AT (t)} has to be explained
by the occurrence of DT (t) in B. As B is saturated under the L(⇒) rules, it

follows that B contains Dπ(t) as well. And so, as Aπ(t) is the origin of T
π(t)
A , B

contains both Aπ(t) and Dπ(t) and we have that Cas
w (B). Contradiction. ◻

In the next section we show how the framework of assertoric semantics, using
the valuation function Vas, can be invoked to establish the Computational Power
of Self-Referential Truth.

4.4 The Computational Power of Self-Referential
Truth

4.4.1 Query structures, -strategies and -complexity

In a query structure, an agent wants to know the (classical) truth value (true
or false) of all sentences in a set T ⊆ Sen(LP ). Or, which is to say the same,

5It turns out, as shown in [63], that Vas is equivalent to the function that Kripke [33]
(implicitly) defined by quantifying over all fixed points. According to this function, the Liar
is paradoxical as there is no 3-valued (Strong Kleene) fixed point in which it valuates as 1 and
also, no fixed point in which it valuates as 0. I did not realize this connection with Kripke’s
work at the time of writing the present paper.
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the agent wants to decide his target knowledge T . In order to decide T , the
agent may invoke his background knowledge B ⊆ Sen(LP ) in combination with
additional information that he can gain by querying an oracle. The oracle is
an omniscient and truthful entity. Being omniscient, the oracle knows all facts
of the (actual) world, and so he knows the truth value of each sentence of LP .
Being truthful, the oracle, when addressed a question σ ∈ Sen(L), truthfully
reveals the assertoric possibilities with respect to σ. Thus, the answer of the
oracle to σ is equal to Vas(σ,w@), where w@ is the actual world. Before we
proceed, let us formally define the notion of a query structure.

Definition 4.10 Query structure
We say that a pair ⟨B,T ⟩, consisting of B ⊆ Sen(LP ) and T ⊆ Sen(LP ), is a
query structure just in case:

1. B ∪ T is consistent. ∣T ∣ is finite.

2. ∃σ ∈ T ∶ B /⊢LP
σ and B /⊢LP

¬σ. (non-triviality)

Where a set S ⊆ Sen(LP ) is consistent just in case there is a σ ∈ Sen(LP ) such
that S /⊢LP

σ. Here, S ⊢LP
σ means that σ ∈ Sen(LP ) follows from S ⊆ Sen(LP )

by propositional logic. ◻

We distinguish between two types of agents. A classical agent Acla speaks LP

(and only LP ), while a magical agent Ama speaks some6 truth language L.
More concretely, Acla can query the oracle by asking him questions in Sen(LP )
while Ama can ask the oracle questions in Sen(L).

An n-query strategy S of an arbitrary agent A is a plan of A to ask n con-
secutive questions to the oracle, where the mth question asked may depend on
the oracle’s answer to question m−1. Formally, an n-query strategy S is conve-
niently represented as a 4-tree of height n whose points are, when A is classical,
occurrences of elements of Sen(LP ) and, when A is magical, occurrences of ele-
ments of Sen(L) . A 4-tree is a tree in which each point that is not an endpoint
has exactly 4 successors. In the case of a query strategy, the four successors of
a point σ represent the follow-up question to σ that will be asked conditional
on the answer—(0,1), (1, 0), (1, 1) or (0, 0)—received to σ. In executing a
query strategy S, the agent starts by asking the question corresponding to the
origin of S and he asks further questions depending on the answers he received
to previous ones. For instance, if the answer received by the agent to his first
question was (0,1), he consequently asks the corresponding follow-up question.
Similarly for the other answers and for questions “higher up” S. Let us illustrate
the notions just defined via an example.

Example 4.3 1-out-of-4 and a 2-query strategy of Acla

In the query structure 1-out-of-4, an agent knows that exactly one of the propo-
sitions in {p1, p2, p3, p4} is true and his task is to find out which one it is. Thus,
1-out-of-4 = ⟨{θ1 ∨ θ2 ∨ θ3 ∨ θ4},{p1, p2, p3, p4}⟩, where:

θ1 ∶= p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4, θ2 ∶= p2 ∧ ¬p1 ∧ ¬p3 ∧ ¬p4,
θ3 ∶= p3 ∧ ¬p2 ∧ ¬p1 ∧ ¬p4, θ4 ∶= p4 ∧ ¬p2 ∧ ¬p3 ∧ ¬p1.

6If we identify agents with the language they speak, we have one classical agent and a lot
of magical agents; one for each truth language L.
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Here is a 2-query strategy of Acla.

(p1 ∨ p2)

p1

(1, 0)

p5

(0, 1)

(p7 ∨ p8)
(0,0)

(p1 ∨ ¬p1)
(1, 1)

In executing this strategy, Acla first asks the question (p1 ∨ p2) and then Acla

asks a follow-up question which depends on the answer that the oracle gave to(p1∨p2). Depending on whether the oracle answered (p1∨p2) with (1,0), (0,1),(0,0) or (1,1) the agent respectively asks p1, p5, (p7 ∨ p8) or (p1 ∨ ¬p1) as a
follow-up question. ◻

Consider what happens with Acla’s knowledge if Acla executes the query
strategy S of Example 4.3. The oracle answers the first question (p1 ∨ p2) with(1,0) just in case p1 or p2 is the true proposition. If (p1 ∨ p2) is answered
with (1,0), Acla asks p1 as a follow-up question. The follow-up question p1

is answered with (1,0) just in case p1 is true. Thus, if p1 or p2 is the true
proposition, Acla can decide his target after an execution of S. However, if p3

or p4 is the true proposition, the oracle will answer the first question (p1 ∨ p2)
with (0,1) and Acla will ask p5 as a follow up question. Clearly, the answer to
p5 reveals no information about the truth values of {p1, p2, p3, p4}. Hence, when
p3 or p4 is the true proposition, an execution of S does not allow Acla to decide
his target. We say that S does not solve 1-out-of-4, because the world may be
such that Acla’s knowledge update due to executing S does not allow Acla to
decide his target. In the next subsection we will define KU(S,w) ⊆ Sen(LP ),
which is the knowledge update of an agent due to an execution of query strategy
S in world w. Using KU(S,w), we can rigorously define the notion of a query
strategy solving a query structure.

Definition 4.11 Solving a query structure
Let ⟨B,T ⟩ be a query structure and let S be a query strategy of an arbitrary
agent A. We say that S solves ⟨B,T ⟩ just in case7 we have that, for each w ∈W

and for each σ ∈ T , after executing S in w, A can decide T . Or, which is equiv-
alent, we may say that S solves ⟨B,T ⟩ just in case for every w ∈W we have that:

∀σ ∈ T : B ∪KU(S,w) ⊢LP
σ or B ∪KU(S,w) ⊢LP

¬σ ◻

Clearly, by replacing, in the query strategy of Example 4.3, the follow up ques-
tion p5 with the question p3, Acla obtains an alternative query strategy which
does solve 1-out-of-4. The classical and magical query complexity of a query
structure are defined as follows.

Definition 4.12 Query complexity, classical and magical
The classical query complexity C⟨B,T ⟩ of a query structure ⟨B,T ⟩ is the least n
for which Acla has a query strategy S which solves ⟨B,T ⟩.

7Note that, when w is a world whose union with B is an inconsistent set of sentences, S
trivially decides T in that world w.
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The magical query complexity M⟨B,T ⟩ of a query structure ⟨B,T ⟩ is the least n
for which some8 Ama has a query strategy S which solves ⟨B,T ⟩. ◻

In Section 4.4.3, we will prove Theorem 4.1, which is the central result of this
paper.

Theorem 4.1 The Computational Power of Self-Referential Truth
Self-referential truth has computational power, as:

There exist query structures ⟨B,T ⟩ such that: M⟨B,T ⟩ < C⟨B,T ⟩

Proof: See Section 4.4.3. ◻

Before we establish the CPSRT result we first define, in Section 4.4.2, the
knowledge update KU(S,w) which an arbitrary agent A receives by executing
S in w.

4.4.2 Knowledge updates from query strategies

In this section we define KU(S,w) which is the knowledge update that an
arbitrary agent A receives by executing query strategy S in w. Before we go
over to the actual definition of KU(S,w), we first present the rationale of this
definition. Observe that:

1. By executing an n-query strategy S in w, A learns the answers of the
oracle to n questions; say that A learns Vas(σ1,w), . . . ,Vas(σn,w).

2. Learning the assertoric value Vas(σ,w) of σ is learning whether Oas
w (Tσ

A)
or Cas

w (Tσ
A) and also learning whether Oas

w (Tσ
D) or Cas

w (Tσ
D).

3. Learning that Oas
w (Tσ

X) is learning that Oas
w (B) for some B ∈ T

σ
X .

Learning that Cas
w (Tσ

X) is learning that Cas
w (B) for all B ∈ T

σ
X .

For some assertoric trees it is uninformative for A to be told that the tree is
open or to be told that it is closed9, the reason being that it is a priori that
such a tree is open or closed. An assertoric tree T

σ
X is called a priori just in

case T
σ
X is not a posteriori, where T

σ
X is called a posteriori just in case:

∃w,w′ ∈W ∶ Cas
w (Tσ

X) and Oas

w′(Tσ
X) (4.10)

We let OTσ
X
∈ Sen(LP ) and CTσ

X
∈ Sen(LP) represent the information learned

by A when he finds out that T
σ
X is open, respectively closed. The observation

that from a priori trees nothing can be learned is modeled by letting, for any a
priori tree T

σ
X , OTσ

X
= CTσ

X
= ⊺, where ⊺ ∶= p1 ∨ ¬p1. When an agent finds out

that an a posteriori tree T
σ
X is open or closed, he does learn something; he can

extract all the information present on the a posteriori branches of T
σ
X , where a

branch B is a posteriori just in case:

∃w,w′ ∈W ∶ Cas
w (B) and Oas

w′(B) (4.11)

8Identifying magical agents with the particular truth language they speak.
9For sake of brevity, we will write ‘open’ instead of ‘open according to the assertoric closure

conditions in the actual world’. Similarly for ‘closed’.
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Clearly, an a posteriori tree has at least one a posteriori branch.10 With T
σ
X an

a posteriori tree, OTσ
X

and CTσ
X

can be defined in terms of OB , CB ∈ Sen(LP ),
where intuitively, OB is what A learns when he finds out that an a posteriori
branch B is open while CB is what A learns when he finds out that an a pos-
teriori branch B is closed. Once we have defined the sentences CB and OB we
can thus complete our definition of OTσ

X
and CTσ

X
as follows11:

OTσ
X
= { ⋁{OB ∣ B ∈ T

σ
X ,B is a posteriori}, T

σ
X is a posteriori;

⊺, T
σ
X is a priori.

CTσ
X
= { ⋀{CB ∣ B ∈ T

σ
X ,B is a posteriori}, T

σ
X is a posteriori;

⊺, T
σ
X is a priori.

If A finds out that an a posteriori branch B is open, he thereby finds out that all
sentences of (atomic) form Xp are in agreement with the world, while if he finds
out that B is closed, he thereby finds out that at least one sentence of (atomic)
form Xp is in disagreement with the world. More precisely then, the sentences
CB and OB can be defined as follows. With p ∈ P , we let (Ap)+ = p, (Dp)+ = ¬p,(Ap)− = ¬p and (Dp)− = p and we let:

OB =⋀{(Xp)+ ∣Xp ∈ B}, CB =⋁{(Xp)− ∣Xp ∈ B}
Now that we have completed our definition of OTσ

X
and CTσ

X
, we can define

the information that A learns by learning the assertoric value of σ ∈ Sen(L).
If A learns that Vas(σ,w) = (x, y), he learns that U(σ, (x, y)) ∈ Sen(LP ), where:

U(σ, (1,0)) = OTσ
A
∧CTσ

D
U(σ, (0,1)) = CTσ

A
∧OTσ

D

U(σ, (0,0)) = CTσ
A
∧CTσ

D
U(σ, (1,1)) = OTσ

A
∧OTσ

D

As by executing an n-query strategy S in w, A learns, say, Vas(σ1,w), . . . ,
Vas(σn,w), his knowledge update KU(S,w) due to the execution of S in w is
defined as follows:

KU(S,w) = {U(σ1,V
as(σ1,w)), . . . ,U(σn,V

as(σn,w))} (4.12)

The notions that are defined in this subsection are illustrated by means of the
following example.

Example 4.4 Knowledge update (Example 1 continued)
With γ ∶= (¬T (λ)∧ p1) as in Example 1, we have that:

T
γ
A
= {{A(¬T (λ)∧p1),A¬T (λ),Ap1

,DT (λ),D¬T (λ),AT (λ)}}
T

γ
D = {{D(¬T (λ)∧p1),D¬T (λ)AT (λ),A¬T (λ),DT (λ)},{D(¬T (λ)∧p1),Dp1

}}
Naming the branches as in Example 1, we write T

γ
A = {A1} and T

γ
A = {D1,D2}.

As A1 is the only branch of T
γ
A and asA1 is a priori, we have that CTσ

A
= OTσ

A
= ⊺.

T
γ
D is an a posteriori tree which has a branch, D1, that is a priori and a branch,

10Observe that the a priori tree T
p1∨¬p1

A
testifies that it is not the case that all the branches

of an a priori tree are a priori. However, it clearly holds that if all the branches of T
σ
X are a

priori then T
σ
X is itself a priori.

11With S a finite set of sentences, ⋁S and ⋀S denote the disjunction respectively conjunc-
tion of all the members of S.
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D2, that is a posteriori. Observe that OD2
= ¬p1 and that CD2

= p1 and so,
as D2 is the only a posteriori branch of T

γ
D, we have that OT

γ

D
= ¬p1 and that

CT
γ

D
= p1. The function U is thus as follows:

U(γ, (1,0)) = (⊺ ∧ p1) U(γ, (0,1)) = (⊺ ∧ ¬p1)
U(γ, (0,0)) = (⊺ ∧ p1) U(γ, (1,1)) = (⊺ ∧ ¬p1)

We can think of γ as a 1-query strategy. With U ⊂ W the set of all worlds u
such that p1 ∈ u and with V ⊂W the set of all worlds v such that p1 /∈ v, we see
that for all u ∈ U and for all v ∈ V we have that:

KU(γ,u) = {(⊺ ∧ p1)}, KU(γ, v) = {(⊺ ∧ ¬p1)}
The query strategy γ solves the query structure ⟨∅,{p1}⟩, as for all w ∈W we
have that:

∅∪KU(γ,w) ⊢LP
p1 or ∅ ∪KU(γ,w) ⊢LP

¬p1

The example illustrates that, although U is defined for all question-answer pairs,
this does not mean in general that all four answers to a question are possible
answers; depending on the truth value of p1, the oracle will either answer γ with(0,1) or (0,0). ◻

Although, as shown in Example 4.4, γ ∶= (¬T (λ) ∧ p1) solves the query struc-
ture ⟨∅,{p1}⟩ the solution is unnecessarily complicated, as asking p1 also solves⟨∅,{p1}⟩; although we solved ⟨∅,{p1}⟩ by asking a single question of L we could
also solve the structure in a single classical query, that is by asking a single ques-
tion of LP . In the next section, we discuss a query structure whose one question
solution in L has no one question counterpart in LP .

4.4.3 Magically, you can’t do this classically

In this section we illustrate the computational power of self-referential truth.
We do so by showing that the magical query complexity of the query struc-
ture 1-out-of-4 (see Example 4.3) is strictly less than its classical query com-
plexity. Remember that, with θi as in Example 4.3, 1-out-of-4 = ⟨{θ1 ∨ θ2 ∨
θ3 ∨ θ4},{p1, p2, p3, p4}⟩, i.e. the agent’s background knowledge is such that he
knows that exactly 1 out of 4 given pi is true and his target is find out which one
it is. Clearly, Acla can solve 1-out-of-4 in 2 questions and equally clearly, Acla

can not solve 1-out-of-4 in 1 question. Hence, the classical query complexity of
1-out-of-4 is 2. However, the magical query complexity of 1-out-of-4 is 1, as is
illustrated by the strategy consisting of the single question θ.

θ ∶= ((¬T (λ)∧ p1) ∨ (T (τ) ∧ p2)) ∨ p3

In order to illustrate that asking θ allows Ama to decide his target, we display
T

θ
A and T

θ
D.12

12To save some space, we display in fact abbreviations of those trees; a bullet (●) indicates
that we do not work out the official steps after this point, as it is clear that the resulting
branch(es) are a priori and closed.
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Aθ

A(¬T (λ)∧p1)∨(T (τ)∧p2)

A¬T (λ)∧p1

A¬T (λ) ●

AT (τ)∧p2

AT (τ)

Ap2

Ap3

Dθ

D(¬T (λ)∧p1)∨(T (τ)∧p2)

Dp3

D¬T (λ)∧p1

DT (τ)∧p2

D¬T (λ) ● Dp1

DT (τ) Dp2

Numbering the branches from left to right, we have that T
θ
A = {A1,A2,A3}

and T
θ
D = {D1,D2,D3}. Both T

θ
A and T

θ
D are a posteriori and both have a

single a priori branch, respectively A1 and D1. With respect to the a posteriori
branches, observe that:

- OA2
= p2, CA2

= ¬p2

- OA3
= p3, CA3

= ¬p3

- OD2
= ¬p1 ∧ ¬p3, CD2

= p1 ∨ p3

- OD3
= ¬p1 ∧ ¬p2 ∧ ¬p3, CD3

= p1 ∨ p2 ∨ p3

And so we get that:

- OTθ
A
= p2 ∨ p3

- CTθ
A
= ¬p2 ∧ ¬p3

- OTθ
D
= (¬p1 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3)

- CTθ
A
= (p1 ∨ p3) ∧ (p1 ∨ p2 ∨ p3)

And so the function U has the following properties:

(x, y) U(θ, (x, y))(0,1) (¬p2 ∧ ¬p3) ∧ ((¬p1 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3))(0,0) (¬p2 ∧ ¬p3) ∧ ((p1 ∨ p3) ∧ (p1 ∨ p2 ∨ p3))(1,0) (p2 ∨ p3) ∧ ((p1 ∨ p3) ∧ (p1 ∨ p2 ∨ p3))(1,1) (p2 ∨ p3) ∧ ((¬p1 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3))
With i ∈ {1,2,3,4} we let Wi ⊂W be the set of those worlds wi for which pi ∈ wi

and such that for all j ∈ {1,2,3,4}, j /= i we have that pj /∈ wi. With wi an
arbitrary world in Wi, we have that:

wi KU(θ,wi)
w1 {U(θ, (0,0))}
w2 {U(θ, (1,1))}
w3 {U(θ, (1,0))}
w4 {U(θ, (0,1))}
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It is left to the reader to check that, with B the background knowledge of Ama

in 1-out-of-4, with i, j ∈ {1,2,3,4}, j /= i and with W ∗ =W −(W1∪W2∪W3∪W4)
we have that:

w ∈Wi ⇒ B ∪KU(θ,w) ⊢LP
pi and B ∪KU(θ,w) ⊢LP

¬pj

w ∈W ∗ ⇒ B ∪KU(θ,w) ⊢LP
σ for all σ ∈ Sen(LP )

And so, the single query strategy θ solves 1-out-of-4, establishing that the mag-
ical query complexity is strictly less than its classical query complexity, i.e.
establishing the Computational Power of Self-Referential Truth. In the next
section, the significance of the CPSRT result will be discussed. We conclude
this section with the following observations.

1. 1-out-of-4∗ = ⟨∅,{(p1 ∧ ¬p2), (¬p1 ∧ p2), (¬p1 ∧ ¬p2), (p1 ∧ p2)}⟩ can be
solved by asking the single question θ∗ ∶= (¬T (λ)∧ p1) ∨ (T (τ) ∧ p2).

2. Analogous to 1-out-of-4, one can define the query structure 1-out-of-n.
With n ≥ 1, the magical query complexity of 1-out-of-4n is n, whereas its
classical query complexity is 2n.

3. The question θ which we used to solve 1-out-of-4 exploits two non-quotational
constants: λ and τ . It is also possible to solve 1-out-of-4 in a single ques-
tion which uses only one non-quotational constant, as is testified by letting:

π(c) = ((¬T (c)∧ p1) ∨ (T (c) ∧ p2)) ∨ p3

The reader may verify that the query strategy consisting of the single
question ((¬T (c)∧ p1) ∨ (T (c) ∧ p2)) ∨ p3 solves 1-out-of-4.

4.5 Remarks on the significance of CPSRT

4.5.1 What does CPSRT have to do with computation?

In this section I will argue against a possible objection to my presentation
of Theorem 4.1 as a result about computation. The objection is, roughly, as
follows. Granted, there clearly are query structures with a lower magical than
classical query complexity, as indicated in Theorem 4.1. But it is misleading to
speak of this result in terms of computational power. For the notion of magical
query complexity, as defined in Definition 4.12, is not a natural notion of query
(and hence computational) complexity.

In fact, I will discuss and respond to two more concrete objections, the spirit
of both of which is that the notion of magical query complexity is not a natural
notion of computational complexity. The two objections, the arguments for
which are given below, are as follows:

1. It can be shown that, according to the rationale of the notion of magical
query complexity, it is possible to solve, for any n ∈ N, 1-out-of-n in a single
question. Clearly, a notion of query complexity with such a rationale is
not a natural notion.
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2. To answer the question ‘what is a natural notion of computational (query)
complexity?’ we should consult computer science. The query complexity
of 1-out-of-4 is not equal to 1 according to the “computer scientific notion
of query complexity”, showing that the notion of magical query complexity
is not a natural notion.

Argument for objection 1. The magical query complexity of a query structure
is the least number of sentences (questions) that you have to ask an oracle
in order to solve the structure, whereas the answer given by the oracle to a
sentence σ is the semantic (assertoric) value of σ. Following this line of thought,
it is easy to solve, for each n ∈ N, 1-out-of-n in a single question. We will
illustrate how this can be done for n = 6. Consider the structure SIX⊑ =⟨{t, f ,v1,v2,v3,v4},≤⟩ in which the order ⊑ partially orders the carrier SIX
according to the following Hasse diagram.

t

v1,v2,v3,v4

f

Hence t is the largest⊑ element of SIX, f is its smallest⊑ element and the vi’s are
incomparable with one another. Let L be a language which has ∧ and ∨ as log-
ical symbols for conjunction and disjunction and whose non-logical symbolism
consists of the set of propositional atoms P and of the set Σ = {σv1

, σv2
, σv3

, σv4
}

of non-propositional atoms. Sen(L) is the smallest set containing P and Σ and
such that if α,β ∈ Sen(L) then (α ∧ β), (α ∨ β) ∈ Sen(L).

An atomic L valuation VA for L is a function VA ∶ P ∪Σ →SIX which satisfies
VA(σvi

) = vi for all σvi
∈ Σ and VA(p) ∈ {t, f} for all p ∈ P . A valuation func-

tion V for L is a function V ∶ Sen(L) → SIX extending an atomic L valuation
function VA in a SIX⊑ compositional way, i.e V is such that:

- V (α) = VA(α) for all α ∈ P ∪Σ and some VA.

- V (α ∨ β) = sup⊑({V (α), V (β)})
- V (α ∧ β) = inf ⊑({V (α), V (β)})

Assume that we have available an oracle whose answer to σ ∈ Sen(L) is equal
to V (σ), for some L valuation function V , and consider the query structure
1-out-of-6 = ⟨B,{p1, p2, p3, p4, p5, p6}⟩, where B formalizes that the agent knows
that exactly one of the six pi is true (t) and that all other pi are false (f). Now
ask the following question to the oracle.

ϑ ∶= (σv1
∧ p1) ∨ (σv2

∧ p2) ∨ (σv3
∧ p3) ∨ (σv4

∧ p4) ∨ p5

As is easily observed by an inspection of the Hasse diagram, taking the back-
ground knowledge B into consideration, we have that:

- V (pi) = t⇔ V (ϑ) = vi for i ∈ {1,2,3,4}
- V (p5) = t ⇔ V (ϑ) = t

- V (p6) = t ⇔ V (ϑ) = f
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Hence, using the same assumptions as those underlying the notion of magical
query complexity, we can solve 1-out-of-6 in 1 question. In fact, by an obvious
extension of the argument just given we can solve, for arbitrary n, the query
structure 1-out-of-n in a single question. This shows that the (rationale of) the
notion of magical complexity is not natural.

Response to objection 1. The algebraic argument given above is certainly
correct. However, the mathematical possibility of coming up with such an L

and V is no argument against the notion of magical query complexity. Asser-
toric semantics, used to define Vas which solves 1-out-of-4 in 1 question is, so I
claim, a natural semantics, arising out of the rules that govern our practices of
asserting and denying sentences. The fact that one can generalize the algebraic
structure of this semantics and come up with a notion of query complexity ac-
cording to which 1-out-of-6 can be solved in a single question does not show
that we can solve 1-out-of-6 in a single question. I realize that this defense
against objection 1 commits me to the assertion that we can solve 1-out-of-4 in
1 question, which confronts me directly with objection 2.

Argument for objection 2. The unit of computation is the bit and accordingly,
the smallest question you can ask to an oracle, thought of as a computational
entity, is a 1 bit question on which the oracle answers with either 1 or 0. A
computational model of the query structure 1-out-of-4 roughly has the following
form. Coding the background knowledge of the agent A as states of bits we get
that A knows, of an unknown bits state (x, y), that it is either (0,0), (0,1), (1,0)
or (1,1). The oracle has a register containing the actual value of (x, y). A query
to the oracle is a 1 bit question about this register. For instance, A can ask
x = 1 ∧ ¬y = 0 on which the oracle answers with 1 if and only if (x, y) = (1,1)
and with 0 otherwise. Clearly, on the (classical) notion of query complexity
associated with this computational model it is not possible to solve 1-out-of-4
in a single question. Hence, the notion of magical query complexity, according
to which it is possible, is not a natural notion.

Response to objection 2. The thought that the unit of computation is the bit
is outdated. In quantum computation, the unit of computation is not the bit but
rather the qubit. Researchers in the area of quantum computation have defined
the notion of quantum query complexity13 which, according to them, is the most
natural notion of query complexity in the quantum computational framework.
The query structure 1-out-of-4 can also be modeled in the quantum computa-
tional framework. Interestingly, 1-out-of-4 can be solved in a single quantum
query. The algorithm which realizes this speed up over classical computation is
known as Grover’s search algorithm ([22]). An accessible introduction to quan-
tum computation, containing a nice description of Grover’s search algorithm, is
the textbook ([39]). And so, as there is a natural notion of query complexity
according to which 1-out-of-4 can be solved in a single question, objection 2
is not a legitimate objection. Now the question arises how and in what sense
assertoric semantics is related to quantum computation. Currently, the author
is exploring this interesting question. However, addressing this question in any
detail is far beyond the scope of this paper.

We addressed two possible objections against our presentation of the notion
of magical query complexity as a certain measure of computational complexity.

13For an overview of various notions of quantum computational complexity, amongst which
quantum query complexity, see ([12]).
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An interesting question is how the notion of magical query complexity is re-
lated to other measures of computational complexity such as time or (memory)
space. We showed that the availability of self-referential resources decreased the
query complexity of certain computational problems. However, the decrease
of the complexity on the query complexity scale may be counterbalanced by
an increase of the complexity according to other complexity measures14. For
instance, although the availability of self-referential resources ensures that we
need less queries to solve certain query problems, it may very well be that the
oracle (computer) needs more time and / or memory space to answer our (self-
referential) queries. A related point is that the agent needs to translate the
answers of the oracle to his queries into information about the query problem
under consideration: it may very well be that translating the answers to self-
referenial queries consumes more time and / or memory space than translating
the answers to classical queries. I hope to explore such issues, concerning the re-
lation between self-referential resources and distinct measures of computational
complexity, in future work.

4.5.2 CPSRT and deflationism: friends or foes?

Claiming that (self-referential) truth has computational power seems diamet-
rically opposed to the nowadays predominant deflationary accounts of truth,
according to which truth is an insubstantial and light notion. I do think that
this paper’s results can be conjoined with philosophical argumentation to point
out that an important deflationary account of truth, the minimalist conception
of truth as defended by Horwich, is wrong. The central claim of Horwich’s
position is illustrated by the following quote.

The entire conceptual and theoretical role of truth may be explained
on the basis of all uncontroversial instances of the equivalence schema:
(E) It is true that p if and only if p.

(Horwich, [28, p5])

By uncontroversial instances of the equivalence schema Horwich explicitly ex-
cludes the leading actors of this paper: Liars and Truthtellers. If one is willing
to admit that truth has computational power, it seems that truth plays a role
which cannot be accounted for on the basis of all uncontroversial instances of
the equivalence schema (E), but rather, that we have to appeal to the infer-
ence rules of our truth predicate. The CPSRT thus seems incompatible with a
prominent deflationary account of truth: Horwich’s minimalism.

However, this is not to say that the CPSRT is incompatible with all defla-
tionary accounts of truth. The results of this paper derive from the inferen-
tial properties of the notion of truth—cast in the assertoric rules for the truth
predicate— and an interesting question is how this paper’s results are to be
interpreted in light of Horsten’s inferential deflationism ([27]), a position that
thinks of truth as essentially an inferential notion. Inferential deflationsim ac-
knowledges that the notion of truth is non-conservative over mathematics and
also that truth ‘plays a more substantial role in certain philosophical debates
than at first sight might be expected’15. Thus, this position acknowledges the

14I owe this point to an anonymous referee.
15As is illustrated in ([27]) via a formulation of Fitch’s argument in first order (modal) logic.
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mathematical and philosophical power of truth. Still the position is qualified as
a deflationary account of truth.

Thus there is a deep and important sense in which truth is a light
notion. This sense is captured by the thesis that truth is a property
that cannot be described in terms of unrestricted general laws; there
are only restricted laws of truth.

(Horsten, [27, p578])

If inferential deflationism is correct, we have a deflationary account of truth
which acknowledges that truth has mathematical and philosophical power. As
this paper pointed out, truth has also computational power, a phenomenon that,
in the author’s opinion, has to be accounted for by any account of truth. Infer-
ential deflationism seems an apt way to do so.

4.5.3 The Useless Liar Conviction is false

I hope that the sketch of the framework of assertoric semantics in Section 2
suffices to convince the reader that assertoric semantics is an interesting and
promising approach to (self-referential) truth. Assertoric semantics, with its
insistence on inference, differs both conceptually and technically from the Krip-
kean fixed point semantics which is the predominant way of giving a semantics
for a language of self-referential truth in the literature. In particular, I consider
Assertoric semantics to be an interesting alternative to Kripke’s fixed point se-
mantics.

However, independently of the status of assertoric semantics as an account
of truth, I take it that the derivation of the CPSRT result in section 4.4, and the
discussion of this result in subsections 4.5.1 and 4.5.2, suffices to show that the
CPSRT is something which has to be accounted for by any theory of truth. In
particular, I take it that the CPSRT rules out certain deflationary accounts of
truth. To fit in with the introduction of this paper, I think that the results ob-
tained in this paper discredit the widely shared Useless Liar Conviction. Here is
a quote from Grover—the philosopher, not the discoverer of the quantum search
algorithm—illustrating a typical ULC attitude:

[. . . ] I give my reasons for holding the liar is not a sentence that is
used in a communicatively significant way. This means that though
the liar is syntactically well-formed, and its individual words have
dictionary meaning, the liar does not have “operative meaning”. It
is a sentence with limited philosophical interest. I recommend that
our reaction to the liar should be similar to our reaction to 6/0.
(Grover, [21, p178], my italics)

I hope to have convinced you that the Liar is a sentence that can be used in
a communicatively significant way and that therefore the Liar has “operative
meaning” and is of great philosophical interest. I recommend that our reaction
to the Liar should be similar to our reaction to

√
−1: let us try to come up with

a non-classical space in which we can make sense of the cognitive operations that
are involved in our reflections on the Liar. If we succeed, it may be possible to
assert that Grover is wrong because Grover is right.
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Appendix

In order to prove Proposition 4.1 we first define the notion of the degree of an
assertoric sentence.

Definition 4.13 The degree of Xσ.
The degree d(Xσ) of an assertoric sentence Xσ is equal to d(σ), where d(σ) is
defined as follows.

1. σ ∈ P or σ has form T (c) with c ∈ C ⇒ d(σ) = 0

2. σ has form (α ∨ β) or (α ∧ β) ⇒ d(σ) = d(α) + d(β) + 1

3. σ has form ¬α ⇒ d(σ) = d(α) + 1

4. σ has form T ([α]) ⇒ d(σ) = d(α) + 1 ◻

Proposition 1 T
σ
X is a finite set whose elements are finite sets.

Proof: The claim follows from the observation that for all assertoric rules other
than those for the truth predicate , an application of a rule only gives rise to
sentences of lower degree. The application of the assertoric rule for the truth
predicate to an assertoric sentence XT (c), with c ∈ C, may lead to a sentence
of greater degree or to a sentence of the same degree. However, due to the
finiteness of C an increase in degree can only occur a finite number of times and
hence, each assertoric tree is finite. ◻
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Chapter 5

From Closure Games to
Generalized Strong Kleene
Theories of Truth

5.1 Abstract

In this paper, we study the method of closure games, which is a game theoretic
valuation method for languages of self-referential truth, developed by the au-
thor. We prove two theorems which jointly establish that the method of closure
games characterizes all 3- and 4-valued Strong Kleene theories of truth (SK
theories) in a uniform manner. Another theorem states conditions under which
SK theories can be combined into Generalized Strong Kleene theories of truth
(GSK theories). In contrast to a SK theory, a GSK theory recognizes more
than one sense of strong assertibility—where a sentence is strongly assertible
just in case it is assertible and its negation is not. Exploiting the relations be-
tween SK theories laid bare by the method of closure games, we then show how
to define 5-, 6-, 7-, 8- and 10-valued GSK theories.

5.2 Introduction

5.2.1 The method of closure games

By a theory of truth T, we mean. . .

. . . a theory that purports to explain for a first-order language LT

what sentences are assertible in a [ground] model M .
(Gupta [23, p19])

The method of fixed point constructions, as developed by Kripke [33] and the
method of revision sequences as develped by Gupta & Belnap [24], we call frame-
works for truth. Relative to the specification of certain (framework dependent)
conditions, a framework for truth defines a theory of truth. The method of
fixed point constructions defines a theory of truth upon the specification of a
monotonic valuation schema and a set of sentences which is sound with respect
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to that schema, whereas the method of revision sequences defines a theory of
truth upon the specification of a rule of revision. The Method of Closure Games
(MCG) is another framework for truth, which defines theories of truth by play-
ing (closure) games. The framework dependent conditions of MCG are so called
closure conditions, which intuitively can be thought of as representing assertoric
norms. Below, this central notion is explained in more detail.

Closure games are governed by the assertoric rules of LT , examples of which
are given below.

T
AT (σ)

Aσ

DT (σ)

Dσ

∧
A(α∧β)

Aα,Aβ

D(α∧β)

Dα ∣Dβ

¬
A¬σ

Dσ

D¬σ

Aσ

Here, Aσ and Dσ stand for (a commitment to) an Assertion and Denial of
σ. As a framework for theories of truth, MCG is not committed to a particu-
lar interpretation of the assertoric rules. However, in this paper we will only
be concerned with MCG’s definition of various (three and four valued) Strong
Kleene theories of truth (SK theories). Under a Strong Kleene interpretation,
the rules for assertion and the rules for denial both receive an “iff reading”. For
instance1:

α ∧ β is assertible iff α is assertible and β is assertible. (5.1)

α ∧ β is deniable iff α is deniable or β is deniable. (5.2)

The assertoric rules resemble the rules of a signed tableau calculus for first order
logic, as studied in Smullyan [50], with rules for the truth predicate added to it.
Importantly however, the assertoric rules are not used as a proof system, but
rather as a semantic valuation method.

In a closure game for Aσ (Dσ), player ⊔, who controls all signed sentences of
disjunctive type (e.g., Dα∧β) tries to argue that σ is assertible (deniable), while
player ⊓, who controls all sentences of conjunctive type (e.g. Aα∧β) tries to prove
player ⊔ to be wrong. Whether or not ⊔ is successful depends, amongst others,
on the assertoric norm under consideration. An assertoric norm is formally
represented as a closure condition, which is a bipartition of the set of possible
expansions that the players may induce by picking their strategies, as explained
below.

A strategy of a player is a mapping of each AD sentence Xσ—where X ∈{A,D}—that is in his control to exactly one of the immediate successors of Xσ,
as specified by the assertoric rule applicable to Xσ. A few examples suffice to
illustrate the notion of a strategy. The immediate successors of Aα∧β are Aα

and Aβ and, as Aα∧β is of conjunctive type, a strategy of player ⊓ maps Aα∧β to
either Aα or Aβ . As AT (σ) has only one immediate successor, Aσ, every strategy
of player ⊓ must map AT (σ) to Aσ. A strategy for player ⊔, who controls Dα∧β ,
maps Dα∧β to either Dα or Dβ .

With f a strategy for player ⊔, g a strategy for player ⊓ and with Xσ an
arbitrary AD sentence, the tuple (Xσ, f, g) defines an expansion of Xσ, denoted

1Where ‘σ is assertible’ is shorthand for ‘it is possible to live up to the commitments
involved with an assertion of σ’. Whether or not it is possible to do so depends on (the logical
form of σ and on) the assertoric norms under consideration, which are formally modeled as
closure conditions, as explained below. Similarly for the phrase ‘σ is deniable’.
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exp(Xσ, f, g). In general, an expansion of Xσ is an infinite2 sequence of AD
sentences whose first element is Xσ and whose successor relation respects the
assertoric rules. As an example, here is the expansion of A¬T (λ), i.e., of an
assertion of the Liar3.

A¬T (λ),DT (λ),D¬T (λ),AT (λ),A¬T (λ) . . . (5.3)

Indeed, A¬T (λ) has only one expansion and so, in the closure game for A¬T (λ),
none of the players can influence the expansion ofA¬T (λ) that is realized. In gen-
eral, an AD sentence Xσ may have (infinitely) many expansions, each of which
is realized by some strategy pair (f, g) of our players. For instance, AP (c1)∧P (c2),
where P (c1) and P (c2) are atomic sentences of L, has two expansions and, in
the closure game for AP (c1)∧P (c2), player ⊓ can determine which one is realized.
By setting g(AP (c1)∧P (c2)) = AP (c1), player ⊓ ensures that expansion (5.4) is
realized, while g(AP (c1)∧P (c2)) = AP (c2) realizes expansion (5.5).

AP (c1)∧P (c2),AP (c1),AP (c1),AP (c1), . . . (5.4)

AP (c1)∧P (c2),AP (c2),AP (c2),AP (c2), . . . (5.5)

Indeed, to get a uniform definition of the notion of an expansion, we assume
that whenever we “hit” a signed atomic sentence of L, the expansion continues
by repeating that AD sentence indefinitely.

A closure condition †(M) = {O†
M ,C

†
M} is a biparition of the set of all expan-

sions into the sets O†
M and C†

M , consisting of all open and all closed expansions
in M respectively. In a closure game for Xσ played relative to †(M), player
⊔ tries to pick his strategy f in such a way that the expansion of Xσ that is
realized will be contained in O

†
M . We will write O†

M(Xσ), and say that Xσ is
open relative to †(M), to indicate that player ⊔ has a strategy which ensures

that the expansion of Xσ ends up in O†
M

. That is:

O
†
M(Xσ)⇔∃f∀g ∶ exp(Xσ, f, g) ∈ O†

M (5.6)

Xσ is closed relative to †(M), denoted C†
M(Xσ), just in case not O†

M(Xσ). As
specified by (5.6), a closure condition for expansions induces a closure condition
for AD sentences. The closure condition for AD sentences is used to induce a
valuation for LT , denoted V†

M :

V†
M(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a ∶= (1,0), O
†
M(Aσ) and C†

M(Dσ);
b ∶= (1,1), O

†
M(Aσ) and O†

M(Dσ);
n ∶= (0,0), C

†
M(Aσ) and C†

M(Dσ);
d ∶= (0,1), C

†
M(Aσ) and O†

M(Dσ).
(5.7)

In general V†
M may, but need not, have a range of four values. The values a, b,

n and d are, intuitively, interpreted as “only assertible”, “both assertible and
deniable”, “neither assertible nor deniable” and “only deniable” respectively. In
a little more detail, V†

M(σ) = a indicates that it is allowed to assert, but not to
deny, sentence σ in ground model M according to the norms for assertion and

2Below, we explain how an expansion continues when it “hits” a signed atomic sentence of
L.

3As before, λ denotes ¬T (λ).
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denial that are specified by †.
So, besides our semantic— in contrast to a proof theoretic—use of the as-

sertoric rules, another distinguishing feature with respect to the typical use of
“signed tableau” rules is that the notion of an expansion, and not that of a
branch, is at the heart of the MCG. As we will see in Section 5.4, where we state
our two stable judgement theorems, it is the notion of an expansion which gives
the MCG the means to characterize all 3- and 4-valued SK theories in a uniform
manner. In Section 5.5, we investigate a variant of the MCG which is formulated
in terms of branches. As we will see, this variant allows us to capture Kripke’s
4-valued “modal theory of truth” K4, which he defined in [33] by quantifying
over all 3-valued SK theories4.

5.2.2 (Generalized) Strong Kleene theories of truth

In this paper, we introduce the notion of a Generalized Strong Kleene theory
of truth, or GSK theory, which generalizes the algebraic characterization of
a SK theory in such a way that it becomes applicable to theories of truth
which recognize more than four semantic values. In contrast to a SK theory, a
GSK theory may recognize more than one sense of strong assertibility—where
a sentence is strongly assertible just in case it is assertible and its negation
is not. As an example of a GSK theory, let us consider the theory V

8+, an
eight valued GSK theory that will be defined later on in this paper. The
eight semantic values of V

8+ are given by the set {ag,ai,ae,be,ne,de,di,dg}.
Six of the semantic values come in pairs: (ag,dg), (ai,di) and (ae,de). We
call these three pairs strong assertoric pairs, the reason being that according
to V

8+, negation interchanges the elements within such a pair. For instance:
V

8+
M (¬σ) = ae ⇔ V

8+
M (σ) = de. The crucial distinction between a SK theory

and a GSK theory, is as follows: according to a GSK theory, there may be more
than one strong assertoric pair. In fact, this is the only distinction between SK
and GSK theories, as we may illustrate via the lattice of V

8+:

ai

di

ae

de

ne be

ag

dg

Figure 5.1: Hasse diagram of 8+≤, the lattice of V
8+.

Besides interchanging the members of the three strong assertoric pairs, nega-
tion acts as the identity on be and ne. Further, conjunction and disjunction act
as meet and join in the lattice 8+≤, and universal and existential quantification
act as generalized conjunction and disjunction. The interpretation of the eight
semantic values of V

8+ is as follows:

4For instance, K4 valuates the Liar as n, as there is no 3-valued SK theory in which it is
valuated as a and also, there is no 3-valued SK theory in which it is valuated as d.
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ag : grounded, only assertible.
ai : ungrounded, intrinsic, only assertible.
ae : ungrounded, extrinsic, only assertible.
be : ungrounded, extrinsic, both assertible and deniable.
ne : ungrounded, extrinsic, neither assertible nor deniable.
de : ungrounded, extrinsic, only deniable.
di : ungrounded, intrinsic, only deniable.
dg : grounded, only deniable.

The grounded/ungrounded distinction derives from Kripke’s Strong Kleene min-
imal fixed point theory, which I will denote by K, while the intrinsic/extrinsic
distinction derives from Kripke’s Strong Kleene maximal intrinsic fixed point
theory, denoted by K+. Although K and K+ are familiar theories, we feel that
their definition via the MCG (given in Section 3 and 4 respectively) sheds some
illuminating new light on these theories. The assertoric distinctions (a,b,n,d)
derive from a novel 4-valued SK theory that will be defined, in Section 5.5, using
the MCG. V

8+, and all other GSK theories that will be defined in this paper,
are obtained as a combination of certain SK theories. The conditions under
which a combination of 3- and 4-valued SK theories can be turned into a GSK
theory are formulated by the assertoric transfer theorem (Section 5.3, Theorem
5.1). A more detailed account of the interpretation of V

8+ is postponed to the
last section.

5.2.3 Structure of the paper

The structure of this paper is as follows. Section 5.3 gives some general prelimi-
naries, defines the notion of a GSK theory precisely and contains the assertoric
transfer theorem (Theorem 5.1). Section 5.4 presents the MCG in more detail
and there we prove the first and second stable judgement theorem (Theorem
5.2 and 5.3 respectively). In Section 5.5 we show how to define Kripke’s “modal
theory of truth” K4 via a variant of the MCG that trades in the notion of an
expansion for that of a branch. Further, we use our representation of K4 to
define closure conditions which induce Kripke’s maximal intrinsic fixed point,
K+, via the MCG. Section 5.6 is devoted to the definition of various 5-, 6-, 7-,
8- and 10-valued GSK theories. Section 5.7 concludes. The paper contains two
appendices. Appendix I contains a proof of a proposition appearing in Section
5.4, and Appendix II discusses Yablo’s paradox (cf. Yablo [69]) in terms of the
MCG.

5.3 Theories of truth and ground models

LT will denote a first order language without function symbols, with identity
(≈), a truth predicate (T ) and with a quotational name ([σ]) for each sentence
σ of LT . L will denote the language that is exactly like LT , except for the fact
that it does not contain the truth predicate T . A ground model M = (D,I)
is an interpretation of L such that Sen(LT ) ⊆ D and such that I([σ]) = σ

for all σ ∈ Sen(LT ). A sentence may be denoted in various ways; σ will be
used to denote any closed term, quotational name or not, which denotes σ
in M . We will make the simplifying assumption that, given a ground model

125



M = (D,I), there is, for each of the members of its domain, a constant symbol
in the language which refers to that element. This assumption has the advantage
that quantification can be treated substitutionally, so that we do not need to
be bothered with variable assignments. With respect to Sen(LT ) ⊆ D this
assumption is unnecessary, as every sentence contains, by definition, at least one
name: its quotational name. As LT is assumed not to contain function symbols,
all the closed terms of LT are given by its set of constant symbols, which will
be denoted by Con(LT ). Observe that [∀xT (x)] ≈ [∀xT (x)] is guaranteed
to be a sentence of LT . Given a ground model M , CM ∶ Sen(L) → {a,d}
denotes the classical valuation of L based on M and is defined as usual5. Note
that CM([∀xT (x)] ≈ [∀xT (x)]) = a and CM([∀xT (x)] ≈ [∃xT (x)]) = d for
any ground model M . A theory of truth T takes a ground model M as input
and outputs a semantic valuation TM of the sentences of LT . That is, T
outputs a function TM ∶ Sen(LT ) → V, where V contains the semantic values
recognized6 by T. With T a theory of truth, ⊺T = TM([∀xT (x)] ≈ [∀xT (x)])
and �T = TM([∀xT (x)] ≈ [∃xT (x)]) are called the classical top value and
classical bottom value of T respectively. Not any semantic valuation of the
sentences of LT qualifies as the valuation of a theory of truth. In this paper,
we assume that in order for T to qualify as a theory of truth, TM should
respect the world and the identity of truth, as defined below. Besides these two
familiar conditions we impose one further, arbitrary but technically convenient,
condition: every truth ascription to an object which is not a sentence is to be
valuated as �T by a theory of truth T.

Definition 5.1 Theory of truth
Let T be a valuation method which, given a ground model M = (D,I), outputs
a valuation function TM ∶ Sen(LT ) → V. We say that T is a theory of truth
just in case, for every ground model M , we have that:

∀σ ∈ Sen(L) ∶ CM(σ) = a ⇔ TM(σ) = ⊺T, CM(σ) = d ⇔TM (σ) = �T (5.8)

∀σ ∈ Sen(LT ) ∶TM (T (σ)) = TM(σ) (5.9)

TM(T (c)) = �T whenever I(c) /∈ Sen(LT ) (5.10)

That is, TM should (5.8) respect the world and (5.9) the identity of truth, while
(5.10) all truth ascriptions to non sentences are valuated as �T. ◻

We will be particulary interested in theories of truth which output Strong
Kleene valuations.

Definition 5.2 Strong Kleene valuations
Let VM ∶ Sen(LT ) → V be a valuation of LT in M such that V has cardinality
2, 3 or 4. We say that VM is a Strong Kleene valuation just in case VM can be
described via a lattice V≤ = (V,≤) such that:

- Negation maps the top element of V≤ to its bottom and vice versa, while it
acts as the identity on all elements of V≤ that are neither top nor bottom.

5Modulo our symbolism which reflects that we interpret the semantic values (directly) in
assertoric terms.

6The range of TM may depend on M , i.e., for some M , the range of TM may be a strict
subset of V.
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- Conjunction and disjunction act as meet and join in V≤.

- Universal and existential quantification behave as generalized conjunction
and disjunction respectively. ◻

Observe that the notion of a Strong Kleene valuation does not mention the
semantic behavior of the truth predicate, nor the relation with the valuation
of L as induced by the ground model M . It will turn out to be convenient
to separate the notion of a Strong Kleene valuation from the notion of fixed
point valuation, by which we mean a Strong Kleene valuation which respects
the defining clauses of a theory of truth.

Definition 5.3 Fixed point valuations and FPM

Let VM ∶ Sen(LT ) → V be Strong Kleene valuation of LT in M . We say that
VM is a fixed point valuation over M just in case VM satisfies clauses (5.8), (5.9)
and (5.10) of Definition 5.1. We will use FPM to denote the set of all 2 and 3
(but not 4!) valued fixed point valuations over M . ◻

A Strong Kleene theory of truth (SK theory) is a theory of truth which
assigns a fixed point valuation to each ground model M .

Definition 5.4 SK theory of truth
Let T be a theory of truth. We say that T is an SK theory just in case, for
every ground model M , TM is a fixed point valuation. A SK theory which
recognizes 3 (4) semantic values is called a SK3 theory (SK4 theory). ◻

Note that there are no SK theories which recognize only two semantic values,
as is testified by a ground model which contains a Liar. On the other hand, some
ground models M allow for a two valued fixed point valuation of LT . Also, note
that the definition of a SK theory is quite liberal. A “genuine” SK theory T
must, arguably, consist of a systematic way in which an arbitrary ground model
M is converted into a fixed point valuation TM , and the notion of a “systematic
conversion” does not appear in our definition. However, the definition as given
is just fine for our purposes.

Two interesting SK3 theories are Kripke’s Strong Kleene minimal fixed point
theoryK, and his Strong Kleene maximal intrinsic fixed point theoryK+. In order
to define those theories, we define the following partial order on FPM . With
VM , V ′

M ∈ FPM , we let:

VM < V ′
M ⇔∀σ ∈ Sen(LT ) ∶ VM(σ) = a ⇒ V ′

M(σ) = a

When VM < V ′
M we say that V ′

M respects VM . The following definitions are all
taken from Fitting [16]. We say that VM is maximal just in case for no V ′

M we
have that VM < V ′

M , minimal just in case for no V ′
M we have that V ′

M < VM .
We say that VM and V ′

M are compatible just in case there exists a fixed point
V ∗

M which extends them both: VM < V ∗
M and V ′

M < V ∗
M . A fixed point VM is

called intrinsic just in case it is compatible with every other fixed point. For
any ground model M , we let IM be the set of all intrinsic fixed points over M .
As Kripke [33] shows, IM has a maximum element and FPM has a minimal
element with respect to the relation <. Using the notions just defined, the
“official” (Kripkean) definition of K and K+ can be given.
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Definition 5.5 Kripke’s definition of K and K+

Let M be a ground model. According to the theory K+, the valuation of LT

in M is given by K+
M ∶ Sen(LT ) → {a,n,d} , where K+

M is the maximum of
IM . According to the theory K, the valuation of LT in M is given by KM ∶
Sen(LT )→ {a,n,d}, where KM is the minimum of FPM . ◻

In order to define the notion of a Generalized Strong Kleene theory of truth
precisely, we introduce the notion of a GSK lattice as follows. We stipulate that
the lattices associated with 3 and 4 valued fixed points are, up to isomorphism,
the only GSK lattices of cardinality 3, respectively 4 and also, that there do
not exist GSK lattices of cardinality 1 or 2. We call the 3 and 4 valued GSK

lattices the GSK base lattices. When S≤ = (S,≤) is a GSK lattice, the lattice
S′≤ = (S′,≤′), where S′ = S ∪ {ax,dx} and where ≤′ is the extension of ≤ to
S which turns ax and dx into the top and bottom element of S′, is also a
GSK lattice: we say that S′≤ is the direct GSK superlattice of S≤. The set of
all GSK lattices is the smallest set of lattices which contains the GSK base
lattices and which is closed under the formation of direct GSK superlattices.
As an immediate consequence of the definition of a GSK lattice, it follows that
for each n ≥ 3 there is, up to isomorphism, only one GSK lattice of cardinality
n. Moreover, each GSK lattice of odd cardinality has a linear order, whereas
each GSK lattice of even cardinality has a genuine partial order. By deleting
the top and bottom element of a GSK lattice S≤ that is not a base lattice, we
obtain another GSK lattice, the direct GSK sublattice of S≤. We say that S′≤
is a GSK sublattice of S≤ just in case S′≤ = S≤ or S′≤ can be obtained from S≤
via a path of direct GSK sublattices. We are now ready to define the notion of
a GSK theory.

Definition 5.6 GSK theory of truth
Let T be a theory of truth. We say that T is a GSK theory just in case in each
ground model M , the semantic valuation TM ∶ Sen(LT )→ V of T is described
via a GSK lattice V≤ = (V,≤V) such that, according to TM :

− Conjunction and disjunction behave as meet and join on V≤.
− Universal and existential quantification behave as generalized conjunction and
disjunction respectively.
− Negation interchanges the top element with the bottom element of each tran-
sitive sublattice of V≤ and, also, it acts as the identity on the elements of V
that are neither the top nor bottom element in any GSK sublattice of V≤.

When T is a GSK theory which recognizes n distinct semantic values, we say
that T is a GSKn theory. ◻

Indeed, any SK theory is a GSK theory. Before we state the assertoric
transfer theorem, which will give us a recipe for defining GSK theories, we first
define the notion of oneGSK theory respecting another in the expected manner.

Definition 5.7 T′ respects T.
Let T and T′ be two GSK theories, having ⊺ and ⊺′ as their respective top
values. We say that T′ respects T just in case, for every ground model M and
σ ∈ Sen(LT ), it holds that:

TM(σ) = ⊺⇒ T′
M(σ) = ⊺′
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When T′ respects T we write T < T′. ◻

Theorem 5.1 Assertoric transfer theorem
Let T3 be a SK3 theory and let ◇ denote the semantic value that is neither top
nor bottom in the lattice of T3. Let Tn be a GSKn theory over a lattice Vn

≤

whose top and bottom element are denoted by ⊺ and � respectively. For each
ground model M , define Tn+2

M as follows:

Tn+2
M (σ) = { x∗, Tn

M(σ) = x and T3
M(σ) /= ◇

x, Tn
M(σ) = x and T3

M(σ) = ◇ (5.11)

If T3
< Tn, then Tn+2 is a GSKn+2 theory over the lattice Vn+2

≤ , which is
obtained as the extension of the lattice Vn

≤ by adding ⊺∗ and �∗ as (new) top
and bottom element respectively.
Proof: From the fact that both Tn and T3 are GSK theories, that Tn respects
T3 and the definition of Tn+2. ◻

5.4 The Method of Closure Games

By an AD sentence, we mean a signed, with A(ssertible) or D(eniable), sentence
of LT . X denotes the set of all AD sentences.

X = {Xσ ∣X ∈ {A,D}, σ ∈ Sen(LT )}
With At(L), we denote the set of atomic sentences of L. These sentences are
assumed to receive their (classical) valuation from the ground model M and
can be thought of as the “non-semantic facts”. We will treat (atomic) truth
ascriptions to non-sentential objects on a par with members of At(L). Hence,
it is convenient to define, with M = (D,I), the set At∗M(L) as follows:

At∗M(L) = At(L)∪ {T (c) ∣ I(c) /∈ Sen(LT )}
We assume, in line with Definition 5.1, that (atomic) sentences which ascribe
truth to non-sentential objects, always have to be denied. This assumption leads
to the following definition of the world wM associated with ground model M :

wM = {Aσ ∣ CM(σ) = a, σ ∈ At(L)} ∪ {Dσ ∣ CM(σ) = d, σ ∈ At(L)}∪{DT (c) ∣ I(c) /∈ Sen(LT )}
An AD sentence Xσ is either of conjunctive type ⊓ or of disjunctive type ⊔ and
has a set of immediate AD subsentences, Π(Xσ). We depict the information
just mentioned in the form of an assertoric rule:

Xσ

Π(Xσ) ⊔
Xσ

Π(Xσ)⊓
The assertoric rules7 are stated in the table below. As testified by, amongst
others, the rules for the truth predicate T , the assertoric rules depend on the

7In the rules for T , σ ∈ Con(LT ) is a quotational or non quotational constant which denotes
σ in M . In the rules for the quantifiers, φ(x/t) denotes the result of the uniform replacement
of variable x by constant t in φ(x). For (signed) negations, truth ascriptions and atomic
sentences of L, it does not matter which type, ⊔ or ⊓, they are given. The actual allotment
of types to those sentences as displayed below was chosen for sake of symmetry only.
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details of sentential reference and are, accordingly, defined relative to a ground
model M .

¬
A¬α{Dα}⊓

D¬α{Aα}⊔
∨

A(α∨β)

{Aα,Aβ}⊔
D(α∨β)

{Dα,Dβ}⊓
∧

A(α∧β)

{Aα,Aβ}⊓
D(α∧β)

{Dα,Dβ}⊔
∃

A∃xφ(x)

{Aφ(x/t) ∣ t ∈ Con(LT )}⊔
D∃xφ(x)

{Dφ(x/t) ∣ t ∈ Con(LT )}⊓
∀

A∀xφ(x)

{Aφ(x/t) ∣ t ∈ Con(LT )}⊓
D∀xφ(x)

{Dφ(x/t) ∣ t ∈ Con(LT )}⊔
T

AT (σ)

{Aσ} ⊓
DT (σ)

{Dσ} ⊔
σ ∈ At∗M(L) Aσ{Aσ}⊓

Dσ{Dσ}⊔

Figure 5.2: The assertoric rules of LT

The notions of a strategy, an expansion, a closure condition and a valuation
induced by a closure condition were discussed in the introduction. The definition
below summarizes this discussion.

Definition 5.8 Strategies, expansions, closure conditions, valuations
1. A strategy for player ⊔ is a function f which maps each Xσ of type ⊔ to one
element of Π(Xσ). The set of all strategies of player ⊔ is denoted by F .
2. A strategy for player ⊓ is a function g which maps each Xσ of type ⊓ to one
element of Π(Xσ). The set of all strategies of player ⊓ is denoted by G.
3. With f ∈ F , g ∈ G and Xσ ∈ X , exp(Xσ, f, g) denotes the expansion of Xσ by
f and g. The set of all expansions in M is8 denoted by EXPM .
4. A closure condition †(M) = {O†

M ,C
†
M} is a bipartition of EXPM into the sets

O
†
M
/= ∅, consisting of the open† expansions in M , and C†

M
/= ∅, containing the

closed† expansions9 in M .

5. A closure condition †(M) = {O†
M ,C

†
M} gives rise to closure conditions for

AD sentences:

O
†
M(Xσ)⇔∃f ∈ F∀g ∈ G ∶ exp(Xσ, f, g) ∈ O†

M

C
†
M(Xσ)⇔ not O†

M(Xσ)
6. The closure conditions for AD sentences are used to induce V†

M :

V
†
M(σ) = a ⇔ O

†
M(Aσ) & C

†
M(Dσ) V

†
M(σ) = b⇔ O

†
M(Aσ) & O

†
M(Dσ)

V
†
M
(σ) = d⇔ C

†
M
(Aσ) & O

†
M
(Dσ) V

†
M
(σ) = n⇔ C

†
M
(Aσ) & C

†
M
(Dσ) ◻

8The assertoric rules for truth testify that the set of all expansions depends on the ground
model under consideration.

9The condition that C
†
M

and O
†
M

are non empty rules ensures that we do not have to

consider the possibility that V†
M

valuates all LT sentences as n (O†
M
= ∅) or as b (C†

M
= ∅),

ensuring that V†
M

is at least 2 valued. This feature will be convenient for the formulation of
theorems that follow.
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Here are some notational conventions.

Definition 5.9 Some notational conventions
In this paper, the non-quotational constants λ, τ , η, θ and µ will be used as
follows, where I is some interpretation function.

1. I(λ) = ¬T (λ). We say that ¬T (λ) is a Liar.

2. I(τ) = T (τ). We say that T (τ) is a Truthteller.

3. I(η) = T (η)∨ ¬T (η). We say that T (η)∨ ¬T (η) is a Tautologyteller.

4. I(θ) = T (θ)∧ ¬T (θ). We say that T (θ)∧ ¬T (θ) is a Contradictionteller.

5. I(µ) = T (c0) where, for each n, I(cn) = ¬T (cn+1). We say that T (µ) is
an Unstabilityteller.

To be sure, the notational convention does not imply that every ground model
contains one of the five sentences just defined. However, if we use a sentence
which is build with the constant λ, τ , η, θ or µ, we always presuppose a ground
model in which a Liar, Truthteller, Tautologyteller, Contradictionteller or Un-
stabilityteller occurs. ◻

Here are six examples of expansions, which will be used to illustrate some
convenient classifications of expansions.

1. AP (c)∨T (λ),AP (c),AP (c), . . ., where AP (c) ∈ wM

2. A¬P (c),DP (c),DP (c), . . . where DP (c) /∈ wM

3. AP (c)∨T (τ),AT (τ),AT (τ),AT (τ), . . .

4. DT (τ),DT (τ),DT (τ), . . .

5. AT (µ),AT (c0),A¬T (c1),DT (c1),D¬T (c2),AT (c2) . . .

6. AT (λ),A¬T (λ),DT (λ),D¬T (λ),AT (λ), . . .

First, observe that every expansion is either stableA, stableD or unstable. The
formal definition of these notions is clear from the remark that expansions 1
and 3 are stableA, 2 and 4 are stableD and 5 and 6 are unstable. Next, observe
that every expansion is either grounded or ungrounded, where an expansion is
grounded just in case it contains, for some σ ∈ At∗M(L), Xσ; we say that Xσ is
the ground of the expansion. Grounded expansions are either correct in M or
incorrect in M . An expansion is correct in M just in case its ground is contained
in wM , incorrect if its ground is not contained in wM . Thus, expansion 1 is a
grounded and correct expansion, while expansion 2 is grounded and incorrect.
An (ungrounded) expansion is vicious just in case it contains a vicious cycle, or
in other words, an expansion {yn}n∈N is vicious just in case:

∃σ∀n∃m,m′
> n ∶ ym = Aσ and ym′ =Dσ

Indeed, expansion 6 is vicious. We introduce the following abbreviations for
subsets of EXPM .
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Definition 5.10 Classifying expansions
We define the following subsets of EXPM .

- GM : the set of all grounded expansions.
UM : the set of all ungrounded expansions.

- Gcor
M : the set of all grounded and correct expansions.

Ginc
M : the set of all grounded and incorrect expansions.

- Uvic
M : the set of all (ungrounded) vicious expansions.

Unvi
M : the set of all ungrounded non-vicious expansions.

- USA
M : the set of all ungrounded stableA expansions.

USD
M : the set of all ungrounded stableD expansions.

UUM : the set of all (ungrounded) unstable expansions. ◻

For any expansion exp, we let exp′ denote the successor expansion of exp, by
which we mean the expansion that is obtained by removing the first term of exp.
A closure condition †(M) = {O†

M ,C
†
M} satisfies the stable judgement constraint

(SJC), just in case, for every expansion exp ∈ EXPM, it holds that:

SJC ∶ exp ∈ C†
M ⇔ exp′ ∈ C

†
M

Note that, equivalently, SJC can be formulated in terms of openness:

SJC ∶ exp ∈ O†
M ⇔ exp′ ∈ O

†
M

The SJC will be the central notion of our two stable judgement theorems. Below,
we prove the first stable judgement theorem, in which we refer to the set of all
AD subsentences of Xσ, denoted Π(Xσ). Formally, Π(Xσ) is defined by taking
the transitive closure of the binary relation induced by the set of all immediate
AD subsentences of Xσ:

- Π(⋅, ⋅) is defined by: Π(Xσ, Yα)⇔ Yα ∈ Π(Xσ).
- Π(⋅, ⋅) is defined as the transitive closure of Π(⋅, ⋅).
- Π(⋅) is defined by: Π(Xσ) = {Yα ∣ Π(Xσ, Yα)}

Theorem 5.2 First stable judgement theorem
Let M = (D,I) be a ground model, let †(M) = {O†

M ,C
†
M} be a closure condition

which satisfies SJC and let V†
M

be the valuation function induced by †(M). It
holds that:

1. V†
M ∶ Sen(LT ) → {a,b,n,d} is either a 2-, 3- or 4-valued Strong Kleene

valuation (see Definition 5.2) which respects one of the lattices indicated
in Figure 5.3.

2. For each σ ∈ Sen(LT ) it holds that V†
M(T (σ)) = V†

M(σ). That is, if †(M)
satisfies SJC then V

†
M respects the identity of truth.
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Figure 5.3: Three linear orders, one partial order.

Proof: Let †(M) = {O†
M ,C

†
M} be a closure condition which satisfies SJC. Notice

that, in order to show that V†
M

is Strong Kleene valuation which respects the
identity of truth, it suffices to show that for every AD sentence Xσ:

type of Xσ = ⊔ ⇒ (O†
M
(Xσ)⇔∃Yα ∈ Π(Xσ) ∶ O†

M
(Yα))

type of Xσ = ⊓ ⇒ (O†
M(Xσ)⇔∀Yα ∈ Π(Xσ) ∶ O†

M(Yα))
We illustrate for Aα∧β . Other cases are similar and left to the reader.

⇒ Suppose that O†
M(Aα∧β). This means that there is a strategy f ∈ F such that

for all g ∈ G, exp(Aα∧β , f, g) is open†. Now Aα∧β is of type ⊓, and the strategies
of player ⊓ can be bi-partitioned into strategies gα, which have g(Aα∧β) = Aα

and strategies of type gβ, which have g(Aα∧β) = Aβ . As f results in an open
expansion, no matter whether player ⊓ plays a strategy of type gα or gβ , it
follows, as †(M) satisfies SJC, that f is such that for all g ∈ G, we have that

exp(Aα, f, g) ∈ O†
M and that exp(Aβ , f, g) ∈ O†

M . Hence, O†
M(Aα) and O†

M(Aβ).
⇐ Suppose that O†

M(Aα) and O†
M (Aβ). This means that there exists a strategy

fα ∈ F such that for all g ∈ G we have that exp(Aα, fα, g)O†
M and that there

exists a strategy fβ ∈ F such that for all g ∈ G we have that exp(Aβ , fβ , g) ∈ O†
M

.
Let f ∈ F be any strategy which satisfies:

- Xσ ∈ Π(Aα), type of Xσ = ⊔ ⇒ f(Xσ) = fα(Xσ)
- Xσ ∈ (Π(Aβ) −Π(Aα)), type of Xσ = ⊔⇒ f(Xσ) = fβ(Xσ)

From the fact that †(M) satisfies SJC, it follows that the constructed f is such

that for all g ∈ G we have that exp(Aα∧β , f, g) ∈ O†
M . ◻

Thus, picking a closure condition which satisfies SJC ensures that we induce
a Strong Kleene valuation which respects the identity of truth. As such, a
closure condition which satisfies SJC does not guarantee that we induce a fixed
point valuation (as defined by Definition 5.3). However, by posing the following
additional constraint on closure conditions, we ensure that they induce fixed
point valuations. Let †(M) = {O†

M
,C

†
M
} be any closure condition. We say that

†(M) satisfies the world respecting constraint, WRC, just in case:

WRC ∶ Gcor
M ⊆ O

†
M and Ginc

M ⊆ C
†
M

We get the following corollary to Theorem 5.2.

Corollary 5.1 Inducing fixed point valuations
Let †(M) = {O†

M ,C
†
M} be a closure condition which satisfies WRC and SJC.
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Then V
†
M

is a (2-, 3- or 4-valued) fixed point valuation in the sense of Definition
5.3.
Proof: In light of Theorem 5.2, it suffices to show that if †(M) satisfies WRC,

then V
†
M satisfies clauses (5.8) and (5.10) of Definition 5.1. A proof can be

given by induction on the complexity of sentences of L, accounting for the non-
sentential truth ascriptions in a straightforward way. This is left to the reader.
◻

Let us put the first stable judgement theorem to work. Consider the following
closure conditions.

gr(oundedness) closure conditions: Ogr
M = Gcor

M

⧫ closure conditions: O⧫
M = Gcor

M ∪Unvi
M

It is easily seen that those closure conditions satisfy SJC and WRC. Hence, by
the first stable judgement theorem, Vgr and V⧫ are SK theories of truth. In
fact, we have that:

Proposition 5.1 Vgr = K whereas V⧫ is a SK4 theory.
Proof: In Wintein [62] we showed that the groundedness closure conditions
induce Kripke’s Strong Kleene minimal fixed point theory of truth, i.e., that
Vgr = K. For sake of completeness, the proof is also given in Appendix I of this
chapter. The fact that V⧫ is an SK4 theory follows from the observation (that

the ⧫ closure conditions satisfy SJC and WRC and) that V⧫M(¬T (λ)) = n while

V
⧫
M(T (τ)) = b. ◻

It is instructive to explain, in terms of MCG, why V
gr
M is 3-valued, whereas

V
⧫
M is 4-valued10. Here we go. Let M be a ground model and let X−1 denote

the AD inverse of X : A−1 =D, D−1 = A. With X ∈ {A,D}, we have that:

O
gr
M(Xσ)⇒ C

gr
M (X−1

σ ) (5.12)

Equation (5.12) follows from (5.13):

∃f∀g exp(Xσ, f, g) ∈ Ogr
M ⇒ ∃g∀f exp(X−1

σ , f, g) ∈ Cgr
M (5.13)

Before we establish (5.13), we first point out that (5.12) follows from (5.13).
Suppose that Ogr

M
(Xσ). Thus, player ⊔ can ensure that an expansion which

start with Xσ ends up in O
gr
M . This implies, via equation (5.13), that player ⊓

can ensure that an expansion which start with X−1
σ ends up in C

gr
M . But the

latter means, as Ogr
M and C

gr
M bipartition EXPM , that player ⊔ cannot ensure

than an expansion which starts with X−1
σ ends in Ogr

M . Accordingly, Cgr
M (X−1

σ ).
Equation (5.13) follows from a general observation. To state that observa-

tion, we define, for any expansion exp = {yn}n∈N, its inverse expansion exp−1 ={zn}n∈N by letting, for any n ∈ N:

zn = Aσ ⇔ yn =Dσ

10In fact, one can show that Vgr
M

is 3 valued for every ground model M , whereas V
⧫
M

is,
depending on the ground model, either 3 or 4 valued.
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Further, for any set S ⊆ EXPM of expansions, we define its inverse S−1 by letting
S−1 = {exp−1 ∣ exp ∈ S}. For each strategy f of player ⊔, there is a mirror strategy
for player ⊓, call it gf , which is defined as follows:

gf(Xα) = Yβ ⇔ f(X−1
α ) = Y −1

β

Similarly, for each strategy g of player ⊓, there is a mirror strategy for player ⊔
which may be called fg. Let S be any set of expansions. From an inspection of
the notion of a mirror strategy, it follows that:

∃f∀g exp(Xσ, f, g) ∈ S⇔∃g∀f exp(X−1
σ , f, g) ∈ S−1 (5.14)

As the set of expansions Gcor
M is the inverse of Ginc

M , it follows from (5.14) that:

∃f∀g exp(Xσ, f, g) ∈ Gcor
M ⇔∃g∀f exp(X−1

σ , f, g) ∈ Ginc
M (5.15)

From (5.15) we get (5.13) and, accordingly (5.12). The principle that is under-
lying the 3 valuedness of Vgr, i.e., (5.12), breaks down for V⧫. For, we have
that:

O
⧫
M
(Xσ) /⇒ C

⧫
M
(X−1

σ ) (5.16)

The reason for this is that the set of expansions Unvi
M , which is open⧫, is its

own inverse. Hence, the fact that player ⊔ can force an expansion of Aσ to end
up in Unvi

M implies that player ⊓ can force the expansion of Dσ to end up in(Unvi
M )−1 = Unvi

M . But the fact that player ⊓ can force the expansion of Dσ to
end up in Unvi

M does not preclude the possibility that player ⊔ may as well be
able to force Dσ to end up in Unvi

M . Hence, Aσ and Dσ may both be open⧫.
The previous remarks are illustrated by considering the two expansions of the
Truthteller:

AT (τ),AT (τ),AT (τ), . . . DT (τ),DT (τ),DT (τ), . . .

Before we state our second stable judgement theorem, it is instructive to com-
pare the ⧫ closure conditions with the ◊ closure conditions, that are defined
below. Before we define the the ◊ closure conditions, observe that the ⧫ closure
conditions allow for the following, equivalent, definition:

⧫ closure conditions: C⧫
M = Ginc

M ∪Uvic
M

This reformulation is convenient as it clearly lays bare the distinction with the
◊ closure conditions:

◊ closure conditions: C◊
M = Ginc

M ∪ {exp ∣ ∃σ ∈ Sen(LT ) ∶ Aσ, Dσ on exp }
So the only difference between the ⧫ closure conditions and the ◊ closure con-
ditions is that the former considers all expansions closed which contain Aσ and
Dσ in a cycle, whereas the latter does away with the condition of cyclicality:
whenever an expansion contains an “AD clash” it is closed, whether or not
this clash occurs in a cycle . To illustrate the difference between the ⧫ and
the ◊ closure conditions, we consider the following expansion of a denial of the
Tautologyteller:

DT (η)∨¬T (η),D¬T (η),AT (η),AT (η)∨¬T (η),AT (η),AT (η)∨¬T (η), . . . (5.17)
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This expansion is open according to the ⧫ closure conditions—as the “AD clash”
does not occur in a cycle—while it is closed according to the ◊ closure conditions.
The successor expansion of (5.17), however, is open according to the ◊ closure
conditions, which establishes that these closure conditions do not satisfy SJC.

V◊ defines a 4-valued theory of truth of which it can be shown11 that it
does not have a compositional semantics. This raises the question whether
satisfying SJC is, besides a sufficient condition, also a necessary condition for
closure conditions to induce a SK valuation which respects the identity of truth.
The answer to that question is ‘no’, as testified by the following proposition.

Proposition 5.2 SJC and SK compositionality come apart.
Proof: The ⋆ closure conditions, stated below, violate SJC while they define a
3-valued SK theory of truth. In the definition of the ⋆ closure conditions, c is
an arbitrary non-quotational constant of LT .

O⋆
M = Gcor

M ∪ {exp ∣ AT (c)∨¬T (c) or DT (c) on exp and I(c) = T (c)} (5.18)

The ⋆ closure conditions are a (minimal) modification of the (gr)oundedness
closure conditions. According to the ⋆ closure conditions, the expansions in
Gcor

M are open and, besides those, all (and only) the expansions which contain
AT (c)∨¬T (c) or DT (c) for some c such that I(c) = T (c) are open. A little reflec-
tion shows that this ensures that V⋆M is just like V

gr
M , apart from a valuation

of Truthtellers—i.e., sentences of form T (c) such that I(c) = T (c)—and com-
pounds of Truthtellers. In particular, with T (τ) a Truthteller, we have that:

V
⋆
M(T (τ)) = d, V

⋆
M(T (τ) ∨ ¬T (τ)) = a

Being a minimal modification of Vgr
M , V⋆M is a SK3 theory. However, the ⋆

closure conditions violate SJC, which is easily seen by inspecting the following
expansion:

AT (τ)∨¬T (τ),AT (τ),AT (τ),AT (τ) . . .

Indeed, this expansion is open according to ⋆ closure conditions as it contains
AT (τ)∨¬T (τ) and as I(τ) = T (τ). Its successor expansion, which does not contain
AT (τ)∨¬T (τ) or DT (τ) is closed, and so the ⋆ closure conditions violate SJC while
they induce a SK3 theory. ◻

Thus, Proposition 5.2 testifies that the first stable judgement theorem cannot
be read in the converse direction. However, the second stable judgement theorem
comes close to a converse reading of the first stable judgement theorem: it states
that any (2, 3 or 4 valued) SK valuation which respects the identity of truth
can be induced from a closure condition which satisfies SJC. Before we state
this theorem, we define the notion of the correctness of an AD sentence with
respect to a (2-, 3- or 4- valued) valuation12 VM .

Definition 5.11 VM correctness
Let VM be a (2-, 3- or 4-valued) valuation for LT whose range V is such that

11The reader may verify this by considering the sentence I(c) = ¬T (c) ∨ T (τ), where T (τ)
is the Truthteller.

12Note: VM does not need to be Strong Kleene.
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{a,d} ⊆ V ⊆ {a,b,n,d}. The notion of VM correctness, applicable to AD

sentences, is defined as follows.

Xσ is VM correct ⇔ (X = A,VM (σ) ∈ {a,b}) or (X =D,VM(σ) ∈ {d,b})
Intuitively, an AD sentence Xσ is VM correct iff its judgement (Assertible or
Deniable) with respect to σ is correct from the standpoint of VM . ◻

Theorem 5.3 Second stable judgement theorem
Let M be a ground model and let VM be a 2-, 3- or 4-valued Strong Kleene
valuation for LT which respects the identity of truth. Then there is a closure
condition †(M) which satisfies SJC and which is such that V†

M = VM .
Proof:
Let VM be a 2-, 3- or 4-valued Strong Kleene valuation for LT which respects
the identity of truth. Using the notion of VM correctness, we define a closure
condition †(M) = {O†

M ,C
†
M} for which we will show that it satisfies SJC and

that it is such that V†
M = VM . Let exp = {yn}n∈N be an arbitrary expansion of

EXPM . We let:

exp ∈ O
†
M ⇔∃n∀m > n ∶ ym is VM correct (5.19)

It is clear, from the “limit behavior definition” of †(M), that †(M), satisfies

SJC. Note that, in order to show that V†
M = VM , it suffices to show that:

Xσ is VM correct⇔∃f ∈ F∀g ∈ G ∶ exp(Xσ, f, g) ∈ O†
M

⇒ Suppose that Xσ is VM correct. Observe that, from the fact that VM is SK
and respects the identity of truth, we have:

type of Xσ = ⊔ ⇒ ∃Yα ∈ Π(Xσ) ∶ Yα is VM correct

type of Xσ = ⊓ ⇒ ∀Yα ∈ Π(Xσ) ∶ Yα is VM correct

From these two observations, it readily follows that if we start from an Xσ which
is VM correct, player ⊔ has a strategy, say f , which ensures that, for every g ∈ G,
all the terms of exp(Xσ, f, g) are VM correct. Hence, player ⊔ can ensure that

the expansion of Xσ ends up in O†
M .

⇐ Suppose that Xσ is VM incorrect. Observe that, from the fact that VM is
SK and respects the identity of truth, we have:

type of Xσ = ⊔ ⇒ ∀Yα ∈ Π(Xσ) ∶ Yα is VM incorrect

type of Xσ = ⊓ ⇒ ∃Yα ∈ Π(Xσ) ∶ Yα is VM incorrect

From these two observations, it readily follows that if we start from an Xσ

which is VM incorrect, player ⊓ has a strategy, say g, which ensures that, for
every f ∈ F , all the terms of exp(Xσ, f, g) are VM incorrect. Hence, player ⊓
can ensure that the expansion of Xσ ends up in C†

M
, from which it follows that

player ⊔ cannot ensure that the expansion of Xσ ends up in O†
M . ◻

So, in order to induce, say, Kripke’s SK maximal intrinsic fixed point K+,
via the MCG, we may define closure conditions, via (5.19), in terms of K+

M

correctness. Closure conditions for K+ that are defined as such are parasitic on
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Kripke’s framework for truth in a way that the gr(oundedness), ⧫ and ◊ closure
conditions are not. As K+ is an interesting theory of truth, it would be bad news
for MCG, as a framework for truth, if it had to rely, for the definition of K+,
on notions that are borrowed from an alternative framework. Luckily, the MCG

does have access to K+ via notions that are not borrowed from an alternative
framework. In the next section, we see how this works out.

5.5 Assertoric branches and trees

5.5.1 Inducing theory V● via branch closure conditions

For any expansion exp, [exp] will denote the set of terms of exp. For any AD
sentence Xσ and strategy f of player ⊔, Bf(Xσ) denotes the set of terms that
occur on some expansion of Xσ relative to f . Bf(Xσ) is called the branch of
Xσ induced by f . To be sure, Bf(Xσ) is defined as follows:

Bf(Xσ) = ⋃
g∈G

[exp(Xσ, f, g)]
We will use BranchM to denote13the set of all branches relative to ground model
M . The (assertoric) tree of Xσ, T

σ
X , is the set of all its branches. That is:

T
σ
X = {Bf(Xσ) ∣ f ∈ F}

Branches are judged to be open or closed relative to closure conditions which
are applicable to branches; a branch closure condition ‡(M) = {O‡

M ,C
‡
M} is

a bipartition of BranchM . An assertoric tree T
σ
X is said to be open‡ just in

case it contains a branch which is open‡, i.e., just in case Bf(Xσ) ∈ O‡
M for

some Bf(Xσ) ∈ T
σ
X . We write O‡

M(Xσ) just in case T
σ
X is open‡, and C‡

M(Xσ)
otherwise. In this sense, branch closure conditions induce closure conditions for
AD sentences. These closure conditions can be used to define LT valuations in
the expected manner. That is:

V
‡
M(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a O
‡
M(Aσ) and C‡

M(Dσ);
b O

‡
M(Aσ) and O‡

M(Dσ);
n C

‡
M(Aσ) and C‡

M(Dσ);
d C

‡
M(Aσ) and O‡

M(Dσ).
(5.20)

Inducing valuations from branch closure conditions as in (5.20), we see that the
following question, raised by Melvin Fitting, becomes highly relevant:

Now the issue is: what closure conditions do we want to impose on a
set S of signed statements to reflect our understanding of language
and truth? (Fitting, [16, p80])

In this paper, we will only be concerned with the ● closure conditions for
branches. A branch B is contained in C●

M , just in case:

1) B contains Xσ with Xσ ∈ At∗M and Xσ /∈ wM , or

13The definition of BranchM depends on M for the same reasons as EXPM does.
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2) B contains both Aσ and Dσ for some σ ∈ Sen(LT ).
V● is a 4-valued theory of truth that will be used, below, to define K+ via MCG.
V● is not an SK4 theory, which is testified by the following observations:

V
●
M(T (τ)) = V●M(¬T (τ)) = b, V

●
M(T (τ) ∨ ¬T (τ)) = a

Despite the fact that it does not have a compositional semantics, I regard V● to
be an interesting theory of truth; the ● closure conditions represent an assertoric
norm with a strong intuitive appeal: in asserting or denying a sentence you may
never become committed to 1) an assertoric act which conflicts with the non-
semantic facts, or 2) to contradict yourself. Or, in a catchy slogan: thou shalt
respect the world and thou shalt not contradict thyself!

In fact, although hidden by its present definition, V●M is a familiar valuation.
As we will show next, V●M is equivalent to Kripke’s “modal fixed point valuation”
K4

M , which he obtained by quantifying over14 FPM . K4
M is defined as follows,

where the quantifiers range over FPM .

- K4
M(σ) = a ⇔∃VM ∶ VM(σ) = a and /∃ VM ∶ VM(σ) = d

- K4
M(σ) = b⇔∃VM ∶ VM(σ) = a and ∃VM ∶ VM (σ) = d

- K4
M(σ) = n⇔/∃ VM ∶ VM(σ) = a and /∃ VM ∶ VM(σ) = d

- K4
M(σ) = d⇔/∃ VM ∶ VM(σ) = a and ∃VM ∶ VM (σ) = d

In order to prove that V● = K4 we need some definitions, which are all modifi-
cations of notions defined, amongst others, in [16].

Definition 5.12 Saturated sets, upwards closure
Let S be a set of AD sentences. We say that S is downwards saturated just in
case:

type of Xσ is ⊔ ⇒ (Xσ ∈ S ⇒ Π(Xσ) ∩ S /= ∅)
type of Xσ is ⊓ ⇒ (Xσ ∈ S ⇒ Π(Xσ) ⊆ S)

This notion of an upwards saturated set is defined dually. That is, S is upwards
saturated just in case:

type of Xσ is ⊔ ⇒ (Xσ ∈ S ⇐ Π(Xσ) ∩ S /= ∅)
type of Xσ is ⊓ ⇒ (Xσ ∈ S ⇐ Π(Xσ) ⊆ S)

Every set of AD sentences S has an upwards closure S⇑ , i.e., a smallest set of
AD sentences which extends S and which is upwards saturated15. ◻

14Remember that FPM is the set of all 2 and 3 valued (Strong Kleene) fixed point valuations
over M , as defined by Definition 5.3.

15The notions of downwards and upwards saturation are closely related to the notions of
downwards and upwards saturation as defined by [16]. However, an important (and the only)
difference between Fitting’s notions and ours is that Fitting’s notions are defined with respect
to the assertoric rules for L only, i.e., in his definition Fitting does not treat the rules for
truth not on par with the other rules. Likewise, the other notions defined in this section are
inspired by [16] and differ from Fitting’s notions only in the aspect just indicated. For a proof
of the claim that every set of AD sentences has an upwards closure, see [16].
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Definition 5.13 FPM sets and associated valuations
Let S be a set of AD sentences. We say that S is an FPM set just in case:

1. ∀σ ∈ Sen(LT ): Aσ ∈ S ⇒Dσ /∈ S.

2. S is downwards and upwards saturated.

3. wM ⊆ S.

An FPM set S is a notational variant of the associated fixed point valuation,
V S

M ∶ Sen(LT )→ {a,n,d}:
i) Aσ ∈ S ⇔ V S

M(σ) = a.

ii) Dσ ∈ S⇔ V S
M(σ) = d.

iii) {Aσ,Dσ} ∩ S = ∅⇔ V S
M(σ) = n.

On the other hand, every fixed point valuation VM ∈ FPM corresponds16, via
i), ii) and iii) to an FPM set S. ◻

Before we prove that V● = K4 it is instructive to comment on our proof
strategy, which is a modification of the soundness and completeness proofs for
signed tableaux systems. Consider the assertoric rules for ∧ and ¬ for a propo-
sitional language LP under the usual closure conditions: a branch17 is closed
just in case it contains, for some sentence σ of LP , both Aσ and Dσ and a
tableau for Xσ is closed just in case all its branches are closed. This specifies
a sound and complete signed tableau proof system with respect to the classical
semantics of LP : a sentence σ of LP is true in every LP valuation just in case
Dσ has a closed tableau. Soundness is proved by observing that if Dσ has a
closed tableau, there is no LP valuation in which σ is false. Completeness is
proved by showing that if Dσ does not have a closed tableau, we can take an
open branch and transform it into an LP valuation which renders σ false.

We use our branches and assertoric trees to induce semantic valuations; our
● closure conditions are defined relative to a ground model M . The role that
is played by the classical valuations in the LP case is, in our case, played by a
(3-valued Strong Kleene) fixed point. If all the branches of T

σ
A are closed●, there

is no fixed point in which σ is valuated as a. Similarly, if all the branches of T
σ
D

are closed●, there is no fixed point in which σ is valuated as d. On the other
hand, if T

σ
A has an open● branch, we can convert this branch into a fixed point

which valuates σ as a. Similarly for the case when T
σ
D has an open● branch.

Let us now turn to the proof which makes these remarks precise.

Theorem 5.4 V●M = K4
M

Let B be an open● branch of Aσ. Then, (B ∪wM)⇑, i.e., the upwards closure of
B ∪wM , is an FPM set which contains Aσ. From this, it follows that:

O●
M(Tσ

A)⇒ ∃VM ∈ FPM ∶ VM(σ) = a

16Where every VM ∈ FPM is thought of as having range {a,n,d}.
17The notion of a branch in this setting is slightly different from our definition of a branch.

In fact, we use ‘branch’ to denote what is more commonly called ‘completed branch’. Likewise,
the notion of an assertoric tree differs from that of a tableau.
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And, similarly, we get that:

O●
M(Tσ

D)⇒ ∃VM ∈ FPM ∶ VM(σ) = d

On the other hand, let σ ∈ Sen(LT ) and let VM ∈ FPM be such that VM(σ) = a.
Let S be the FPM set associated with VM . Per definition, Aσ ∈ S. Let f be any
strategy for player ⊔ which is such that, for every Xσ ∈ S of type ⊔, f(Xσ) ∈ S.
It follows that Bf(Aσ) is open●. Similar remarks apply to VM(σ) = d and Dσ.
Hence, we get that

∃VM ∈ FPM ∶ VM(σ) = a ⇒ O●
M(Tσ

A)
∃VM ∈ FPM ∶ VM(σ) = d⇒ O●

M(Tσ
D)

From the four established equations, it follows that V●M = K4
M . ◻

Although V●M is not defined via MCG, it is clearly defined using only notions
that “belong” to the MCG. In the next subsection, we will use V●M to define
closure conditions which define K+. Doing so, we obtain a definition of K+ which
is, in an important sense, not parasitic on Kripke’s framework for truth.

5.5.2 Using V● to define K+

We will prove that K+ can be induced from closure conditions that are defined
in terms of the notion of strong V●M correctness. We say that Xσ is strong V●M
correct just in case:

X = A&V●M(σ) = a or X =D&V●M(σ) = d

We say that Xσ is weak V●M correct just in case Xσ is V●M correct in the sense
of Definition 5.11. That is, Xσ is weak V●M correct just in case:

X = A&V●M(σ) ∈ {a,b} or X =D&V●M(σ) ∈ {d,b}
Corresponding to the weak and strong notion of V●M correctness, we define the
weak and strong closure conditions as follows. With exp = {yn}n∈N, we let:

exp ∈ Ost
M ⇔∃n∀m > n ∶ ym is strong V●M correct (5.21)

exp ∈ Owe
M ⇔∃n∀m > n ∶ ym is weak V●M correct (5.22)

We will show that the valuation function induced by the strong closure condi-
tions, i.e., Vst

M , is equal to K+
M . Before we do so, however, we first sketch the

rationale of the definition of K+
M in terms of strong V●M correctness.

For sure, if we have that K+
M(σ) = a, we have that V●M(σ) = a. For, if

K+
M(σ) = a, there is a (3-valued Strong Kleene) fixed point which valuates σ as

a and also, there is no fixed point which valuates σ as d. Similarly, K+
M(σ) = d

implies that V●M(σ) = d. The converses of these implications do not hold, how-
ever. For instance, we have that:

V
●
M(¬T (λ)∨ T (τ)) = a K

+
M(¬T (λ)∨ T (τ)) = n

V
●
M(¬T (τ) ∧ T (τ)) = d K

+
M(¬T (τ) ∧ T (τ)) = n
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Although A¬T (λ)∨T (τ) and D¬T (τ)∧T (τ) are strong V●M correct, none of their
immediate AD subsentences is strong V●M correct. This ensures, as is readily
noticed, that Vst

M(¬T (λ)∨T (τ)) = Vst
M(¬T (τ)∧T (τ)) = n, mimicking the judg-

ment of K+
M with respect to these sentences. More generally, the definition of

Vst
M ensures that, for AD sentences which are “unstable” strong V●M correct—

i.e., ultimately, they depend on a combination of AD sentences which are not
strong V●M correct—player ⊔ does not have a strategy which ensures that his
expansion ends up in Ost

M . In order to prove that Vst
M = K+

M , we will evoke the
following three lemma’s.

Lemma 5.1 ● openess is preserved downwards
By the phrase ‘● openess is preserved downwards’, we mean that:

type of Xσ is ⊔ ⇒ (O●
M(Xσ)⇒ ∃Yα ∈ Π(Xσ) ∶ O●

M(Yα))
type of Xσ is ⊓ ⇒ (O●

M(Xσ)⇒∀Yα ∈ Π(Xσ) ∶ O●
M(Yα))

Proof: This follows immediate from an inspection of the ● closure conditions
and the observation that the branches which constitute the tree of an immediate
AD subsentence of Xσ are subsets of the branches which constitute the tree of
Xσ. ◻

Lemma 5.2 Vst
M ∶ Sen(LT )→ {a,n,d} is an SK3 theory

It is clear that the strong closure conditions satisfy SJC and WRC and so, by the
(corollary to the) first stable judgement Theorem, they define a Strong Kleene
theory. The point of this lemma then, is to show that Vst

M is 3 valued. To do so,
we proceed as in Section 5.4. Suppose that Ost

M(Aσ) and let f be a strategy of
F which ensures that the expansion of Aσ ends up in Ost

M . The mirror strategy
of f , gf (see Section 5.4), testifies that Cst

M(Dσ). For, if an AD sentence Xα is
strong V●M correct, then its inverse X−1

α is not. ◻

Our proof of the fact that Vst
M = K+

M will exploit a further lemma, which
invokes the notion of a totally strong V●M correct expansion. An expansion is
said to be totally strong V●M correct just in case all its terms are strong V●M
correct. Here is the lemma:

Lemma 5.3 ∀g ∈ G ∶ exp(Xσ, f
′, g) ∈ Ost

M ⇔ ∀g ∈ G ∶ exp(Xσ, f
′, g) is totally

strong V●M correct
Proof: The right to left direction is trivial. For the converse direction, let f ′ be
a strategy which testifies that Ost

M(Xσ), i.e.,:

∀g ∈ G ∶ exp(Xσ, f
′, g) ∈ Ost

M

Let g′ ∈ G. We have to show that exp′ = exp(Xσ, f
′, g′) is totally strong V●M

correct. As exp′ ∈ Ost
M , exp′ contains a first strong V●M correct term (after which

all other terms are strong V●M correct). We will prove by contraposition that
this first term is equal to Xσ. Thus, assume that exp′ contains a first strong V●M
correct term and that this term has a predecessor on exp′ which is not strong
V●M correct. We assume, without loss of generality, that the first strong V●M
correct term has form Aα, the case where its form is Dα being similar. The
predecessor of Aα on exp has one of the following six forms:

D¬α,Aα∨β ,Aα∧β ,A∀xφ(x),A∃xφ(x),AT (α)
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We only prove the claim for the cases where the predecessor of Aα is Aα∨β or
Aα∧β , as the other four cases are either trivial or similar to the two cases that
we will discuss.

Predecessor of Aα is Aα∨β . As Aα is strong V●M correct, we have that
V●M(α) = a. Hence, there is a (3-valued Strong Kleene) fixed point in which α is
valuated as a and no fixed point in which α is valuated as d. In the fixed point
in which α is valuated as a, α∨β is also valuated as a. Thus, V●M(α∨β) ∈ {a,b}.
Suppose that V●M(α ∨ β) = a. This gives a contradiction with the assumption
that Aα is the first strong V●M correct element on exp′. Thus, suppose that
V●M(α ∨ β) = b. Per definition of V●M , we get O●

M(Dα∨β). From Lemma 5.1,
we get that O●

M(Dα) and O●
M(Dβ). From O●

M(Dα) it follows, by Theorem 5.4,
that there is a fixed point in which α is valuated as d. This gives a contradiction
with strong V●M correctness of Aα.

Predecessor of Aα is Aα∧β . As Aα is strong V●M correct, we have that
V●M(α) = a. Further, strategy f ′ (by considering the mirror strategy of f ′ as
in the proof of Lemma 5.2) testifies that Vst

M(α ∧ β) = Vst
M(α) = Vst

M(β) = a.
From the fact that Vst

M(α ∧ β) = a, it follows that there is a 3 valued fixed
point (namely, Vst

M ) in which α ∧ β is valuated as a. Hence, from Theorem
5.4, it follows that V●M(α ∧ β) ∈ {a,b}. Suppose that V●M(α ∧ β) = a. This
gives a contradiction with the assumption that Aα is the first strong V●M correct
element on exp′. Thus, suppose that V●M(α ∧ β) = b. From Lemma 5.1, we get
that O●

M(Aβ). Further, from V●M(α) = a it follows, per definition, that C●
M(Dα).

Similarly, from V●M(α ∧ β) = b we get, per definition, that O●
M(Dα∧β). From

O●
M(Dα∧β) and C●

M(Dα) it follows that O●
M(Dβ) and so V●M(β) = b. Hence

Aβ is not strong V●M correct. Now, let g′′ ∈ G be the strategy that is defined
just like g′ except for the fact that g′(Aα∧β) = Aα, whereas g′′(Aα∧β) = Aβ .
Let exp′′ = exp(Xσ, f

′, g′′) be the expansion of Xσ induced by f ′ and g′′ and
note that Aα∧β occurs on exp′′. Let Yγ be the first element of type ⊔ which
occurs on exp′′ after Aα∧β such that ∣Π(Yγ)∣ > 1. If there is no such element if
follows, from Lemma 5.1, that for every element Zθ which occurs on exp′′, we
have that V●M(Zθ) = b. Observe that this contradicts with the assumption that
strategy f ′ guarantees that for every g, exp(Xσ, f

′, g) ends up in Ost
M . Thus, let

Yγ be as indicated. From Lemma 5.1, it follows that Π(Yγ) contains at least
one element, say Yδ, such that O●

M(Yδ). Moreover, from the definition of f ′, it
follows that f ′ has to pick an Yδ ∈ Π(Yγ) such that O●

M(Yδ). For suppose not,
i.e., suppose that f ′(Yγ) = Yδ′ such that C●

M(Yδ′). According to Theorem 5.4,
this means that there is no 3 valued fixed point which contains Yδ′ . On the other
hand, from the definition of f ′ and the assumption that f ′(Yγ) = Yδ′ , it follows
that there is a 3 valued fixed point (namely, Vst

M ) which contains Yδ′ . Thus,
f ′(Yγ) = Yδ for some Yδ such that O●

M(Yδ). From Lemma 5.1, the fact that
V●M(α ∧ β) = b and the fact that Yγ is the first element on exp′′ after Aα∧β for
which player ⊔ has to make a genuine choice, it follows that O●

M(Y −1
δ ). Hence,

we have that V●M(δ) = b. And so Yδ is weak but not strong V●M correct. We
are now back were we started, with δ playing the role of β. We can repeat
the argument, by looking at the first element which occurs on exp′′ after Yγ for
which player ⊔ has to make a genuine choice. By a similar argument, f ′ must
allot a weak V●M correct element to it. Hence, f ′ does not guarantee that for
every g, exp(Xσ, f

′, g) ends up in Ost
M . ◻

Before we (finally) show that Vst
M = K+

M , we first recall the definition of K+
M
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in terms of the K+ closure conditions that are associated with the second stable
judgement theorem. With exp = {yn}n∈N, these closure conditions are defined
as follows:

exp ∈ OK
+

M ⇔∃n∀m > n ∶ ym is K+
M correct

Theorem 5.5 Vst
M = K+

M

Proof : It suffices to show that, for every AD sentence Xσ, it holds that:

OK
+

M (Xσ)⇔ Ost
M(Xσ)

The left to right direction is immediate from the definition of OK
+

M and Ost
M .

Thus, assume that Ost
M(Xσ). This means that there exists an f ∈ F such that

for every g ∈ G, exp(Xσ, f, g) ∈ Ost
M . By Lemma 5.3, this means that every

term that occurs on an expansion of Xσ that is induced by f , is strong V●M
correct. Hence, all elements of Bf(Xσ), the branch of Xσ as induced by f , are
strong V●M correct. From this, it follows that the (3-valued Strong Kleene) fixed
point valuation induced by Bf(Xσ)⇑, i.e., by the upwards closure of Bf(Xσ), is
compatible (see Section 5.3) with every fixed point valuation over M and hence
is an intrinsic fixed point valuation, i.e., a member of IM (see Definition 5.5).
With S the FPM set corresponding to K+

M , we get that Bf(Xσ)⇑ ⊆ S, as K+
M

is maximal intrinsic. From Bf(Xσ) ⊆ S, it follows that OK
+

M (Xσ). ◻

5.6 Generalized Strong Kleene theories of truth

5.6.1 Some GSK theories

As testified by the assertoric transfer theorem, GSK theories are typically build
up from SK3 and SK4 theories which respect one another. In this subsection,
we study the SK3 and SK4 theories that we defined thus far with an eye on
the “respecting relation”, i.e., the relation < that was defined in Section 5.3.
We then use the obtained results in combination with the assertoric transfer
theorem to define GSK theories.

Proposition 5.3 Relating some SK3 and SK4 theories
We have that:

1. K < K+ 2. K < V⧫ 3. K+
< Vwe 4. K+ /< V⧫

Proof:
1. Folklore.
2. Suppose that KM(σ) = a. Thus, by Proposition 5.1, Ogr

M(Aσ), from which

it follows that O⧫
M(Aσ). Let f ′ ∈ F be a strategy which testifies that Ogr

M(Aσ),
i.e. f ′ is such that exp(Aσ, f

′, g) ∈ Gcor
M for every g ∈ G. By arguments familiar

from Section 5.4, it follows that the mirror strategy of f ′, gf ′ , ensures that

exp(Dσ, f, gf ′) ∈ Ginc
M for every f ∈ F . From this, it follows that C⧫

M
(Dσ) and

so we have that V⧫M(σ) = a, which is what we had to show.
3. Similar to the proof of 2., now exploiting the representation of K+ as Vst

(rather than the representation of K as Vgr) and the relation between the strong
and weak closure conditions.
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4. It is well-known (and easily established) that a Tautologyteller, i.e. a sentence
T (η) ∨ ¬T (η) where I(η) = T (η) ∨ ¬T (η) is valuated as a by K+

M . It is left to

the reader to observe that V⧫M(T (η)∨ ¬T (η)) = b. ◻

The relation between K and K+ allow us to combine these theories, in accor-
dance with the assertoric transfer theorem, into a five valued GSK theory, V

5+.
Similarly, the relation between K and V⧫ allows us to combine these theories
into a six valued GSK theory, V

6 in accordance with the assertoric transfer
theorem. That is:

V
5+
M (σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ag, K(σ) = a;
ai, K+(σ) = a,K(σ) = n;
e, K+(σ) = n;
di, K+(σ) = d,K(σ) = n;
dg, K(σ) = d.

V
6
M(σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ag, K(σ) = a;

xu, K(σ) = n,V⧫M(σ) = x;
dg, K(σ) = d.

Here, the subscripts g, u, i that are attached to the assertoric values stand for,
respectively, grounded, ungrounded and intrinsic. The value e that is recognized
by V5+ indicates that we call sentences that are valuated as such extrinsic.

Also, the relation between K+ and Vwe allows us to combine these theories
into a six valued GSK theory, say V

6+. As K respects V
6+, a further application

of the assertoric transfer theorem allows us to combine K and V
6+ into the eight

valued GSK theory, V
8+, that was discussed in the introduction. Equivalently,

V
8+ can be defined in terms of V5+ and Vwe:

V
8+
M (σ) = { V5+

M (σ), V5+
M (σ) /= e;

xe V5+
M (σ) = e,Vwe

M (σ) = x.
(5.23)

The subscript e, attached to assertoric values, indicates that a sentence is ex-
trinsic. The definition of V

8+ as given by (5.23) clearly indicates that V
8+ gives

a compositional account of the sentences that are called ‘extrinsic’ (i.e. valuated
as e) by V5+. Below we display the Hasse diagrams associated with V

5+, V
6

and V
8+.

ai

di

ae

de

ne be

ag

dg

au

du

nu bu

ag

dg

ag

ai

e

di

dg

Figure 5.4: V
5+ (K,K+), V

6 (K,V⧫) and V
8+ (K,K+, Vwe).

The GSK compositionality of these theories was explained in Section 2: the
only difference with a SK theory is that negation swaps ax with dx, where
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x ∈ {g, u, i, e}.
Let us illustrate the necessity of the fulfillment of the conditions of the

assertoric transfer theorem for its definition of a GSK theory. Suppose that
we define a six valued theory, call it V

six, in terms of the theories K+ and V⧫

(V⧫ does not respect K+, see Proposition 5.3) according to the definition that
is employed by the assertoric transfer theorem:

V
six
M (σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1, K+(σ) = a;

x0, K+(σ) = n,V⧫M(σ) = x;
d1, K+(σ) = d.

To see that V
six is not a GSK theory, let I(η) = T (η) ∨ ¬T (η) be a Tautolo-

gyteller and observe that:

K
+
M(T (η)) = a, K

+
M(¬T (λ)) = n V

⧫
M(T (η)) = b, V

⧫
M(¬T (λ)) = n

From the compositionality of K+ and V⧫, it follows that K+
M(T (η)∧¬T (λ)) = n

and that V⧫M(T (η)∧¬T (λ)) = d. Hence, according to the definition of V
six, we

get that:

V
six
M (T (η)) = a1, V

six
M (¬T (λ)) = n0, V

six
M (T (η)∧ ¬T (λ)) = d0

This shows that V
six is not a GSK theory. For it were a GSK theory, its

compositionality would be described by a six valued GSK lattice, accord-
ing to which V

six
M (T (η)) = a1 together with V

six
M (¬T (λ)) = n0 implies that

V
six
M (T (η)∧ ¬T (λ)) = n0.

Thus far, we defined three GSK theories, of cardinality 5, 6 and 8 respec-
tively. What about GSK theories of other cardinalities? In order to answer
that question, we define some further SK3 and SK4 theories which are suitably
related to the SK theories that are already defined. In particular, we will be
interested in theories that respect K+. In order to define such theories, the next
section takes a closer look at the closure conditions of K+.

5.6.2 A closer look at the closure conditions of K+

Recall the definition of K+ in terms of the K+ closure conditions that are asso-
ciated with the second stable judgement theorem. Here they are:

exp ∈ OK
+

M ⇔∃n∀m > n ∶ ym is K+
M correct

Also, recall the definition of K in terms of the groundedness closure conditions:

O
gr
M = Gcor

M

From the fact that K+ respects K, it follows that Ogr
M = Gcor

M ⊆ OK
+

M . In fact, the
subset relation is strict, as is testified by the following expansion of a Tautolo-
gyteller:

AT (η)∨¬T (η),AT (η),AT (η)∨¬T (η),AT (η),AT (η)∨¬T (η), . . .

The depicted expansion of AT (η)∨¬T (η) testifies that OK
+

M contains, in terms of
Section 5.4, expansions which are ungrounded and stableA. Similarly, the follow-
ing expansion of the Contradictionteller testifies that OK

+

M contains expansions
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which are ungrounded and stableD:

DT (θ)∧¬T (θ),DT (θ),DT (θ)∧¬T (θ),DT (θ),DT (θ)∧¬T (θ), . . .

Two important characteristics of expansions in O
gr
M is that they are all stable

(i.e., either stableA or stableD), and also, that their set of terms is finite. The

expansions in OK
+

M do not (necessarily) share these characteristics, as the fol-
lowing example testifies. Let C = {cn}n∈N be a set of non-quotational constants
which is interpreted as follows:

I(cn) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
T (c1) ∨ ¬T (λ), n = 0;
¬(T (cn+1) ∧ ¬T (λ)), n /= 0, n is odd;
¬(T (cn+1) ∨ ¬T (λ)), n /= 0, n is even.

The following expansion of AT (c0) is unstable, contains infinitely many distinct

terms, and is an element of OK
+

M :

AT (c0),AT (c1)∨¬T (λ),AT (c1),A¬(T (c2)∧¬T (λ)),DT (c2)∧¬T (λ),DT (c2), . . .

. . .D¬(T (c3)∨¬T (λ)),AT (c3)∨¬T (λ),AT (c3),A¬(T (c4)∧¬T (λ)), . . . (5.24)

The fact that the expansion of AT (c0) is unstable and contains infinitely many

distinct terms is clear. Let us show that it is contained in OK
+

M . To do so, we
show that each AD sentence on the expansion is K+

M correct. Consider the AD
sentence AT (c1)∨¬T (λ). From the depicted expansion of AT (c0) it follows that it
is possible to valuate T (c1)∨¬T (λ) as a (for each sentence σ that is mentioned
on (5.24), valuate σ as a when Aσ occurs on (5.24) and valuate σ as d when
Dσ occurs on (5.24)). To show that AT (c1)∨¬T (λ) is K+

M correct, we have to
show that that “letting” T (c1) ∨ ¬T (λ) valuate as a by valuating T (c1) as a
can be done in a non arbitrary manner, i.e., that there is no VM ∈ FPM which
valuates T (c1) as d. Suppose that VM ∈ FPM valuates T (c1) as d. This means,
as VM respects the identity of truth, that VM valuates ¬(T (c2) ∧ ¬T (λ)) as d,
which means that VM valuates T (c2) ∧ ¬T (λ) as a. Hence, VM has to valuate
the Liar as a, which gives a contradiction with VM being an element of FPM

. Hence, AT (c1)∨¬T (λ) is K+
M correct. In fact, an inspection of the expansion of

AT (c0) reveals that all elements of the expansion are K+
M correct. Accordingly,

the depicted expansion of AT (c0) is contained in OK
+

M .

We thus showed that OK
+

M contains ungrounded expansions which may be

either stablyA, stablyD or unstable. We use this observation to partition OK
+

M

into four subsets, using notions of Definition 5.10:

U+
M = OK

+

M −Gcor
M

USA+
M = U+

M ∩USA
M , USD+

M = U+
M ∩USD

M , UU+
M = U+

M ∩UUM

From the definitions just given, it readily follows that Gcor
M , USA+

M , USD+
M and

UU+
M are pairwise disjoint and that:

OK
+

M = Gcor
M ∪USA+

M ∪USD+
M ∪UU+

M

We will first use this representation of OK
+

M to define two SK3 theories, which
are called V3A+ and V3D+, and which respect K+. Theory V3A+ is obtained by
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modifying the K+ closure condition by declaring “as much stableA expansions
open as possible”, while V3D+ is obtained by modifying the K+ closure condition
by declaring “as much stableD expansions open as possible”. To explain these
phrases, we focus only on V3A+, as the V3D+ case is completely dual. Of course,
not all stableA expansions can—with the purpose of defining a SK3 theory which
respects K+ in mind—be declared open: consider a stableA expansion that is
contained in Ginc

M . On the other hand, it is unproblematic to declare the stableA

expansions which end with an assertion of a Truthteller to be open:

AT (τ),AT (τ),AT (τ), . . . ,

More generally, it is unproblematic to declare a stableA expansion to be open
just in case its inverse (which is a stableD expansion per definition) is not

contained in OK
+

M . This leads to the following definition of the closure conditions
for V3A+ and V3D+:

O3A+
M = Gcor

M ∪ (USA
M − (USD+

M )−1) ∪USD+
M ∪UU+

M

O3D+
M = Gcor

M ∪ (USD
M − (USA+

M )−1) ∪USA+
M ∪UU+

M

Note that the set (USA
M − (USD+

M )−1) consists of all ungrounded stableA ex-

pansions except for those whose inverse is contained in OK
+

M . As an example,(USA
M − (USD+

M )−1) does not contain the following expansion of an assertion of
the Contradictionteller:

AT (θ)∧¬T (θ),AT (θ),AT (θ)∧¬T (θ),AT (θ), . . . (5.25)

The following proposition states that V3A+ and V3D+ have the desired proper-
ties.

Proposition 5.4 V3A+ and V3D+ are SK3, K
+
< V3A+ and K+

< V3D+.
Proof: We illustrate only for V3A+, the V3D+ case being similar. Compare the
closure conditions of K+ with those of V3A+:

OK
+

M = Gcor
M ∪USA+

M ∪USD+
M ∪UU+

M

O3A+
M = Gcor

M ∪ (USA
M − (USD+

M )−1) ∪USD+
M ∪UU+

M

Per definition, (USD+
M )−1 is such that (USD+

M )−1 ⊆ USA
M . Further, we have that

(USD+
M )−1 ∩USA+

M = ∅. To see this, suppose that exp ∈ USA+
M ⊆ OK

+

M . From the

K+ closure conditions, it follows that exp−1 ∈ USD
M is contained in CK

+

M . Hence
exp−1 /∈ USD+

M and so (exp−1)−1 = exp /∈ (USD+
M )−1. Thus, we have that:

USA+
M ⊆ (USA

M − (USD+
M )−1)

And so we have that OK
+

M ⊆ O3A+
M . From this, it follows that for every AD

sentence Xσ, we have that:

OK
+

M (Xσ)⇒ O3A+
M (Xσ) (5.26)

Further, by an inspection of the closure conditions for V3A+ we see that they
respect SJC and WRC (from which it follows that V3A+ is SK3 or SK4) and
also, that: (O3A+

M )−1
⊆ C3A+

M (5.27)
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From (5.27), it now follows (by a mirror strategy argument familiar from Section
5.4) that V3A+ is SK3. Further, from (5.26) and (5.27) it follows that V3A+

respects K+: suppose that K+
M(σ) = a. Then we have that OK

+

M (Aσ) and so, by
(5.26), we get that O3A+

M (Aσ). From (5.27) it follows that C3A+
M (Dσ) and so

we have that V3A+
M (σ) = a. ◻

As V3A+ respects K+, the assertoric transfer theorem tells us that V3A+ and
K+ can be combined into a five valued GSK theory, call it V

5+. Further, as
V

5A+ respects K, another application of the assertoric transfer theorem to those
theories delivers a seven valued GSK theory, call it V

7A+. Similarly, one can
define the GSK theories V

5D+ (in terms of V3D+ and K+) and V
7D+ (in terms

of V
5D+ and K). In Section 5.6.1, we defined GSK theories of cardinality 5, 6

and 8. We now see that V3A+ and V3D+ provide us with the means to define
GSK theories of cardinality 7. What about GSK theories of cardinality, say, 9
or 10? Below, we answer this question.

Let’s call any expansion exp which is such that both exp and exp−1 are con-
tained in CK

+

M , double K+ closed. By declaring all stableA expansions which are
double K+ closed to be open, we obtained V3A+ from the K+ closure conditions.
Similarly, by declaring all stableD expansions which are double K+ closed to be
open, we obtained V3D+ from the K+ closure conditions. The theories V3A+ and
V3D+ thus assign, in comparison to K+, more sentences a “classical assertoric
value”, i.e., a or d. Some sentences, such as the Liar, cannot be assigned a
classical assertoric value; doing so would result in a semantic valuation which
does not respect the identity of truth and which, accordingly, is not a theory
of truth in the sense of this paper. An interesting question is whether we can
define SK theories which are “more classical” than V3A+ (V3D+) in the sense
that they assign more sentences a classical assertoric value than V3A+ (V3D+).
In other words, we may ask whether we can define SK theories which respect
V3A+ (V3D+). As, according to the V3A+ and V3D+ closure conditions, every
stable expansion is either closed or open, we have, in order to define such SK

theories, turn to the unstable expansions.
Not all unstable expansions are double K+ closed. An example of an unsta-

ble expansion that is contained in OK
+

M was given above (i.e., expansion (5.24)).
However, quite some unstable expansions are double K+ closed. Below, we dis-
cuss a couple of examples. First, consider the expansion associated with an
assertion and denial of the Unstabilityteller respectively:

AT (µ),AT (c0),A¬T (c1),DT (c1),D¬T (c2),AT (c2), . . . (5.28)

DT (µ),DT (c0),D¬T (c1),AT (c1),A¬T (c2),DT (c2), . . . (5.29)

In a sense, the Unstabilityteller, T (µ), is like the Truthteller: there is a (3 valued
SK) fixed point in which it is valuated as a and there is a fixed point in which
it is valuated as d. Clearly, in the fixed point where T (µ) is valuated as a, all
the sentences that occur on expansion (5.28) should be valuated in accordance
with their sign on (5.28). For instance, T (c0) should be valuated as a as its sign
on (5.28) is A, whereas T (c1) should be valuated as d as its sign on (5.28) is
D. Similarly, in the fixed point where T (µ) is valuated as d, all the sentences
that occur on expansion (5.29) should be valuated in accordance with their sign
on (5.29). When we want to define a theory that is “more classical” than, say,
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V3A+, we18 want to declare exactly one of the expansions, (5.28) or (5.29) open.
Say that we want to valuate T (µ) as a. In order to do so, we may declare (5.28)
to be open while (5.29) is declared to be closed. However, in order to define a
theory of truth via MCG, we need a systematic way of judging expansions to
be open and closed. The definition of V3A+ relied on such a systematic way of
classifying expansions, as the closure conditions for V3A+ reveal.

To distinguish unstable expansions in a systematic way, however, is far more
tricky. Why do we call (5.28) open? Because it is an unstable expansion whose
first term has sign A? Clearly, such a classification will not do, for it results in
closure conditions which violate SJC and which do not yield a SK theory, as
a moment of reflection on (5.28) testifies. As far as I can see, there simply is
no satisfactory systematic way to distinguish expansions (5.28) and (5.29). The
lack of such a systematic classification is what prevents me from defining a SK3

theory which is respected by V3A+ (V3D+). However, that is not to say that we
cannot define a SK4 theory which is respected by V3A+ (V3D+), as we will now
explain.

Although we see no (satisfactory systematic) way to distinguish (5.28) and
(5.29), those expansions can (jointly) be distinguished from the following two
familiar expansions.

A¬T (λ),DT (λ),D¬T (λ),AT (λ),A¬T (λ) . . . (5.30)

D¬T (λ),AT (λ),A¬T (λ),DT (λ),D¬T (λ) . . . (5.31)

One way to distinguish (5.28) and (5.29) from (5.30) and (5.31) is by observing
that the latter two expansions contain a vicious cycle whereas the former two
expansions do not. Another way19 to distinguish them is by observing that
the former two expansions are both contained in Owe

M whereas the latter two
are not. Suppose that we come up with closure conditions which declare more
expansions open than the V3A+ (V3D+) closure conditions, which satisfy SJC

and WRC and according to which both (5.28) and (5.29) are open while both
(5.30) and (5.31) are closed. Clearly, such closure conditions will induce a SK4

theory which respects V3A+ (V3D+). Below, we define the theories V4A+ and
V4D+ according to this rationale, where we distinguish (5.28) and (5.29) from
(5.30) and (5.31) by their containment in Owe

M . Here are the closure conditions
for V4A+ and V4D+.

O4A+
M = O3A+

M ∪ (UUM − ((UU+
M)−1

∪Cwe
M ))

O4D+
M = O3D+

M ∪ (UUM − ((UU+
M)−1

∪Cwe
M ))

Proposition 5.5 V4A+ and V4D+ are SK4. V
3A+

< V4A+ and V3D+
< V4D+

Proof: Similar to the proof of Proposition 5.4. ◻

5.6.3 More GSK theories

In the previous two subsections, we established the following relations between
various SK theories:

18Note that an unstable expansion is open according to the K+ closure conditions just in
case it is open according to the V3A+ (V3D+) closure conditions.

19These really are distinct ways, as is testified by Yablo’s paradox. A discussion of that
paradox in the present framework is given in Appendix II of this chapter.
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K < V
⧫, K

+ /< V⧫
K < K+

< Vwe

K < K
+
< V

3A+
< V

4A+, K < K
+
< V

3D+
< V

4D+

In this section, we will use the relations in combination with the assertoric
transfer theorem to define various GSK theories. We do so in a single sweep
via the following table.

SK3 base SK4 base GSK5 GSK6 GSK7 GSK8 GSK10

K,K+
V

5+

K V⧫ V
6

K,K+ Vwe
V

6+
V

8+

K,K+,V3A+
V

5A+
V

7A+

K,K+,V3D+
V

5D+
V

7D+

K,K+,V3A+ V4A+
V

6A+
V

8A+
V

10A+

K,K+,V3D+ V4D+
V

6D+
V

8D+
V

10D+

Observe that each row of the table contains at least two SK theories and that
these SK theories are written down, from left to right, in accordance with the
< relation. For instance, the last row contains 4 SK theories: K < K+

< V3D+

and V4D+. The SK theories are used as base theories in order to define, in
accordance with the assertoric transfer theorem, the GSK theories on the same
row. An example will suffice to clarify the table. Consider the last row of the
table, which contains the GSK10 theory V

10D+. First, V
6D+ is obtained by

applying the assertoric transfer theorem to V3D+ and V4D+. As V3D+
< V

6D+

and as K+
< V

3D+, we get K+
< V

6D+ and we may apply the assertoric transfer
theorem to K+ and V

6D+ to generate the GSK8 theory V
8A+. As K < V

8D+, a
last application of the assertoric transfer theorem delivers V

10D+.
Note that the table lacks a GSK9 theory. The reason for this was explained

in the previous subsection: our inability to find a systematic way of distinguish-
ing between unstable expansions like (5.28) and (5.29).

5.7 Concluding remarks

We presented the method of closure games, which is a novel game-theoretic
framework for truth and we illustrated in which sense our two stable judgement
theorems allow us to study and define 3 and 4 valued SK theories in a uniform
manner. By doing so, the method of closure games, sheds new light on SK

theories by giving us a better understanding of their interrelatedness than in
Kripke’s framework. The method of closure games combines ideas from Kripke
[33] (Strong Kleene theory of truth), Smullyan [50] (signed tableau calculus)
and Fitting [16] (presentation of Kripke’s framework using sets of signed sen-
tences rather than models). The main issue of this paper is a presentation of a
novel framework for truth and a study of some of its most important (technical)
properties. In this last section, we take a more philosophical outlook on the
obtained results.
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An important distinction between Kripke’s framework and ours is the “direc-
tion of fit”, which is vividly illustrated by contrasting the common definition of
KM with this paper’s definition of Vgr

M . Whereas Kripke’s “imaginary subject”
starts by asserting and denying truth-free sentences and works his way upwards
until the minimal fixed point is reached, our subject considers the assertion or
denial of an arbitrary sentence and sees whether, by following the assertoric
rules downwards, he can ground his assertoric act in the world. This downwards
direction of fit, characteristic for the method of closure games, is also charac-
teristic for the definition of theories of truth by imposing closure conditions on
branches, as was detailed in Section 5.5. Another interesting way in which the
“downwards methods” of this paper shed new light on Kripke’s framework then,
is via our proof of the claim that V● = K4. The definition of V● was obtained by
formalizing a natural assertoric norm—thou shalt respect the world and thou
shalt not contradict thyself!—whereas the definition of K4 is obtained by quan-
tifying over all 3 valued Strong Kleene fixed points. This quantification over all
fixed points is what gives K4 a “modal flavor”. It is not so clear that this modal
definition of K4 allows for an intuitively appealing explanation of the claim, say,
that the Truthteller is both assertible and deniable. For if, as is quite natural,
one conceives of the 3 valued fixed points as a kind of “possible worlds”, one
is forced to answer the question which of these possible worlds is actual. And,
naturally, when one asks for the assertoric status of an LT sentence, one asks
for its assertoric status in the actual world. According to K4, the fact that the
Truthteller valuates as b is explained by the fact that there is a possible world
in which it valuates as a and also, a possible world in which it valuates as d.
However, as these possible worlds are not actual, we do not get an intuitive ex-
planation of the fact that, in the actual world, the Truthteller is both assertible
and deniable. In sharp contrast, such an intuitive explanation is available on
the V● picture: by asserting (denying) the Truthteller in the actual world, one
takes up assertoric commitments which do not violate the assertoric norm of
V●: thou shalt respect the world and thou shalt not contradict thyself! Hence,
we see that our alternative definition of K4 as V● allows for a philosophically
more attractive interpretation of the same theory.

The notion of a GSK theory testifies that distinct assertoric norms (closure
conditions) can be combined to yield a single compositional theory of truth.
An interesting GSK theory is V

8+, an attractive feature of which is that it
captures semantic distinctions that are neglected by, for example, K and K+

(i.e., these theories equate the Liar and the Truthteller), and that it does so
in a compositional way. However, it has to be said that this attractive feature
of V

8+ is downplayed by, in my opinion, the lack of an intuitively appealing
interpretation. For instance, V

8+ valuates T (τ)∧¬T (τ), i.e., the conjunction of
the Truthteller with its negation, as be. Hence, T (τ)∧¬T (τ) is both assertible
and deniable. But, one may ask, in which sense is it allowed to assert a contra-
diction? Technically, the story is clear: It is allowed to assert T (τ) as doing so
does not violate the assertoric norm of V●. For the same reasons, it is allowed
to assert ¬T (τ). Then, as both its conjuncts are assertible, so is, according to
V

8+, T (τ)∧¬T (τ). However, in asserting T (τ)∧¬T (τ), one violates the asser-
toric norm of V●: V● valuates T (τ) ∧ ¬T (τ) as d. The fact that V

8+ does not
share this judgement of V● with respect to T (τ)∧¬T (τ), is due to its definition
in terms of the method of closure games. By asserting T (τ) ∧ ¬T (τ), player
⊔ is held responsible, by player ⊓, to assert both its conjuncts. However, in
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picking his strategy, player ⊓ must choose one of the conjuncts of T (τ)∧¬T (τ).
Intuitively, this means that player ⊓ can hold player ⊔ only responsible for one
conjunct at a time. This seems to be at odds with the standard interpretation of
“asserting a conjunction”, according to which, by doing so, one takes up asser-
toric responsibility for both conjuncts at the same time. So, although V

8+ has,
in contrast to V●, a compositional semantics, the price we seem to be paying for
its compositionality is an intuitively less satisfying interpretation.

The notion of a GSK theory is, so I claim, a fruitful notion, irrespective of
the eventual faith of V

8+. On the one hand, it is technically fruitful, as it aids
us in gaining a better understanding of various relations between SK theories.
However, Wintein [60] applies the notion of a GSK theory to criticize a pro-
posed desideratum for theories of truth as proposed by Philip Kremer [32]. Let
me explain, very briefly, the main point of that paper. In his paper, Kremer
provides a theory-relative desideratum for theories of truth. Intuitively, the
desideratum, called the Modified Gupta-Belnap Desideratum (MGBD), says
that if there is no vicious reference according to a theory of truth T (a formally
defined notion that we will not discuss here) then, according to T, truth should
behave like a classical concept (another formally defined notion that we will not
discuss here). Formally:

MGBD If T dictates that there is no vicious reference in ground model M then
T dictates that truth behaves like a classical concept in ground model M .

With respect to the rationale of MGBD, Kremer cites Gupta [23]:

For models M belonging to a certain class—a class that we have not
formally defined but which in intuitive terms contains models that
permit only benign kinds of self-reference—the theory should entail
that all Tarski biconditionals are assertible in the model M . (Gupta,
[23, p19]

Thus, the proposed rationale for MGBD is that it is a theory-relative formal-
ization of an intuitive desideratum that was formulated by Gupta. In [60] an
Alternative—to MGBD—formalization of Gupta’s Desideratum is proposed:

AD If T dictates that there is no vicious reference in ground model M then T
dictates that all the Tarski biconditionals are strongly assertible in M .

[60] argues that AD is preferable over MGBD as a desideratum for theories of
truth. For one thing, it seems to be superior to MGBD in capturing the ratio-
nale that is given for that desideratum. In [60], we show that any theory which
violates AD violates MGBD, but also that there are GSK theories of truth
(such as V

5+ and V
8+) which violate MGBD while they satisfy AD. I take it

that these results testify that the notion of a GSK theory is a philosophically
fruitful notion.

As argued before, the method of closure games gives us a better under-
standing of SK theories of truth. However, SK theories themselves are often
criticized for not defining satisfactory theories of truth. A major criticism is that
SK theories lack a “serious conditional”20. The material conditional that can

20Another is that they suffer from expressive completeness
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be defined in SK theories is no serious conditional. For paracomplete theorists
such as Field [15], an important criticism of the material conditional that can
be defined in K, ⊃, is that it does not validate the law of identity (σ ⊃ σ) and
neither does it validate the Tarski biconditionals. For paraconsistent theories
such as those of Beall [5] and Priest [41], the major criticism of the material
biconditional as it can be defined in LP 21 is that it does not validate Modus
Ponens. In order to overcome these difficulties and to define a serious condi-
tional, call it →, all three philosophers help themselves to a semantic approach
that consists of a combination of basically two distinct frameworks of truth.
Very (very) roughly, connectives other than → receive their semantics from a
Kripkean (minimal fixed point) construction, while → receives its semantics via
revision rules as in the Gupta-Belnap framework. An interesting question to
ask, and one that I am currently exploring, is whether the method of closure
games can provide us with a unified framework in which a serious conditional
can be defined. Of course, the requirements on a serious conditional → (e.g.,
it should violate, in light of Curry’s paradox, Contraction) ensures that the se-
mantic valuation for a language containing → cannot be obtained by (defining
the assertoric rules for → and by) picking “the right closure conditions”. Ac-
cordingly, an extension of the framework—by which we determine a valuation
of a sentence in virtue of the “power” of player ⊔ to realize expansions of various
types—is called for. It is an interesting open question whether the method of
closure games allows for a natural extension that can be used to define a serious
conditional.

5.8 Appendix I: Proving that Vgr = K

In this section, we prove that, for any ground model M , Vgr
M = KM , as stated by

Proposition 5.1. In order to do so, we first give a constructive definition of KM ,
which we adapt from Fitting [16]. Fitting defines the FPM set (cf. Definition
5.13) associated with KM , which we’ll denote by KM as follows. First, he
observes that every set of AD sentences S ⊆ X has an upwards closure (cf.
Definition 5.12) under the assertoric rules for L, i.e., under the assertoric rules
for LT as given by Figure 5.4 minus the assertoric rule which govern the truth
predicate. With S a set of AD sentences, we will use S⇑L to denote its upwards
L closure, i.e., its upwards closure under the assertoric rules for L. Next, the
notion of an upwards L closure is used to define an operator, called Φ, which acts
on sets of (AD signed) atomic sentences of LT (so including atomic sentences of
form T (t), where t ∈ Con(LT )). With S a set of atomic sentences of LT , Φ(S)
is another such set, where:

Φ(S) = wM ∪ {XT (σ) ∣Xσ ∈ S
⇑L}

With ρ ∈ On, i.e., with ρ an ordinal, Φρ(S) denotes the ρ fold application of Φ
to S, where Φρ(S) = ∅ when ρ = 0 and where Φρ(S) = ⋃γ<ρ Φγ(S) when ρ is a
limit ordinal. Fitting observes that Φ is a monotone operator and that this fact
can be exploited to show that, for any set of atomic sentences S, the sequence{Φρ(S)}ρ∈On culminates in a fixed point, i.e., there will be some ordinal after
which all the terms of the sequence {Φρ(S)}ρ∈On are equal. In particular, there

21LP , or logic of paradox, is defined just like K except that its “middle value” is designated.
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will be fixed point for the sequence {Φρ(∅)}ρ∈On, i.e., there will be some ordinal,
call it Ω, such that Φ(ΦΩ(∅)) = ΦΩ(∅). This last observation is used by Fitting
to define KM , the FPM set associated with KM , as follows:

KM = (ΦΩ(∅))⇑L (5.32)

In light of the monotonicity of Φ, equation (5.32) can be rewritten as:

KM =
⎛
⎝⋃ρ<Ω Φρ(∅)⎞⎠

⇑L

= ⋃
ρ<Ω

(Φρ(∅))⇑L (5.33)

The construction of the minimal fixed point as the fixed point of a sequence of
sets of signed sentences that is indexed by ordinals closely follows Kripke’s [33]
original presentation of it. For Kripke, the ordinal levels of the sequence receive
an intuitive interpretation in terms of various stages of reflection, by Kripke’s
“imaginary subject”, upon his language. The ordinal levels are also convenient
for proving that the minimal fixed point has certain properties, as they allow
us to prove claims by transfinite induction. An example of such a claim is given
below. However, for the definition of the minimal fixed point, the ordinal levels
are, strictly speaking, redundant: the set KM can also be defined as the upwards
closure (under the assertoric rules of LT , that is) of the world. Indeed, from
the previous definitions of KM and the definition of upwards closure, it readily
follows that:

KM = (wM)⇑ (5.34)

We now have available the material for proving that Vgr
M

= KM . To do so, it
suffices to show that:

Xσ ∈ KM ⇔∃f ∈ F∀g ∈ G ∶ exp(Xσ, f, g) ∈ Gcor
M

⇒ Let Xσ ∈ X . In light of equation (5.33), it suffices to show that for any ρ < Ω,
Xσ ∈ (Φρ(∅))⇑L implies that ∃f ∈ F∀g ∈ G ∶ exp(Xσ, f, g) ∈ Gcor

M . The claim
follows by transfinite induction.
⇐ Let Xσ ∈ X and suppose that for some f∗ ∈ F , we have that ∀g ∈ G ∶
exp(Xσ, f

∗, g) ∈ Gcor
M . So for any g ∈ G, the expansion exp(Xσ, f

∗, g) reaches a
signed sentence of At∗M(L), called the ground of exp(Xσ, f

∗, g), which is repeated
indefinitely often and which is contained in the world. With g ∈ G, we write(Yα)g to denote the ground of exp(Xσ, f

∗, g). The set GR collects all the
GRounds and is, given our hypothesis, a subset of the world:

GR = {(Yα)g ∣ g ∈ G} ⊆ wM

As, relative to f∗, every expansion of Xσ ends up in GR, Xσ is contained in the
upwards closure of GR, which is, as GR ⊆ wM , a subset of the upwards closure
of wM which is equal to KM (cf. equation (5.34)). I.e.,:

Xσ ∈ GR
⇑
⊆ (wM)⇑ = KM (5.35)

This concludes our proof of the claim that, for any ground model M , Vgr
M
= KM .
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5.9 Appendix II: Analyzing Yablo’s Paradox

A Yablo sequence is an infinite sequence of sentences such that, intuitively, each
sentence says that all sentences which occur later in the sequence are not true.
Each sentence of a Yablo sequence is, just like the Liar, paradoxical, meaning
that V● (cf. Section 5.5.1) ) valuates a Yablo sentence as n. Although the Yablo
sentences share their paradoxical status with the Liar, it is often claimed that,
in contrast to the Liar, the Yablo sentences do not exhibit circular reference
(cf. Yablo [69], who writes that his paradox ‘is not in any way circular’). As
each sentence of a Yablo sequence talks only about sentences further away in
the sequence (and not about it self), the verdict that the Yablo sentences do
not exhibit circularity seems in line with our pre-theoretic intuitions. However,
the verdict that the Yablo sentences do not exhibit circularity is controversial.
Authors (cf. Priest [40]) have disputed this claim and argued, roughly, that
the definition of a Yablo sequence relies, just like the definition of the Liar, on
a fixed point construction and that a fortiori, the Yablo sentences do exhibit
circularity.

Leitgeb [35] argues that the debate about the circularity of Yablo’s para-
dox is ‘substantially flawed’. On the one hand, the two positions in the debate
appeal to distinct notions of circularity. On the other hand, Leitgeb argues
that all reasonable attempts to spell out these notions in a precise manner seem
to surmount in notions that are, in one way or the other, defective. Leitgeb
then concludes his paper by asking for the outline of a satisfactory definition of
circularity, and he even leaves open the possibility that his question is ill-posed
and that talk of circularity is to be banished from science.

. . . either much philosophical work lies ahead of us before the ques-
tion is finally settled, or that otherwise the question is ill-posed, i.e.,
that the talk of self-referentiality [and circularity] is to be banished
from scientific contexts. (Leitgeb [35, p13])

Urbaniak [52] is an example of work that tries to provide an answer to Leitgeb’s
question and so is Wintein [61], who gives an account of a notion of circularity by
invoking the method of closure games. In [61], I side with Urbaniak, who argues
that Leitgeb’s Equivalence Condition, according to which circularity should be
preserved under logical equivalence, is not a reasonable adequacy condition to
impose on a definition of circularity. Indeed, the proposed definition of circu-
larity in [61] violates Leitgeb’s Equivalence Condition.

In this appendix, however, we will not be concerned with the question as to
whether the Yablo sentences are circular or not. What we will do, is discuss how
Yablo’s paradox is valuated by V⧫, i.e., the SK4 theory that was defined in Sec-
tion 5.4 via the method of closure games. Our discussion will shed some indirect
light on the “circularity debate” however, for consider the closure conditions of
V⧫:

⧫ closure conditions: C⧫
M = Ginc

M ∪Uvic
M

Indeed, the ⧫ closure conditions are spelled out in terms of the notion of a
vicious cycle (i.e., Uvic

M ⊆ C
⧫
M ), and so analyzing Yablo’s paradox in terms of

V⧫ will shed some light on relation between circularity and paradoxality, and
hence, indirectly, on the“circularity debate”. On the other hand, the notion of
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circularity that is at work in the ⧫ closure conditions pertains to expansions,
and not, as the (distinct) notions of circularity in the “circularity debate”, to
sentences. At any rate, we feel that the discussion of Yablo’s paradox in terms
of V⧫ is interesting in and of itself. Here we go.

In order to define a Yablo sequence, we let {Pn ∣ n ∈ N}, be a sequence of
unary predicate symbols. We then define the sequence {σn}n∈N by letting:

σn ∶= ∀x(Pn(x)→ ¬T (x)) (5.36)

The sentences σn are formulated using →, i.e., material implication. It will be
convenient to explicitly define the assertoric rules for material implication:

† A† D†

→
A(α→β)

{Dα,Aβ}⊔
D(α→β)

{Aα,Dβ}⊓
For sake of simplicity, we assume that our ground model M is such that the
only way to denote a sentence σn is via its quotational name. The elements of{σn}n∈N will be valuated relative to the world wM , which satisfies (5.37).

APn(t) ∈ wM ⇔ t = [σn+i] for some i ≥ 1 (5.37)

In model theoretic terms, (5.37) states that, in wM , the extension of Pn is equal
to {σn+1, σn+2, . . .}. Relative to wM , {σn}n∈N is a representation of Yablo’s
sequence: intuitively, σn says that every sentence which is greater than σn is
not true. Let f be any strategy for player ⊔ which acts on the denials of the
elements of Yablo’s sequence as follows:

f(D∀x(Pn(x)→¬T (x))) =DPn([σn+1])→¬T ([σn+1]) (5.38)

Let g be any strategy for player ⊓ which acts on the assertions of the elements
of Yablo’s sequence as follows:

g(A∀x(Pn(x)→¬T (x))) = APn([σm])→¬T ([σm]), for some m > n (5.39)

Here is an example of an expansion that is realized with player ⊔ and ⊓ playing
strategies respecting (5.38) and (5.39); the full strategies of player ⊔ and ⊓ can
be read off from the depicted expansion.

Aσ0
,AP0([σ6])→¬T ([σ6]),A¬T ([σ6]),DT ([σ6]),Dσ6

,DP6([σ7])→¬T ([σ7]), . . .

. . .D¬T ([σ7]),AT ([σ7]),Aσ7
,AP7([σ8])→¬T ([σ8]),A¬T ([σ8]),DT ([σ8]),Dσ8

, . . .

Observe that the expansion is ungrounded but not contained in Uvic
M and also,

that, relative to f , if player ⊓ picks a strategy which does not respect (5.39),
then player ⊔ can ensure that a grounded and correct expansion results. It is
left to the reader to establish that, with σn an arbitrary Yablo sentence, player
⊔ ensures, by playing strategy f , that the expansions of Aσn

and Dσn
are con-

tained in O⧫
M : if player ⊓ deviates from (5.39) a grounded correct expansion will

result, while if player ⊓ picks a strategy which respects (5.39), an ungrounded

but non-vicious expansion will result. Hence, we have that V⧫
M
(σ) = b.

So, according to V⧫, the Yablo sentences have a semantic value which is
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identical to the value allotted to the Truthteller. In principle, there is nothing
(fundamentally) wrong with a theory of truth that allots the Yablo sentences
and the Trutheller the same semantic value: the minimal and the maximal in-
trinsic fixed point, i.e., K and K+, do so. However, given the intuitive assertoric
interpretation that is associated with the method of closure games, it seems
wrong for V⧫ to do so. It seems that the Yablo sentences are, just like a Liar,
neither assertible nor deniable, whereas a Truthteller is both assertible and de-
niable. V● (and Vwe), however, valuates the Yablo sentences and the Liar as n,
while it valuates the Trutheller as b. More generally, it seems that the norm by
which we judge the intuitive (assertoric) plausibility of V⧫, is captured by V●.

In contrast to V⧫, however, V● is not defined in terms of a notion of (ex-
pansion) circularity. It is not fair, however, to explain the distinction in the
valuation of Yablo sentences between V⧫ and V● by appealing to such a notion
of circularity. For, note that the closure conditions of V◊ are, modulo the no-
tion of a vicious cycle, identical to the V⧫ conditions, whereas V◊ also valuates
a Yablo sentence as b. Hence, the valuation distinction between V⧫ and V● is
better explained in terms of the methods by which these functions are obtained;
by playing closure games and by constructing assertoric trees respectively.

Our discussion of Yablo’s paradox in terms of V⧫ suggests that the notion of
an expansion is, in a sense, too fine grained to capture the paradoxality of the
Yablo sentences. To be sure, Vwe is also defined by putting closure conditions
on expansions and it does valuate a Yablo sentence as n. It does so, however,
only because its closure conditions are defined in terms of the closure conditions
of V⧫, which are defined in terms of branches, which are sets of expansions,
not single ones of them. We will now show that, contrary to the suggestion,
expansions are not too fine grained to capture the paradoxality of the Yablo
sentences. With respect V⧫’s valuation the Yablo sentences, it is not the ⧫
closure conditions that are to be blamed, but rather the incomplete rules of the
closure game that defines V⧫. More concretely, the closure games has no rules
that reflect the inferential principles of the “greater than” relation, which seem
to be at work in any intuitive reflection on Yablo’s paradox. By adding such
rules, we will see that V⧫ does valuate the Yablo sentences as n.

We will augment the assertoric rules with rules that reflect the fact that, in
Yablo’s paradox, the transitive ‘greater-than’ relation plays an important role.
Here is an intuitive sketch of the way in which the transitivity of the greater-than
relation influences the assertoric commitments. Suppose you deny σ6. That is,
suppose that you deny that all elements of {σ7, σ8, . . .} are not true. By denying
σ6, you become committed to assert that at least one element of {σ7, σ8, . . .} is
true. And so, if you deny σ6, you are committed to assert that at least one ele-
ment of {σ5, σ6, σ7, . . .} is true, i.e., to deny that all elements of {σ5, σ6, σ7, . . .}
are not true. Thus, if you deny σ6 you are, amongst others, committed to deny
σ5. The example easily generalizes, showing that a denial of σn commits one to
deny σm for all m < n. Similarly, an assertion of σn commits one to assert σm

for all m > n. The assertoric rules for the logical constants that were displayed
in the table of Section 2.1. do not allow us to capture this extra-logical reason-
ing pertaining to the transitive greater-than relation. Therefore, two additional
extra-logical assertoric rules pertaining to the Yablo sentences are added22.

22I take it that it is more elegant to represent the inferential rules for > (a primitive ‘greater
than’ relation symbol) and then to define a Yablo sequence exploiting >. Instead, we presented
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† A† D†

σn

Aσn{Aσm
∣m > n}⊓

Dσn{Dσm
∣m < n}⊓

Thus, the (assertoric) Yablo sentences Xσn
have a logical and an extra-logical

assertoric rule associated with them. As σn is a universally quantified sentence,
the type of Dσn

is ⊔. However, according to the extra-logical rule for Dσn
, the

type of Dσn
is ⊓. Hence, the question arises which player controls sentences

of form Dσn
: is it player ⊔ or player ⊓ who determines which AD sentence is

the successor of sentences of form Dσn
in an expansion? In general, a sentence

is assertible (deniable) just in case player ⊔ can “live up to all commitments”
that arise from an assertion (denial) of that sentence. If a player denies a uni-
versal quantification, he is committed to deny an instantiation of the quantified
formula. On the other hand, if a player denies a Yablo sentence, he is also com-
mitted to deny all “smaller” Yablo sentences. It is in the spirit of the method of
closure games to let player ⊓ determine, with respect to Dσn

, which assertoric
commitment of player ⊔ is to be considered. Intuitively, when player ⊔ denies
σn, player ⊓ may either ask player ⊔ which instantiation of Pn(x) → ¬T (x) he
denies or he may conclude that player ⊔ denies, for arbitrary m < n, σm. To
capture these considerations, it is assumed that:

- Sentences of formDσn
have two types. Thus, both players mapDσn

to one
of its immediate AD subsentences. Player ⊔ does so in accordance with
the logical rule Dσn

, player ⊓ does so in accordance with the extra-logical
rule for Dσn

.

- Player ⊓ determines, for sentences of form Dσn
, the effective type of Dσn

.
That is, with f ∈ F and g ∈ G, player ⊔ determines whether f(Dσn

) or
g(Dσn

) succeeds Dσn
in an expansion.

- For sentences of form, Aσn
player ⊓ maps Aσn

on one of its immediate
subsentences, either in accordance with the logical or in accordance with
the extra-logical rule for Aσn

.

Let us now show that, with the rules of the game just sketched, V⧫ valuates
the Yablo sentences as n. We do so by considering strategies for the players
which induce an expansion of Aσn

that is displayed in the table below. In
the third column, the type of the sentence under consideration is displayed.
For the sentences with two types, both types are displayed and the ineffective
type is crossed out; ⊔, /⊓ denotes that the effective type of the sentence under
consideration is ⊔.

i exp(i) type
0 Aσn

⊓
1 APn([σn+1])→¬T ([σn+1]) ⊔
2 A¬T ([σn+1]) ⊓
3 DT ([σn+1]) ⊓
4 Dσn+1

⊓, /⊔
5 Dσ0

/⊓,⊔
6 DP0([σm])→¬T ([σm]) ⊓
7 D¬T ([σm]) ⊓

i exp(i) type
8 AT ([σm]) ⊓
9 Aσm

⊓
10 APn([σm+1])→¬T ([σm+1]) ⊔
11 A¬T ([σm+1]) ⊓
12 DT ([σm+1]) ⊓
13 Dσm+1

⊓, /⊔
14 Dσm

⊓, /⊔
15 Dσ0

/⊓,⊔
the inferential rules to be applicable to the Yablo sentences themselves (as already defined).
Doing so is shorter and suffices for our purposes.
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Let us illustrate the table by two examples. In step 5, player ⊓ asks player ⊔
which instantiation of P0(x) → ¬T (x) he denies, i.e., player ⊓ determines that
the effective type of Dσ0

is ⊔. As revealed by the table, it is assumed that
player ⊔’s strategy f is such that he answers with σm. In step 14, player ⊓
determines that the effective type of Dσm

is ⊓ and, as revealed by the table,
he holds player ⊔ responsible for Dσ0

. The other steps are explained similarly.
Observe that {exp(i) ∣ 6 ≤ i ≤ 15} is a cycle. Moreover, as exp(9) and exp(14)
testify, {exp(i) ∣ 6 ≤ i ≤ 15} is a vicious cycle. Hence, the considered strategies
f ∈ F , g ∈ G and the choice of effective types by player ⊓ results in the depicted
expansion of Aσn

that is ⧫ closed. It is left to the reader to verify that player ⊔
cannot improve on this outcome by picking another f ∈ F than the one which
is indicated in the table. Also, it is left to the reader that a similar result holds
for Dσn

. Hence, V⧫ valuates the Yablo sentences as n.
So, upon taking care of the assertoric rules pertaining to the “greater than”

relation, V⧫ does acknowledge the paradoxical character of the Yablo sentences.
The V⧫ judgement of those sentences as n is explained, on the one hand, by the
(use of the) assertoric rules, on the other, by the ⧫ closure conditions. Thus,
as the ⧫ closure conditions are formulated in terms of a notion of (expansion)
circularity, V⧫’s judgement is partly explained by appealing to a notion of circu-
larity. However, the non-compositional V◊ also—modulo the modified assertoric
rules—valuates the Yablo sentences as n. As the ◊ closure conditions are basi-
cally the non-circular variant of the ⧫ closure conditions, V⧫’s (indirect) appeal
to circularity is, in a sense, not essential for a closure game based explanation
that the Yablo sentences are valuated as n. Then again, the appeal may be
essential for such an explanation via a compositional valuation function.

This concludes our discussion of Yablo’s paradox in terms of V⧫. A fuller
discussion of these issues and their relation to what we called the “circularity
debate” is given in [61].
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Chapter 6

Alternative Ways for Truth
to Behave when there’s no
Vicious Reference

6.1 Abstract

In a recent paper, Philip Kremer proposes a formal and theory-relative desidera-
tum for theories of truth that is spelled out in terms of the notion of ‘no vicious
reference’. Kremer’s Modified Gupta-Belnap Desideratum (MGBD) reads as
follows: if theory of truth T dictates that there is no vicious reference in ground
model M , then T should dictate that truth behaves like a classical concept in
M . In this paper, we suggest an alternative desideratum (AD): if theory of
truth T dictates that there is no vicious reference in ground model M , then T
should dictate that all T -sentences are (strongly) assertible in M . We illustrate
that MGBD and AD are not equivalent by means of a Generalized Strong
Kleene theory of truth and we argue that AD is preferable over MGBD as a
desideratum for theories of truth.

6.2 Introduction

In the paper How Truth Behaves When There’s No Vicious Reference, [32] is
concerned with the behavior of truth under circumstances in which there is
no vicious reference. Roughly, vicious reference is that type of reference that
forces truth—or the truth predicate—to behave in a non-standard manner. The
reference involved in a Liar sentence certainly is vicious, while the reference
involved in (6.1) certainly is not.

(6.1) consists of 6 words. (6.1)

Kremer argues that our intuitions concerning which sentences exhibit vicious
reference and which do not, are (partly) determined by our intuitions concerning
which theory of truth is correct. This leads him to suggest that:

The most general formal articulation of non-vicious reference, we
suggest, will be theory-relative. (Kremer [32, p357])
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Kremer provides a formal, theory-relative articulation of non-vicious reference
and he uses this notion to spell out a formal, theory-relative desideratum for
theories of truth. Intuitively, the desideratum, called the Modified Gupta-Belnap
Desideratum (MGBD), says that if there is no vicious reference according to
a theory of truth T, then, according to T, truth should behave like a classical
concept. Formally:

MGBD If T dictates that there is no vicious reference in ground model M ,
then T dictates that truth behaves like a classical concept in ground model M .

Kremer compares thirteen theories of truth (ten fixed point theories, three re-
vision theories) in terms of MGBD. With respect to the rationale of MGBD,
Kremer cites1 Gupta [23], who says that:

For models M belonging to a certain class—a class that we have not
formally defined but which in intuitive terms contains models that
permit only benign kinds of self-reference—the theory should entail
that all Tarski biconditionals are assertible in the model M . (Gupta
[23, p19])

Thus, the proposed rationale for MGBD is that it is a theory-relative formal-
ization of Gupta’s intuitively stated, theory-neutral desideratum—note, Gupta
speaks of an adequacy condition—for theories of truth. In this paper, we pro-
pose an Alternative formal and theory-relative translation of Gupta’s intuitive
Desideratum.

AD If T dictates that there is no vicious reference in M , then T dictates that
all the T -sentences2 are strongly assertible in M , where a sentence σ is strongly
assertible just in case it is assertible and ¬σ is not.

Although any theory which violates AD violates MGBD, we will see that there
are theories of truth which violate MGBD and satisfy AD. When restricted to
the thirteen theories of truth considered by Kremer however, AD and MGBD
are equivalent. The reason of this is that all thirteen theories recognize a sin-
gle semantic value which is allotted to all strongly assertible sentences. This
semantic value is, per definition, the same value that is allotted to all classical
strongly assertible sentences, such as ‘snow is white’. Accordingly, with T one
of theories considered by Kremer, T dictates that truth behaves as a classical
concept in M just in case T dictates that all the T -sentences are strongly as-
sertible in M .

Wintein [63] defined the notion of a Generalized Strong Kleene theory of
truth, or GSK theory. The distinction between a (three or four valued) Strong
Kleene theory of truth and a GSK theory, is that the latter recognizes more
than one sense in which a sentence can be strongly assertible. Formally, the se-
mantics of a GSK theory differs from the semantics of a Strong Kleene theory
only with respect to negation. Our running example of a GSK theory will be
K5, which has a linear five valued (generalized) Strong Kleene semantics with
respect to the lattice:

1On page 348 of [32].
2A T -sentence, or, in Gupta’s words, a Tarski biconditional, is a sentence of form T (σ)↔ σ,

with σ a closed term which denotes σ.
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≤5∶= dg ≤ di ≤ e ≤ ai ≤ ag

Conjunction and disjunction act as meet and join in ≤5, and universal and
existential quantification act as generalized conjunction and disjunction. Nega-
tion acts as the identity operation on e but also, it interchanges ax for dx,
where x ∈ {g, i} indicates the assertoric sense under consideration: grounded
or intrinsic. The notions of groundedness and intrinsicness reflect that K5 is
defined in terms of Kripke’s Strong Kleene minimal fixed point theory (K) and
his Strong Kleene maximal intrinsic fixed point theory (K+).

According to K5, a sentence is strongly assertible just in case its value is con-
tained in {ag,ai}, while a sentence is classical just in case its value is contained
in {ag,dg}. Hence, according to K5 there are non-classical strongly assertible
sentences, which explains why K5 can satisfy AD while it violates MGBD.

The paper is organized as follows. In Section 6.3, we state some general
preliminaries. In Section 6.4, we give the formal definition of MGBD and AD
and show how K5 testifies that these desiderata are not equivalent. In Section
6.5, we argue that AD is preferable over MGBD as a desideratum for theories
of truth. In Section 5, we are concerned with the assertoric interpretation that
we impose on, amongst others, K5. Section 6.6 concludes.

6.3 Preliminaries

LT will denote a first order language without function symbols, with identity
(≈), a truth predicate (T ) and with a quotational name ([σ]) for each sentence
σ of LT . L will denote the language that is exactly like LT , except for the fact
that it does not contain the truth predicate T . A ground model M = (D,I) is an
interpretation of L such that Sen(LT ) ⊆ D and such that I([σ]) = σ for all σ ∈
Sen(LT ). A sentence may be denoted in various ways; σ will be used to denote
any closed term, quotational name or not, which denotes σ in the ground model
under consideration. We will make the simplifying assumption that a ground
model has, for each of the elements of its domain, a constant symbol which refers
to that element. This assumption has the advantage that quantification can be
treated substitutionally so that we do not need to be bothered with variable
assignments. With respect to Sen(LT ) ⊆ D this assumption is unnecessary,
as every sentence contains, per definition, at least one name: its quotational
name. However, a sentence may also have a non-quotational name in a ground
model, and this feature ensures that a ground model may contain self-referential
sentences. Here are some notational conventions that we will respect in this
paper concerning the use of some non-quotational names.

Definition 6.1 Some notational conventions
In this paper, the constants λ, τ , η and θ, will be used as follows, where I is an
interpretation function.

1. I(λ) = ¬T (λ). We say that ¬T (λ) is a Liar.

2. I(τ) = T (τ). We say that T (τ) is a Truthteller.

3. I(η) = T (η)∨ ¬T (η). We say that T (η)∨ ¬T (η) is a Tautologyteller.
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4. I(θ) = T (θ)∧ ¬T (θ). We say that T (θ)∧ ¬T (θ) is a Contradictionteller.

To be sure, the notational convention does not imply that every ground model
contains one of the sentences just defined. However, if we use a sentence which
is build with λ, τ , η, or θ, we always presuppose a ground model in which a
Liar, Truthteller, Tautologyteller or Contradictionteller occurs. ◻

As LT is assumed not to contain function symbols, all the closed terms of LT are
given by its set of constant symbols, which will be denoted by Con(LT ). Observe
that [∀xT (x)] ≈ [∀xT (x)] is guaranteed to be a sentence of LT . Given a ground
model M , CM ∶ Sen(L) → {a,d} denotes the classical valuation of L based on
M and is defined as usual3. Note that CM([∀xT (x)] ≈ [∀xT (x)]) = a and
CM([∀xT (x)] ≈ [∃xT (x)]) = d for any ground model M . A theory of truth T
takes a ground model as input and outputs a semantic valuation of the sentences
of LT . That is, T outputs a function TM ∶ Sen(LT ) → V, where V contains
the semantic values of T. With T a theory of truth, ⊺T = TM([∀xT (x)] ≈[∀xT (x)]) and �T = TM([∀xT (x)] ≈ [∃xT (x)]) are called the classical top
value and classical bottom value of T respectively. Not any semantic valuation
of the sentences of LT qualifies as the valuation of a theory of truth. In this
paper, I assume that in order for T to qualify as a theory of truth, TM should
respect the world, the identity of truth.

Definition 6.2 Theory of truth
Let T be a valuation method which, given a ground model M , outputs a valu-
ation function TM ∶ Sen(LT ) → V. We say that T is a theory of truth just in
case, for every ground model M , we have that:

∀σ ∈ Sen(L) ∶ CM(σ) = a ⇔ TM(σ) = ⊺T, CM(σ) = d ⇔TM (σ) = �T (6.2)

∀σ ∈ Sen(LT ) ∶TM (T (σ)) = TM(σ) (6.3)

That is, TM should respect the world (6.2) and the identity of truth 4 (6.3). ◻

Two interesting three valued theories of truth are Kripke’s Strong Kleene min-
imal fixed point theory K, and his Strong Kleene maximal intrinsic fixed point
theory K+. In order to define those theories, we let, for every ground model M ,
FPM denote the set of all three valued Strong Kleene fixed point valuations5

over M . With VM , V ′
M ∈ FPM , we let:

VM ≤ V ′
M ⇔∀σ ∈ Sen(LT ) ∶ VM(σ) = a ⇒ V ′

M(σ) = a

When VM ≤ V ′
M we say that V ′

M respects VM . The relation ≤ is a partial order
on FPM . The following definitions are all taken from Fitting [16]. We say
that VM is maximal just in case for no V ′

M we have that VM ≤ V ′
M , minimal

3Modulo our use of assertible and deniable instead of true and false, which better fits in
with the rest of the paper.

4Note that the identity of truth differs from the intersubstitutability of truth, according to
which T (σ) and σ are interchangeable in every (non opaque) context. In particular, revision
theories of truth respects the identity of truth but not its intersubstitutability.

5 We assume familiarity with the notion of a (three valued) Strong Kleene fixed point
valuation over M . To be sure, such a valuation has a Strong Kleene semantics, and it respects
the world and the identity of truth. Further, we assume that such a theory valuates sentences
of form T (c), where I(c) /∈ Sen(LT ) as d.
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just in case for no V ′
M we have that V ′

M ≤ VM . We say that VM and V ′
M are

compatible just in case there exists a fixed point6 V ∗
M such that VM ≤ V ∗

M and
V ′

M ≤ V ∗
M . A fixed point VM is called intrinsic just in case it is compatible

with every other fixed point. For any ground model M , we let IM be the set of
all three valued intrinsic fixed points over M . As Kripke [33] shows, IM has a
maximum element and FPM has a minimal element with respect to the relation
≤. Using the notions just defined, the definition of K and K+ is as follows. Let
us remark that we think of the semantic values of K and K+ as given by the
sets {a,u,d} and {a,e,d} respectively. When a sentence is valuated as u, we
say that that sentence is ungrounded, whereas a sentence that is valuated as e
is called extrinsic.

Definition 6.3 K and K+

Let M be an arbitrary ground model. According to the theory K+, the valuation
of LT in M is given by K+

M ∶ Sen(LT ) → {a,e,d} , where K+
M is (obtained as)

the maximum of IM . According to the theory K, the valuation of LT in M is
given by KM ∶ Sen(LT )→ {a,u,d}, where KM is (obtained as) the minimum of
FPM . ◻

It is well-known that K+ respects K, meaning that for every ground model M ,
we have that KM(σ) = a ⇒ K+

M(σ) = a. Not the other way around though: a
Tautologyteller is strongly assertible according to K+ but ungrounded according
to K. That is:

K+
M(T (η)∨ ¬T (η)) = a, KM(T (η)∨ ¬T (η)) = u

Definition 6.4 K5

The theory K5 is defined in terms of K and K+:

K
5
M(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ag, KM(σ) = a;
ai, KM(σ) = u and K+

M(σ) = a;
e, K+

M(σ) = e;
di, KM(σ) = u and K+

M(σ) = d;
dg, KM(σ) = d.

◻

K5 is a Generalized Strong Kleene theory of truth (GSK theory), whose seman-
tics was discussed in the introduction. For the formal definition of the notion of
a GSK theory—and the proof that K5 is a GSK theory—the reader is referred
to Wintein [63].

6.4 The non equivalence of MGBD and AD

6.4.1 Defining MGBD and AD

In this section, we define MGBD and AD rigorously. That is, we define the
following three notions, the first two of which are taken from Kremer [32]:

- T dictates that truth behaves like a classical concept in M .

6Which we use here as synonymous with ‘element of FPM ’.
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- T dictates that there is no vicious reference in ground model M .

- T dictates that all T -sentences are strongly assertible in M .

Definition 6.5 Truth as a classical concept
Let T be a theory of truth and M be a ground structure. A sentence σ is
classicalT in M , i.e., classical according to T in M , just in case TM(σ) ∈{⊺T,�T}. A set of of sentences is classicalT in M just in case all its elements
are. T dictates that truth behaves like a classical concept in M just in case
Sen(LT ) is classicalT in M . ◻

Definition 6.6 Strong assertoric pair
Let T be a theory of truth, let V be the set of semantic values recognized by
T and let {x,y} ⊆V such that x /= y. We say that {x,y} is a strong assertoric
pair of T just in case we can (linearly) order the elements x,y via < such that,
for every ground model M and every σ ∈ Sen(LT ):

- Negation acts as a top-bottom swap on ⟨{x,y},<⟩.
- Conjunction and disjunction acts as meet and join on ⟨{x,y},<⟩

Given the behavior of ¬, ∨ and ∧, the top value of an assertoric pair {x,y} of
theory T may be represented as TM(σ ∨ ¬σ), where σ is an arbitrary sentence
such that TM(σ) ∈ {x,y}. ◻

Thus, {x,y} is a strong assertoric pair for a theory of truth T just in case, when
restricted to {x,y}, negation, conjunction and disjunction allow for a classical
algebraic characterization.

Definition 6.7 Strong assertibility of T -sentences
Let T be a theory of truth and let M be a ground model. Define TOP (T) as
the set of all top values associated with the strong assertoric pairs of T7. Let
D ⊆ TOP (T) be the members of TOP (T) that are designated according to T.
T dictates that all T -sentences are strongly assertible in M just in case:

TM(T (σ)↔ σ) ∈D,

whenever σ denotes σ in M . ◻

Let us make two comments to explain the rationale of Definition 6.7. First, con-
sider Priest’s LP interpretation8 of K ∶ Sen(LT ) → {a,u,d}. According to LP ,
the designated values of K are a and u, implying that—according to LP—all
the T -sentences are designated, and so assertible, in every ground model what-
soever. Be that as it may, as the value u is not a member of a strong assertoric
pair, Definition 6.7 declares that the T -sentences are not strongly assertible9 ac-
cording to LP . So, by defining the notion of strong assertibility via the notion
of a strong assertoric pair, we rule out that both a sentence and its negation can
be assertible. Second, Definition 6.7 employs the notion of a designated member

7Thus, we have that TOP (K) = TOP (K+) = a, TOP (K5) = {ag,ai}.
8LP abbreviates Logic of Paradox.
9In every ground model in which there is a sentence that is valuated as u, the T -sentence

of σ is valuated as u and so not strongly assertible.
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of TOP (T). The reason for this is that a theory T assigning σ “the top element
of a strong assertoric pair” is by itself no sufficient reason for σ being assertible
according to T. For instance, according to (my interpretation of) K5, sentences
which are valuated as either ag or ai are (strongly) assertible (i.e., ag and ai

are designated), but the formal (algebraic) structure of K5 does not ensure that
the values ag and ai have to be interpreted as such10.

What needs to be done in order to complete the definition of MGBD and
AD, is to state Kremer’s definition of a theory of truth dictating that there is
no vicious reference in M . Before we present this definition, we sketch its ratio-
nale. If a set of sentences Y is classicalT, then the elements of Y certainly do not
involve vicious reference. Let Y ⊆ Sen(LT ) be classicalT. Then, the sentential
complement of Y , Ȳ = (Sen(LT ) − Y ), consists of potentially problematic sen-
tences, i.e., of sentences which may (or may not) involve vicious reference. Now
if a ground model M can, intuitively, not discriminate between the members of
Ȳ , i.e., if M cannot in any way discriminate between potentially problematic
sentences, then, according to Kremer’s definition, there cannot be vicious refer-
ence. M cannot discriminate between members of X ⊆ Sen(LT ) just in case M
is X-neutral.

Definition 6.8 X-neutral ground model and clean ground models
Let X ⊆ Sen(LT ) . A ground model M = (D,I) is said to be X-neutral just in
case:

- For each closed term t /∈ {[σ] ∣ σ ∈ Sen(LT )}: I(t) /∈X .

- Non-logical predicates do not distinguish between elements of X . That
is, with R an n place relation symbol (R /= T ) and with d1, . . . , dn, d

′
i ∈D, it

holds that if di, d
′
i ∈X , then: (d1, . . . , di, . . . dn) ∈ I(R)⇔ (d1, . . . , d

′
i, . . . dn) ∈

I(R).
A Sen(LT )-neutral ground model is called a clean ground model. ◻

Thus, in a clean ground model M , we can refer to sentences only via their
quotational names and we cannot discriminate between sentences using any
predicate in L. Intuitively, a clean ground model is a ground model with the
“least possible amount of vicious reference”. Here is Kremer’s theory-relative
definition of no vicious reference.

Definition 6.9 No vicious reference
Let T be a theory of truth and let M be a ground model. T dictates that there
is no vicious reference in M just in case M is Ȳ -neutral for some Y ⊆ Sen(LT )
which is classicalT in M . ◻

Observe that ∅ is trivially classicalT in M for every theory T. Hence, from
definition 6.9 it follows that MGBD and AD have the following corollaries:

MGBD corollary. If M is a clean ground model, then T dictates that truth
behaves like a classical concept in M .
AD corollary. If M is a clean ground model, then T dictates that all T -
sentences are strongly assertible in M .

10I owe this remark to an anonymous referee.
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In contrast to MGBD and AD, their corollaries are partially defined (only for
clean ground models) and theory neutral, as the notion of a clean ground model
is a theory-neutral notion. In a clean ground model, we cannot create Liar
sentences, Truthtellers or any other sentences which are, intuitively, problem-
atic. In a clean ground model there cannot, by definition, any kind of vicious
reference.

6.4.2 Kremer’s results and their consequences for K5

It can be verified, for arbitrary T, whether or not T satisfies MGBD. As we
mentioned, Kremer did so for thirteen theories of truth— ten fixed point theo-
ries, three revision theories—in total. The next theorem summarizes Kremer’s
results.

Theorem 6.1 The results of Kremer
Consider five monotonic valuation schema’s: Strong Kleene, Weak Kleene, Su-
pervaluation and two schema’s which are called σ1 and σ2 by Kremer (the
details of σ1 and σ2 do not matter for our purposes). For each of these five
schema’s, define the associated minimal fixed point and maximal intrinsic fixed
point, delivering a total of 10 fixed point theories of truth. With respect to the
ten fixed point theories, we have that:

- The maximal intrinsic fixed point theory of any of the five schema’s sat-
isfies MGBD.

- Only the minimal fixed point theory of σ2 satisfies MGBD

Further, Kremer considers 3 revision theories of truth:

- T∗, the revision theory of truth based on stability, and Tc, the revi-
sion theory of truth based on stability and maximal consistency, satisfy
MGBD. T#, the revision theory of truth based on near stability, does
not satisfy MGBD.

Proof: See [32]. ◻

We will be concerned11 mainly with the results pertaining to the Strong Kleene
theories K and K+. To show that K violates MGBD, it suffices to consider
a clean ground model M0. With LEM ∶= ∀x(T (x) ∨ ¬T (x)), we have that
KM0
(LEM) = u, and so the result readily follows: there is no vicious reference

in M0 according to K and yet truth does not behave as a classical concept in
M0 according to K. Similarly, the fact that K violates AD follows from the
observation that KM0

(T ([LEM])↔ LEM) = u. Further, we have that:

K
5
M0
(LEM) = K5

M0
(T ([LEM])↔ LEM)) = ai

11As argued by Kremer, his obtained results put doubt on Gupta and Belnap’s claim that
revision theories of truth have, as a distinctive general advantage over fixed point theories,
their ‘. . . consequence that truth behaves like an ordinary classical concept under certain
conditions—conditions that roughly can be characterized as those in which there is no vicious
reference in the language.’ ([24, p201]). As the claim of Gupta and Belnap is cast in terms of
the intuitive theory-neutral notion of no vicious reference, Kremer’s results cannot be said to
falsify their claim.
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Thus, K5 does not dictate that truth behaves like a classical concept in M0, the
reason being that there are sentences, such as LEM, which are not classicalK5

in M0, as they are not valuated as ag or dg. As there is no vicious reference in
M0 according to K5, it follows that K5 violates MGBD. On the other hand,
from the definition of K5 and the fact that K+ satisfies MGBD, it immediately
follows that:

K5 dictates that there is no vicious reference in M ⇒
∀σ ∈ Sen(LT ) ∶ K5

M(σ) ∈ {ag,ai,dg,di}
Moreover, from the compositionality of K5, it follows that:

K5 dictates that there is no vicious reference in M ⇒
K5

M is linear (generalized) Strong Kleene w.r.t. dg ≤ di ≤ ai ≤ ag.

From the behavior of K5 with respect to dg ≤ di ≤ ai ≤ ag, it follows that a
T -sentence of σ is valuated as ag when σ is valuated as ag or dg, and as ai when
σ is valuated as ai or di. Accordingly, we get that:

K5 dictates that there is no vicious reference in M ⇒
∀σ ∈ Sen(LT ) ∶ K5

M(T (σ)↔ σ) ∈ {ag,ai}
Thus, if K5 dictates that there is no vicious reference in M , all the T -sentences
will be strongly assertible in M . To sum up, we get:

Theorem 6.2 K5 violates MGBD and satisfies AD
Proof: Given above. ◻

6.4.3 The intrinsic hedge

K5 satisfies AD due to the protection, against a violation of AD, that it obtains
from K+. There are more theories than K5 which may obtain such “intrinsic
protection”. Kremer considers five distinct monotonic valuation schemes in to-
tal, for each of which he defines the minimal fixed point theory and the maximal
intrinsic fixed point theory. All five considered maximal intrinsic fixed points
satisfy12 MGBD. Accordingly, all five minimal fixed point theories have the
possibility to hedge against a violation of AD by buying protection from their
intrinsic cousins by defining a five valued theory in a manner similar13 to the
definition of K5. However, we will only be concerned with the Strong Kleene
version of the intrinsic hedge.

12Kremer [31] gives an elegant proof (Theorem 4.21, 2.iv) which establishes a more general
result. Given some very weak conditions on a partial function F , defined on hypotheses—
potential significations of the truth predicate—the maximal intrinsic fixed point theory as-
sociated with F satisfies MGBD. As the partial functions associated with each of the five
schema’s considered by Kremer satisfy the mentioned conditions, the associated maximal
intrinsic fixed point theories all satisfy MGBD.

13In a similar vein, it may also be possible for T#, the revision theory of truth which violates
MGBD and AD, to hedge against a violation of AD by buying protection from T∗, which
satisfies MGBD. However, as we are not interested in “saving T#” from the violation of any
desideratum in the first place, we do not touch these matters.
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6.5 AD or MGBD as a desideratum for theories

of truth?

6.5.1 The fundamental intuition about truth

As mentioned in the introduction, Kremer cites Gupta [23] with respect to the
rationale of MGBD. The following quote of Gupta directly precedes the quote
that was given in the introduction.

We conclude, then, that in a variety of circumstances we can con-
sistently maintain the fundamental intuition. I suggest that it is a
reasonable adequacy condition on any theory that purports to ex-
plain the meaning of ’true’ that under such circumstances it preserve
the fundamental intuition—or at least the intuition should be pre-
served if it does not come into conflict with some other intuitions
that are of equal or greater importance.

(Gupta [23, p19])

When we follow the above suggestion of Gupta, and also Kremer’s suggestion
that vicious reference is a theory-relative phenomenon, we get the following (ab-
stract and informal) desideratum for theories of truth, that is cast in terms of
the “fundamental intuition about truth”. Here is the Fundamental Intuition
Desideratum (FID):

FID If T dictates that there is no vicious reference in M , then T preserves the
Fundamental Intuition about truth (FI).

One way14 to understand the relation between AD and MGBD is via FID.
For, we may understand both AD and MGBD as agreeing in their endorsement
of FID, while they disagree over how FID should be spelled out concretely. For,
AD and MGBD rely on two different specifications of the FI, i.e., on FI1 and
FI2 respectively:

FI1: All Tarski biconditionals should be assertible.

FI2: Truth should behave like a classical concept.

When we understand the relation between AD and MGBD via FID, we are
forced to argue, in order to claim that AD is preferable over MGBD, that FI1
is a better precisification of FI than FI2. Here are some arguments in favor of
FI1 over FI2.

1) Specific and non-specific intuitions about truth. In contrast to FI1,
FI2 is not an intuition that specifically pertains to truth. Rather, FI2 seems
to be an instantiation—with the concept of truth—that we have with respect
to any concept X whatsoever:

- X should behave like a classical concept.

14See Section 4.2 for another way.
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Being an instantiation of such a general schema, it seems awkward to speak of
FI2 as the fundamental intuition about truth. Arguably, fundamental intuitions
about any concept X whatsoever should be spelled out in terms of characteristic
features of X .

2) Non-sentential objects and category mistakes. Truth is appropriately
ascribed, one may say15, to sentences. Truth ascriptions to non-sentential ob-
jects are, in an important sense, inappropriate. For instance, to say that ‘snow
is true’ is to say something inappropriate in a sense in which saying that “snow
is black’ is true’ is not. Typically, one abstracts away from the difference in
inappropriateness alluded to: one simply holds that ‘snow is true’ and “snow
is black’ is true’ are on a par in the sense that they are both false16 This is a
convenient abstraction on which, typically, not much hinges. However, suppose,
for the sake of argument, that philosopher P holds that to ascribe truth to snow
is make a category mistake and that, a fortiori, the sentence ‘snow is true’ is,
say, neither true nor false. Yet any clean ground model whose domain contains
non-sentential objects will contain sentences that involve category mistakes of
the ‘snow is true’ type. As these sentences are, according to P , neither true nor
false, truth will not behave like a classical concept in such clean ground models.
Hence, any theory of truth that respects P ’s view on category mistakes violates
MGBD. In contrast, as FI1 is formulated in terms of the T -sentences, there
may be theories of truth that respects both P ’s view on category mistakes and
AD. In light of P ’s situation, a proponent of MGBD has to argue that P ’s
view on category mistakes not only conflicts with FI2 (which it does), but that
this is how it should be. In concreto, he has to argue that it belongs to the fun-
damental intuition about truth that ‘snow is true’ is false (or true, but that’s
absurd). However, I do not see how P ’s view on category mistakes conflicts
with any “fundamental intuition about truth” whatsoever, and I take this as
evidence in favor of AD over MGBD.

To put some more flesh on the bones, consider another philosopher, P ′ which
has the following view on sentences such as ‘snow is true’. According to P ′, it
is outrageous to assert ‘snow is true’. With respect to denying ‘snow is true’,
however, he is less explicit. He doesn’t think that denying ‘snow is true’ is out-
rageous, but he doesn’t want to deny it in the same sense as he denies ‘snow
is black’. P ′ can help himself to a theory of truth which respects his intuitions
and AD (but violates MGBD) as follows. Remember that the set FPM of all
Strong Kleene fixed point valuations over M was defined as follows (cf. footnote
5): VM ∈ FPM just in case,

1. VM respects the world.

2. VM respects the identity of truth.

3. VM has a Strong Kleene semantics.

4. VM(T (c)) = d whenever I(c) /∈ Sen(LT )
15We do not enter the discussion of whether it is more appropriate to ascribe truth to, say,

propositions. Nothing substantial will hinge on the assumption that the truth-bearers are
sentences.

16Note that Kremer’s results (cf. Theorem 6.1) depend on the assumption that each of the
thirteen theories of truth valuates truth ascriptions to non-sentential objects as (in our terms)
a or d (Kremer naturally assumes the latter).
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In light of his intuitions, P ′ defines the set FP⋆
M , which is defined by keeping

conditions 1,2 and 3 as they are and by trading in 4 for 4′, where:

4′ VM(T (c)) /= a whenever I(c) /∈ Sen(LT )
Condition 4′ reflects that P ′ thinks that it is outrageous to assert ‘snow is true’.
P ′ constructs the minimal fixed point and the maximal intrinsic fixed point over
FP⋆

M and combines them into a five valued GSK theory, call it K5⋆, as before.
Observe that, according to K5⋆, sentences as ‘snow is true’ will be valuated as
di. Such sentences are deniable, but not in the same sense as ‘snow is black’
(which is valuated as dg). By a similar argument as before, K5⋆ respects AD
but violates MGBD.

To sum up, in order to satisfy MGBD, a theory of truth has to valuate non
sentential truth ascriptions classically, while this is not so for AD. There are
certain views on category mistakes which do not seem to conflict with any funda-
mental intuition about truth whatsoever and according to which non sentential
truth ascriptions should not be valuated classically. In light of such views, AD
seems preferable over MGBD.

3) The central place of FI1 in the literature on truth. We’re approaching
the question as to whether AD is preferable over MGBD as a desideratum
for theories of truth via the question as to whether FI1 or FI2 is a better
precisification of FI. As such, the exhaustive appeal in the literature (in some
way or other) to FI1 as the fundamental intuition about truth (and not to
FI2) constitutes a clear dialectical advantage for favoring FI1 or FI2. I will
not bother the reader with an exhaustive list of quotes from authors such as
Aristotle, Tarski, Horwich, Gupta who all appeal, in some way or other, to FI1
as the fundamental intuition about truth. Our results established that FI1 and
FI2 result in non-equivalent desiderata for theory of truth. Given the central
place of FI1 in the literature on truth, we feel that the burden of proof is on
the side of those who claim that FI2 is a better precisification of FI than FI1.

6.5.2 Reasoning classically

Now, a proponent of MGBD may argue that the rationale of MGBD should
not be understood in terms of FID. That is, MGBD should not be understood
as stating conditions under which the fundamental intuition about truth (which,
so he may admit, is FI1) should be respected. Rather, there is an independent
rationale for MGBD. For instance, when Gupta and Belnap speak about the
Gupta-Belnap Desideratum, they do not refer to fundamental intuitions about
truth at all:

An important feature of the revision theory, and one that prompted
our interest in it, is its consequence that truth behaves like an or-
dinary classical concept under certain conditions—conditions that
can roughly be characterized as those in which there is no vicious
reference in the language. (Gupta & Belnap [24, p201])

This quote occurs in the beginning of chapter 6 of The Revision Theory of
Truth and a large part of that chapter is devoted to finding circumstances un-
der which truth behaves like a classical concept. In that chapter, Gupta and
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Belnap do not relate the notion of truth’s classical behavior to the assertibility
of the T -sentences. This suggests that truth’s classical behavior under favorable
circumstances may be desirable for reasons that are not spelled out in terms of
FID. Arguably, this is what Gupta and Belnap have in mind:

[The Gupta-Belnap Desideratum] captures the intuition that if there
is no vicious reference in the language then our ordinary ways of
working with the concept of truth are unproblematic and, conse-
quently, the interpretation of truth should be classical.

(Gupta & Belnap [24, p112])

Thus, the rationale of the Gupta-Belnap Desideratum (which, we take it, carries
over to MGBD) is as follows:

1. If there’s no vicious reference one should be able to reason with truth in
accordance with our ordinary ways.

While, in order for this rationale to be realized, Gupta and Belnap take it that:

2. Consequently, when there’s no vicious reference, truth should behave like
a classical concept.

Gupta and Belnap argue that their revision theories satisfy their desideratum,
for:

We have seen that in models that permit only certain restricted kinds
of self-reference, the revision process yields a classical extension as
the signification of truth. In these models, all our unreflective in-
tuitions are preserved: Classical principles of reasoning hold; so do
all the Tarski biconditionals [. . . ]; so also do the semantic principles
(e.g., the principle that a conjunction is true iff its conjuncts are
true). (Gupta & Belnap [24, p219])

Now, observe that the definition of strong assertibility (in terms of the notion of
a strong assertoric pair) precisely ensures that, whenever all sentences of LT are
strongly assertible or deniable in ground model M (and so all the T -sentences
are strongly assertible), the classical principles of reasoning hold. Indeed, K5

testifies that, for the classical principles of reasoning to hold, it is not required
that truth behaves like a classical concept. Hence, a proponent of AD may
accept the rationale of MGBD (claim 1) while we have shown that, in order
for this rationale to be realized, it is not necessary that truth behaves like a
classical concept (claim 2). I take it that this establishes that, in the debate
between an AD and MGBD proponent, the burden of proof shifts to the latter
one; (s)he owes us an argument why K5, which validates the classical principles
of reasoning when there’s no vicious reference, is an “undesirable” theory of
truth due to its violation of MGBD.

6.6 On the interpretation of K5

6.6.1 An objection

In this section, we will make a couple of remarks on the assertoric interpreta-
tion of (K,K+ and) K5. The assertoric interpretation that we imposed on the
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(Generalized) Strong Kleene theories of truth is reflected by our use of a and
d, possibly with subscripts. In this section, we will also consider alternative
interpretations of such theories, and it will be convenient to work with a more
neutral notation for their range: we let VM ∶ Sen(LT ) → {0, 1

2
,1} be a Strong

Kleene fixed point valuation over ground model M . Vmin
M and V +

M will denote
the minimal and maximal intrinsic fixed point in this notation.

With respect to the interpretation of V min
M , both Field [15] and Kremer [30]

have convincingly argued17 that the external notion of having semantic value 1
cannot be equated with the internal notion of truth in the interpreted language(LT , V

min
M ) that is expressed by the truth predicate of LT . Here is why we can’t

do that. Consider a Liar sentence ¬T (λ). Now, V min
M (¬T (λ)) = 1

2
/= 1. So, if we

equate having semantic value 1 with truth, it follows that the Liar is not true.
Expressing this claim in LT , we thus need to have that V min

M (¬T ([¬T (λ)])) = 1.
But in fact, we have that V min

M (¬T ([¬T (λ)])) = 1
2
. As Field rightly remarks:

[. . . ] these decidedly odd features are not consequences of Kripke’s
construction. They result, rather, from the identification of truth
with having semantic value 1. (Field [15, p69])

The assertoric interpretation of V min as K, does not equate having semantic
value 1 with truth and so avoids the “decidedly odd features” that Field is re-
ferring to. We say that KM(¬T (λ)) = u, i.e., that the Liar is ungrounded, but
the ungroundedness of a sentence is not related to its truth-value.

From the perspective of K, the ungroundedness of a sentence can be taken
to indicate that it is neither assertible nor deniable18. Hence, KM(σ) = u can
be paraphrased as ‘σ is neither assertible nor deniable according to (the asser-
toric norm that is associated with) KM ’. Similarly, from the perspective of K+

M ,
K+

M(σ) = e can be paraphrased as ‘σ is neither assertible nor deniable accord-
ing to (the assertoric norm that is associated with) K+

M ’. The relation between
KM and K+

M indicates that these theories are associated with distinct assertoric
norms and that the KM norm is stricter than the K+

M norm. According to K5,
the KM norm is too strict: the ungroundedness of a sentence is not a reason to
render it neither assertible nor deniable. On the other hand, K5 acknowledges
that assertible (deniable) ungrounded sentences cannot be asserted (denied) in
the same sense as grounded ones.

Although our assertoric interpretation of (Generalized) Strong Kleene the-
ories of truth does not have the “decidedly odd features” that are associated
with interpretations that equate having semantic value 1 with truth, there is a
worry that the assertoric interpretation faces a problem of its own, which can
be stated as the following objection:

Obj(ection): Assertibility does not behave in line with the sketched asser-
toric interpretation of a Strong Kleene theory of truth. In particular, there are
grounded sentences which are neither assertible nor deniable yet according to
KM , such sentences will be valuated as a or d.

To illustrate Obj, consider the following sentence:

Ceasar had exactly 12 hairs on his big toe as he crossed the Rubicon. (6.4)

17In fact, their argument pertains to any Strong Kleene fixed point valuation.
18We take it that a sentence is deniable just in case its negation is assertible.
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Clearly, (6.4) is a grounded sentence, and so KM will valuate it either as a or
d. Yet it seems absurd to claim that (6.4) is either assertible or deniable, as
nobody knows (6.4) or its negation19.

Below, I will formulate two distinct replies to this objection. The first reply
observes that Obj only goes through on certain accounts of assertion which
have been disputed by, amongst others, [55]. Further, we observe that on the
account of assertion as proposed by Weiner, we can make good sense of KM ’s
assertoric interpretation.

In contrast, our second reply accepts the knowledge norm of assertion. We
take it that KM delivers the correct assertoric verdict with respect to grounded
sentences only for ground models in which sentences like (6.4) do not occur.
Then, we show how KM can be represented via the method of closure games, a
game theoretic method that can be used to define theories of truth. We show
how KM ’s representation via the method of closure games can be generalized
to deliver a theory of truth that also gives the right verdicts with respect to
ground models in which sentences like (6.4) do occur. The theory of truth
thus obtained reveals that the main argument of this paper —pointing out the
distinctions between AD and MGBD and arguing that AD is preferable—is
not threatened by Obj.

6.6.2 The knowledge norm, Weiner’s norm and the norms
of K and K+

Obj relies on a specific assertoric norm: one should assert σ only if one knows
σ. Plausible as the knowledge norm of assertion may seem, it is far from indis-
putable. For instance, Weiner [55] argues that:

[. . . ] it is possible to explain the cases that motivate the knowledge
account of assertion by postulating a general norm that assertions
would be true, combined with conversational norms that govern all
speech acts. A theory on which proper assertions must be true ex-
plains the data better than a theory on which assertions must be
known to be true. (Weiner [55, p227])

It is outside the scope of this paper to assess Weiner’s theory in any detail.
I will just observe that, if Weiner’s account of assertion is correct, Obj does
not go through. Consider sentence (6.4). Depending on the ground model M ,
(6.4) is either true or false. Suppose that M is such that (6.4) is true. Then,
according to Weiner’s general norm of assertion, (6.4) is assertible, which is in
accordance with the verdict of KM with respect to (6.4). At the same time, an
assertion of (6.4) is improper on Weiner’s theory, but the improperness is not
to be explained by the general norm of assertion. Rather, it is to be explained
by violations of “conversational norms that govern all speech acts”, which are
spelled out by Weiner as Gricean maxims. Building on Weiner’s account of
assertion, we can think of KM as expressing verdicts that derive from a general
norm of assertion (a sentence being assertible when it is grounded and true),
while the improperness of assertions (or denials) of sentences like (6.4) is to be
explained via conversational norms that govern all speech acts.

19For our purposes, we may also say that (6.4) is neither assertible nor deniable as nobody
has enough evidence to justify an assertion or denial of (6.4).
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The assertoric norm of K+
M is more liberal; a sentence is assertible according

to K+
M iff it is assertible according to KM or if (it is ungrounded and) its assertion

can be justified on intrinsic grounds. An assertion of σ can be justified on
intrinsic grounds just in case:

1. By denying σ one becomes committed to contradict oneself.

2. By asserting σ one does not become committed (to contradict oneself nor
to) an arbitrary assertion or denial.

One can become committed to an assertion of σ in two ways: via an outright
assertion of σ or indirectly, as when one becomes committed to an assertion of α
by assertion α∧β. As explained in Wintein [63], we take it that the transmission
of assertoric commitments is governed by the assertoric rules for LT , amongst
which are:

T
AT (σ)

Aσ

DT (σ)

Dσ

∧
A(α∧β)

Aα,Aβ

D(α∧β)

Dα ∣Dβ

¬
A¬σ

Dσ

D¬σ

Aσ

To illustrate these two claims, let ¬T (λ) be a Liar, T (τ) be a Truthteller and
let T (η)∨¬T (η) be a Tautologyteller (cf. Definition 6.1). Consider the sentence
¬T (λ)∨T (τ) first. By denying ¬T (λ)∨T (τ), one becomes committed to deny
¬T (λ) and to deny T (τ) (rule D∨). The commitment to deny ¬T (λ) results in a
commitment to assert T (λ) (rule D¬) which results in a commitment to assert
¬T (λ) (rule AT ). Hence, by denying ¬T (λ) ∨ T (τ) one becomes committed
to assert and deny ¬T (λ), i.e., one becomes committed to contradict oneself.
So, ¬T (λ) ∨ T (τ) satisfies the first condition of being assertible on intrinsic
grounds. Not the second condition though. For, by asserting ¬T (λ) ∨ T (τ)
one becomes committed to assert ¬T (λ) or to assert T (τ). Asserting ¬T (λ)
leads to a self-contradiction, but to assert the Truthteller T (τ) is to make a
completely arbitrary assertoric move: (according to K+

M ) there is nothing which
favors an assertion of a Truthteller over a denial. Hence, condition 2 is not
fulfilled and ¬T (λ) ∨ T (τ) is not assertible on intrinsic grounds. In contrast,
the Tautologyteller T (η)∨¬T (η) is assertible on intrinsic grounds, as the reader
may verify. As we explained above, K5 combines the assertoric norms of K and
K+.

6.6.3 (Non-) Omniscient Agent Models

Here is another reply to Obj which accepts the knowledge norm of assertion.
Remember that we took a ground model M to induce a classical valuation
CM ∶ Sen(L) → {a,d} and that a theory of truth must respect this classical
valuation of L. Hence, we assumed that, relative to a ground model M , all L
sentences are either assertible or deniable. As we accept the knowledge norm of
assertion, we are committed to hold that the ground models considered thus far
are such that any L sentence σ or its negation is known. Thus, sentences like
(6.4) simply do not occur in those ground models, which we will call Omniscient
Agent models (OA models) from now on. With respect to OA models, KM ’s
verdicts are in line with the knowledge norm of assertion. In this section, we
will show how to generalize the main features of KM so that it becomes appli-
cable to Non-Omniscient Agent models (NOA models) as well. In order to do
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so, we rely on a representation of KM via the method of closure games, a game
theoretic valuation method for theories of truth that is developed in Wintein
[63]. First, we represent the main features of the method of closure games, after
which we show how it induces KM for an OA model M . Then, we show that
KM ’s representation via the method of closure games can be generalized so that
it becomes applicable to NOA models as well.

Inducing theories of truth via the Method of Closure games.
The Method of Closure Games (MCG) is a framework for truth, which defines
a theory of truth upon the specification of a closure condition. Intuitively, a
closure condition specifies, for each ground model M (here, thought of as a OA
model), the conditions under which sentences are assertible and deniable. The
central notion in MCG is that of an expansion: a closure condition assigns, to
each ground model M , a bipartition of the set of all expansions into the sets
of open and closed expansions in M . The notion of an expansion is defined in
terms of the assertoric rules of LT , which are basically the rules of a signed
tableau calculus for LT put to a semantic (and not proof theoretic) use. The
most important difference with respect to Smullyan’s signed tableau rules for
first order logic ([50]) is the addition of rules for the truth predicate. The asser-
toric rules for the truth predicate, for conjunction and for negation were already
displayed above.

In a closure game, there are two players, called ⊔ and ⊓. Player ⊔ controls all
AD sentences of disjunctive type and player ⊓ controls all sentences of conjunc-
tive type. Sentences of form Aα∨β ,Dα∧β ,A∃φ(x),D∀φ(x) are of disjunctive type,
all others of conjunctive type. A strategy of a player is a mapping of each AD

sentence Xσ that is in his control to exactly one of the immediate successors of
Xσ, as specified by the assertoric rule applicable to Xσ. A few examples suffice
to illustrate the notion of a strategy. The immediate successors of Aα∧β are
Aα and Aβ and, as Aα∧β is of conjunctive type, a strategy of player ⊓ maps
Aα∧β to either Aα or Aβ . As AT (σ) has only one immediate successor, Aσ,
every strategy of player ⊓ must map AT (σ) to Aσ. A strategy for player ⊔, who
controls Dα∧β , maps Dα∧β to either Dα or Dβ.

With f a strategy for player ⊔, g a strategy for player ⊓ and with Xσ an
arbitrary AD sentence, the tuple (Xσ, f, g) defines an expansion of Xσ. In gen-
eral, an expansion of Xσ is an infinite20 sequence of AD sentences whose first
element is Xσ and whose successor relation respects the assertoric rules. As an
example, here is the expansion of A¬T (λ), i.e., of an assertion of the Liar:

A¬T (λ),DT (λ),D¬T (λ),AT (λ),A¬T (λ) . . . (6.5)

Indeed, A¬T (λ) has only one expansion and so, in the closure game for A¬T (λ),
none of the players can influence the expansion ofA¬T (λ) that is realized. In gen-
eral, an AD sentence Xσ may have (infinitely) many expansions, each of which
is realized by some strategy pair (f, g) of our players. For instance, AP (c1)∧P (c2),
where P (c1) and P (c2) are atomic sentences of L, has two expansions and, in
the closure game for AP (c1)∧P (c2), player ⊓ can determine which one is realized.
By setting g(AP (c1)∧P (c2)) = AP (c1), player ⊓ ensures that expansion (6.6) is
realized, while g(AP (c1)∧P (c2)) = AP (c2) realizes expansion (6.7).

20Whenever an expansion “hits” a signed atomic sentence of L it keeps on repeating it
indefinitely.
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AP (c1)∧P (c2),AP (c1),AP (c1),AP (c1), . . . (6.6)

AP (c1)∧P (c2),AP (c2),AP (c2),AP (c2), . . . (6.7)

We will write exp(Xσ, f, g) to denote the expansion of Xσ that is induced by
strategies f (for player ⊔) and g (for player ⊓).

WithM a ground model, a closure condition †(M) is a bipartition {O†
M ,C

†
M}

of the set of all expansions in M . The sets O†
M and C†

M consists of all open and
all closed expansions in M respectively. In a closure game for Xσ played under
closure conditions †(M), player ⊔ tries to pick his strategy f in such a way that

the expansion of Xσ that is realized will be contained in O
†
M . We will write

O
†
M(Xσ), and say that Xσ is open relative to †(M), to indicate that player ⊔

has a strategy which ensures that the expansion of Xσ ends up in O†
M

. That is:

O
†
M(Xσ)⇔∃f∀g exp(Xσ, f, g) ∈ O†

M (6.8)

Xσ is closed relative to †(M), denoted C†
M(Xσ), just in case not O†

M(Xσ). As
specified by (6.8), a closure condition for expansions induces a closure condition
for AD sentences. The closure condition for AD sentences is used to induce a
valuation for LT , denoted V

†
M :

V
†
M(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a ∶= (1,0), O
†
M(Aσ) and C†

M(Dσ);
b ∶= (1,1), O

†
M(Aσ) and O†

M(Dσ);
n ∶= (0,0), C

†
M(Aσ) and C†

M(Dσ);
d ∶= (0,1), C

†
M(Aσ) and O†

M(Dσ).
(6.9)

In general V†
M may, but need not have, a range of four values. The intuitive

interpretation of the functions that are induced by the method of closure games
is an assertoric one. For instance, V†

M(σ) = a indicates that it is allowed to
assert, but not to deny, sentence σ in ground model M according to the norms
for assertion and denial that are specified by †(M).

The method of closure games allows us to characterize all 3- and 4-valued
Strong Kleene fixed point valuations in a uniform manner as shown in [63] Here
is a rough sketch of the characterization. For each expansion exp, its successor
expansion exp′, is obtained by deleting the first term of exp. For instance, (6.10)
is the successor expansion of (6.6).

AP (c1),AP (c1),AP (c1), . . . (6.10)

A closure condition †(M) = {O†
M
,C

†
M
} satisfies the Stable Judgement Constraint

(SJC), just in case for every expansion exp we have that:

SJC ∶ exp ∈ C
†
M
⇔ exp′ ∈ C

†
M

If a closure condition †(M) satisfies SJC, the judgement of † as to whether an
expansion is open or closed is stable, in the sense that it does not change along
the expansion. It can be shown (see XXX) that whenever a closure condition
satisfies SJC, it induces a 2-, 3- or 4-valued Strong Kleene theory of truth and,
conversely, if VM is a 2-, 3- or 4-valued theory of truth, it can be induced via
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the method of closure games by closure conditions that satisfy SJC21.

Inducing KM via the Method of Closure games. We say that an expansion
is grounded just in case it hits a signed atomic sentence of L and ungrounded
otherwise. Thus, expansions (6.6) and (6.7) are grounded, whereas (6.5) is
ungrounded. We say that an expansion exp is grounded and correct in M just
in case exp is grounded and, with Xσ the (unique) signed atomic sentence of L
that occurs on exp, we have that:

- (Xσ = Aσ and CM(σ) = a) or (Xσ =Dσ and CM(σ) = d).

As shown in [63], we can induce KM as follows.

Theorem 6.3 Inducing KM Consider the following gr(oundedness) closure
conditions {Ogr

M
,C

gr
M
}, where:

exp ∈ C
gr
M ⇔ exp is ungrounded or grounded and incorrect in M

Equivalently, we have that:

exp ∈ O
gr
M ⇔ exp is grounded and correct in M

The function V
gr
M ∶ Sen(LT ) → {a,n,d} which is induced by the groundedness

closure conditions is equivalent—modulo a translation of u as n—to KM .
Proof: See [63].

The Method of Closure Games and (N)OA models.
By a NOA model, we mean a triple M= (M,Kn+,Kn−), where:

1. M is a ground model, inducing the classical CM ∶ Sen(L)→ {0,1}.
2. Kn+ ⊆ Sen(L)
3. σ ∈ Kn+ ⇒ CM(σ) = 1

4. Kn+ is closed under (classical) logical consequence.

5. Kn− = {σ ∣ ¬σ ∈Kn+}
Thus, Kn+ are the sentences of L (condition 2) that are known by a logically
omniscient agent (condition 4), where knowledge is factive (condition 3). Kn−

is the set of sentences of L whose negation is known (condition 5). An OA model
is a NOA model M in which Kn+ ∪Kn− = Sen(L). Indeed, for each ground
model M , there is exactly one OA model M= (M,Kn+,Kn−).

With M = (M,Kn+,Kn−) a NOA model, we may say that an expansion
exp is known to be correct, just in case there occurs an element Xσ on exp such
that:

21By a 2-valued Strong Kleene theory of truth, we mean a classical valuation which respects
the identity of truth and the ground model M . If M contains Liar sentences (or their ilk),
there are no 2-valued Strong Kleene theories of truth over M . Further, when †(M) satisfies
SJC it is not guaranteed that the valuation induced by †(M) respects the ground model M .
However, a further (obvious) constraint on closure conditions (called the world respecting

constraint in [63]) can be added which ensures that the induced valuation does respect M .
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- (Xσ = Aσ and σ ∈Kn+) or (Xσ =Dσ and σ ∈Kn−).

Consider the following kn(owledge) closure conditions {Okn
M,Ckn

M} for a NOA

model M:

exp ∈ Okn
M ⇔ exp is known to be correct

By playing a closure game under the knowledge closure conditions in a NOA
modelM we induce the valuation function Vkn

M which, when M= (M,Kn+,Kn−)
is an OA model, is identical to KM , as a little reflection on the groundedness
and knowledge closure conditions shows.

Now let M = (M,Kn+,Kn−) be a (genuine) NOA model, i.e., there are
sentences of L which are neither contained in Kn+ nor in Kn−. For sake of def-
initeness, suppose that H(c) is such a sentence, where c denotes Julias Ceasar
and where H(⋅) expresses the property of having exactly 12 hairs on one’s big
toe when crossing the Rubicon, i.e., H(c) represents sentence (6.4). Consider
what happens if we play a closure game under the knowledge closure conditions
in this NOA model M. As H(c) is neither contained in Kn+ nor in Kn−, we get
that Vkn

M (H(c)) = n, which is “as it should be”. Further, as Kn+ ⊆ Sen(L) is
closed under classical logical consequence, it follows that H(c) ∨ ¬H(c) ∈ Kn+,
from which it follows that Vkn

M (H(c) ∨ ¬H(c)) = a. As we are modeling the
knowledge of a logical omniscient agent, this is also “as it should be”. Although
H(c) can neither be asserted nor denied, we surely want its T -sentence to be
assertible. That is, we want to have that Vkn

M(T ([H(c)]) ↔ H(c)) = a. How-
ever, on the present account, we have that Vkn

M(T ([H(c)]) ↔ H(c)) = n. To
see why, it is convenient to consider the (derived) assertoric rules for material
implication:

→
A(α→β)

Dα ∣ Aβ

D(α→β)

Aα,Dβ

We will show that Vkn
M (T ([H(c)]) → H(c)) = n, a similar argument reveals

that Vkn
M (T ([H(c)]) ↔ H(c)) = n. In the closure game for AT ([H(c)])→H(c),

player ⊔ chooses whether he picks his strategy f such that f(AT ([H(c)])→H(c)) =
DT ([H(c)]) or f(AT ([H(c)])→H(c)) = AH(c). His choices induce, respectively, the
following expansions of AT ([H(c)])→H(c).

AT ([H(c)])→H(c),DT ([H(c)]),DH(c),DH(c), . . . (6.11)

AT ([H(c)])→H(c),AH(c),AH(c),AH(c),AH(c) . . . (6.12)

Both expansions are closed according to the knowledge closure conditions, and so
we have that Ckn

M(AT ([H(c)])→H(c)). A similar argument reveals thatCkn
M(DT ([H(c)])→H(c))

and so we have that Vkn
M (T ([H(c)]) → H(c)) = n. The undesirable valuation

of grounded T -sentences such as those of H(c) is due to the fact that Kn+ is
logically closed under the rules of classical logic, which do not take into account
the inferential rules for truth.

However, the undesirable valuation of grounded T -sentences is easily re-
paired. We can do so by closing off Kn+ under the inferential truth rules or,
equivalently, by posing further conditions under which an AD sentence Xσ is
open in a closure game. Here, we opt for the latter. We may say that an AD

sentence Xσ is logically open, just in case, for some α ∈ L, the following two
conditions hold:
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1. ∃f∀g exp(Xσ, f, g) contains Aα

2. ∃f∀g exp(Xσ, f, g) contains Dα

Using the notion of logical openess, we may define the adjusted knowledge clo-
sure conditions for AD sentence as follows. An AD sentence Xσ is said to be
open according to the adjusted knowledge closure conditions in NOA model M,
denoted Okn⋆

M (Xσ), just in case:

Okn
M(Xσ) or Xσ is logically open.

When we have that not Okn⋆
M (Xσ), we say that Xσ is closed according to the

adjusted knowledge closure conditions, denoted Ckn⋆
M (Xσ). As an example, we

have thatOkn⋆
M (AT ([H(c)])→H(c)). For, although we have that Ckn

M(AT ([H(c)])→H(c)),
AT ([H(c)])→H(c) is logically open.

For any NOA model M, we let Vkn⋆
M ∶ Sen(LT )→ {a,n,d} be the valuation

function that is induced by Okn⋆ and Ckn⋆ in accordance with the schema of
(6.9). We have that:

Proposition 6.1 On the valuation function Vkn⋆
M

Let M = (M,Kn+,Kn−) be a NOA model and let Vkn⋆
M ∶ Sen(LT ) → {a,n,d}

be the associated valuation function. We have that:

1. {a,d} is a strong assertoric pair of Vkn⋆
M .

2. KM(σ) /= u⇒ Vkn⋆
M (T (σ)↔ σ) = a.

3. KM(σ) = u⇒ Vkn⋆
M (σ) = n.

Proof: By an inspection of the definitions. ◻

Clearly, Vkn⋆
M is not a compositional valuation function. For instance, with H(c)

as above, we have that Vkn⋆
M (H(c)) = Vkn⋆

M (¬H(c)) = n, whereas Vkn⋆
M (H(c) ∨

¬H(c)) = a. This is not something to be excused for, but rather a straightfor-
ward consequence of the fact that we are modeling the assertoric possibilities
of a non omniscient agent under the knowledge norm for assertion. The third
clause of Proposition 6.1 tells us that according to Vkn⋆

M , ungrounded sentences
are neither assertible nor deniable. Hence, Vkn⋆

M shares its judgements with re-
spect to ungrounded sentence with KM and so, as before, these judgements can
be “overruled” via K+

M . Doing so, we obtain the theory V⋆M:

V
⋆
M(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ag, Vkn⋆
M (σ) = a

ai, KM(σ) = u,K+
M (σ) = a

ng, KM(σ) /= u,Vkn⋆
M (σ) = n

e, K+
M(σ) = e

di, KM(σ) = u,K+
M (σ) = d

dg, Vkn⋆
M (σ) = d

Just as K5
M , V⋆M satisfies AD and violates MGBD. However, a little care

has to be taken when confronting V⋆M with those desiderata, as V⋆M is defined
relative to a NOA model M and the desiderata are formulated in terms of
ground models M . It doesn’t make sense to define the notion of no-vicious
reference relative to a NOA model. For, suppose that one has a NOA model
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in which H(c) is a before and in which there is a non-quotational constant
d such that I(d) = H(c). As V⋆M(H(c)) = ng, there is reference to a “non-
classical” sentence in this NOA model and so there would be vicious reference.
But clearly, that’s not the right verdict, as the non-classicality of H(c) does
not arise from the semantics of the truth predicate. Similarly, it doesn’t make
sense to define the notion of truth behaving as a classical concept relative to
a NOA model. For, in a NOA model where H(c) is as before, truth would
not behave like a classical concept according to such a definition. But again,
this is due to the “non-classicality” of H(c), which is not explained by the
semantics of the truth predicate22. In contrast, it does make sense to define the
strong assertibility of all T -sentences relative to a NOA model. Although a lack
of knowledge may refrain us from asserting or denying H(c), this should not
refrain us from asserting its T -sentence. Indeed, this feature is to be explained
via the semantics of the truth predicate.

In other words, with respect to any NOA model M = (M,Kn+,Kn−), the
notion of no vicious reference according to V⋆M and the notion of truth behaving
classical according to V⋆M are to be defined23 via K5

M . The notion of the strong
assertibility of all T -sentences, however, can be defined directly in terms of V⋆M.
Doing so, we see that, in light of Proposition 6.1, V⋆M satisfies AD and violates
MGBD. Hence, the main point of this paper is not threatened by Obj, even
when we accept its appeal to the knowledge account of assertion.

6.7 Further remarks on desiderata for theories

of truth

6.7.1 A third desideratum

We remarked that K valuates the law of excluded middle, LEM, as ungrounded in
a clean ground model. The fact that it does so has a clear intuitive explanation.
LEM is a sentence of form ∀xφ(x) and the quantifiers of LT range over all
sentences of LT . Thus, LEM quantifies over itself and, intuitively, says (amongst
others) of itself that it obeys the law of excluded middle. In more detail, an
assertion of LEM commits one (amongst others) to the assertion of T ([LEM])∨
¬T ([LEM]). To discharge a commitment to a disjunction, we have24 to assert
one of the disjuncts, and it is clear that it is T (LEM) which should be asserted in
this case. But an assertion of T (LEM) comes down to an assertion of LEM itself.
Thus, an assertion of LEM exhibits, intuitively, a kind of circularity. Observe
that the (intuitive) argument for the ungroundedness of LEM just given holds in
any ground model, and not just in clean ones. That is: KM(LEM) = u for any
ground model M . We say that according to K, LEM is essentially ungrounded.
Thus, we have that:

Proposition 6.2 For every ground model M : K and K5 dictate that
truth does not behave like a classical concept in M .

22Compare the remarks on category mistakes in Section 4.1. On such a view, the non-
classicality of ‘snow is true’ is explained by the semantics of the truth predicate: the fact that
the truth predicate is only properly applied to sentences explains that to attribute truth to
snow is to make a mistake.

23Or, equivalently, by the function V⋆
M′ where M′ is the unique OA model over M .

24As we assume a Strong Kleene interpretation of the logical connectives.
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Proof: From the observation that K valuates the law of excluded middle as u
in every ground model. ◻

In light of Proposition 6.2, which quantifies over all ground models, we may say
that according to K and K5 truth is essentially a non-classical concept25. I do
not see anything bad in a theory of truth according to which truth is essentially
non-classical, as the source of this non-classicality can be explained, in a intu-
itively appealing manner, by the essential ungroundedness of LEM. In fact, a
proponent of K5 may argue that the implicit circularity involved in the assertion
of LEM as described above, testifies that truth is essentially a non-classical con-
cept. According to K5, LEM is (strongly) assertible in a clean ground model for
non-classical reasons. For someone who thinks that truth is essentially a non-
classical concept, it seems reasonable to impose the following Non Classicality
Desideratum on theories of truth:

NCD In any ground model M , a theory of truth T should dictate that truth
does not behave like a classical concept in M .

Indeed, any theory which satisfies MGBD violates NCD. When both AD and
NCD are accepted as desiderata for theories of truth, K5 does better than
all theories of Theorem 6.1. In particular, it does better than its constituent
theories K, which violates AD, and K+, which violates NCD. In the next
subsection, we will see another example of a theory which satisfies both AD
and NCD.

It is instructive to compare the considered reaction to the behavior of LEM

in clean ground models to a reaction26 that is considered by [32].

The story about grounding might trump any intuitions that blame
truth’s nonclassical behaviour on vicious reference. Indeed, we could
go further and insist that there actually is vicious reference in this
simple ground model after all, since the quote name ∀xT (x)∨¬T (x)
viciously refers to the ungrounded sentence ∀xT (x) ∨ ¬T (x). [. . . ]
But it is a kind of vicious reference that has no apparent relationship
to the kind of vicious reference that has traditionally been seen as a
source of paradox or pathology. (Kremer [32, p362])

Thus, Kremer suggests that a proponent ofK—in light ofK’s failure of MGBD—
may consider the notion of groundedness so important that he is willing to admit
that even in clean ground models there is vicious reference. This is a different
reaction to (amongst others) LEM’s behavior than the one that is put forward
by a NCD proponent. For, a NCD proponent is happy to grant that there is
no vicious reference in clean ground models. Still, the absence of vicious refer-
ence need not force truth to behave classically: for a NCD proponent, truth is
essentially a non-classical notion.

25For some theories T, the violation of MGBD is dependent on ground model under consid-
eration. For instance, S, the minimal fixed point theory based on the Supervaluation theory
satisfies MGBD with respect to a clean ground model, as the reader may wish to verify. S
violates MGBD though, as shown in example 5.10 of [31].

26Kremer also considers, on page 362, a reaction that is in line with ours: ‘So, despite the
apparent absence of vicious reference, LEM seems ungrounded in our intuitive sense.’
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6.7.2 The theory V8+

There are more theories than K5 which satisfy both AD and NCD. An example
is the eight valued generalized Strong Kleene theory V

8+, that was defined in
[63]. The semantics of V

8+ is described via a generalization of the Strong Kleene
semantics for four valued theories of truth. The only distinction between the
semantics of a four valued Strong Kleene theory and the semantics of V

8+ is due
to the fact that negation acts as “a swap operation” on three pairs of semantic
values. Besides that distinction, the semantics is Strong Kleene, and can be
described in terms of the lattice 8+≤, whose Hasse diagram is depicted below.

ai

di

ae

de

ne be

ag

dg

Figure 6.1: Hasse diagram of 8+≤ , the lattice of V
8+.

Conjunction and disjunction act as meet and join in 8+≤, and universal and
existential quantification act as generalized conjunction and disjunction. Nega-
tion acts as the identity operation on be and ne, but also, it interchanges ax

for dx, where x ∈ {g, i, e} indicates the assertoric sense under consideration:
grounded, intrinsic or extrinsic. V

8+ can be defined in terms of K5 and a four
valued theory V

4+ that is defined in [63] using the method of closure games. The
details of the definition do not matter for our purposes. For any ground model
M , we have that V

4+
M ∶ Sen(LT ) → {a,b,n,d}, where b and n are interpreted

as both assertible and deniable, and neither assertible nor deniable respectively.
The Truthteller is an example of a sentence which is valuated as b, while the
Liar is an example of a sentence which is valuated as n. The relation between
K5 and V

8+ is as follows, where x ∈ {a,d}:
K

5
M(σ) = xg ⇔ V

8+
M (σ) = xg, K

5
M(σ) = xi ⇔ V

8+
M (σ) = xi (6.13)

From equation (6.13) it follows that V
8+ violates MGBD and that it satisfies

both AD and NCD. V
8+ uses V

4+ to impose a fine grained assertoric structure
on the sentences that are valuated as e by K5. That such is possible in an (eight
valued) generalized compositional way is a consequence of the fact that:

KM(σ) = a ⇒ K
+
M(σ) = a ⇒ V

4+
M (σ) = a (6.14)

From the perspective of V
8+, K, K+ and V

4+ model three distinct assertoric
senses. Here is a table that gives some intuitions concerning V

8+.
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σ KM(σ) K+
M(σ) V

4+
M (σ) V

8+
M (σ)

c ≈ c a a a ag

T (η) ∨ ¬T (η) u a a ai

¬T (λ)∨ T (τ) u e a ae

T (τ) u e b be

¬T (λ) u e n ne

¬T (λ)∧ T (τ) u e d de

T (θ) ∧ ¬T (θ) u e a di

c /≈ c d d d dg

V
8+ is another example of a theory of truth which satisfies both AD and NCD.

6.7.3 To sum up

We proposed a formal and theory-relative desideratum for theories of truth,
AD, which is, from a formal point of view, closely related to Kremer’s MGBD.
From a philosophical point of view, however, AD is fundamentally distinct from
MGBD. We argued that AD is preferable over MGBD. We gave examples
of theories of truth, K5 and V

8+, which violate MGBD and satisfy AD. Also,
we saw that the law of excluded middle suggest that truth may be essentially a
non-classical notion, which led to the formulation of NCD, a third desideratum
for theories of truth. Both K5 and V

8+ satisfy NCD and, interestingly, any
theory of truth which satisfies MGBD violates NCD.
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Chapter 7

Strict-Tolerant Tableaux for
Strong Kleene Truth

7.1 Abstract

We discuss four distinct semantic consequence relations which are based on
Strong Kleene theories of truth and which generalize the notion of classical con-
sequence to 3-valued logics. Then we set up a uniform signed tableau calculus
(the strict-tolerant calculus) which we show to be sound and complete with re-
spect to each of the four semantic consequence relations. The signs employed
by our calculus are As, Ds, At and Dt which indicate a strict assertion, strict
denial, tolerant assertion and tolerant denial respectively. Recently, Ripley ap-
plied the strict-tolerant account of assertion and denial (originally developed by
Cobreros et all. to bear on vagueness) to develop a new approach to truth and
alethic paradox, which we call the Strict Tolerant Conception of Truth (STCT).
The paper aims to contribute to our understanding of STCT in at least three
ways. First, by developing the strict-tolerant calculus. Second, by developing
a semantic version of the strict-tolerant calculus (assertoric semantics) which
informs us about the (strict-tolerant) assertoric possibilities relative to a fixed
ground model. Third, by showing that the strict-tolerant calculus and assertoric
semantics jointly suggest that STCT’s claim that the strict-tolerant distinction
is not a primitive one, as“the strict and tolerant can be understood in terms of
one another”, has to be reconsidered. The paper concludes with a methodolog-
ical comparison between the strict-tolerant calculus and other calculi that are
also sound and complete with respect to (some of the) semantic consequence
relations based on Strong Kleene theories of truth.

7.2 Introduction

Classical logic recognizes two semantic values, which we call 1, the designated
value and 0, the anti-designated value. Classical consequence can be defined
in terms of preservation of designated value. Working in a multiple-conclusion
setting, a premise set Γ is said to (classically) entail a conclusion set ∆, denoted
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Γ ⊧cl ∆, just in case, in passing from Γ to ∆, the value 1 is preserved, i.e.:

All α ∈ Γ are valuated as 1 ⇒ some β ∈ ∆ is valuated as 1. (7.1)

However, we may also characterize the classical consequence relation in terms
of the preservation of “non anti-designated value”. For, Γ ⊧cl ∆ just in case:

All α ∈ Γ are valuated as non-0 ⇒ some β ∈ ∆ is valuated as non-0. (7.2)

Here are two other characterizations of classical consequence, both equivalent
to (7.1) and (7.2). We have that Γ ⊧cl ∆ just in case:

All α ∈ Γ are valuated as 1 ⇒ some β ∈ ∆ is valuated as non-0. (7.3)

All α ∈ Γ are valuated as non-0 ⇒ some β ∈ ∆ is valuated as 1. (7.4)

Although (7.1), (7.2), (7.3) and (7.4) are all equivalent in classical logic, they
come apart when we move to a non-classical setting in which there are more
than two semantic values. In this paper, we will be concerned with a particular
such non-classical setting; we will be concerned with consequence relations that
are induced by Strong Kleene fixed point valuations of a language LT , containing
a distinguished truth predicate symbol T . Such consequence relations we call
fixed point consequence relations.

Below, we will define four (primitive) fixed point consequence relations for
LT that correspond to formulas (7.1), (7.2), (7.3) and (7.4) respectively. We
will do so in terms of strict and tolerant assertion and denial, a distinction
originally due to Cobreros et al [11]. In section 7.3, we define a uniform tableau
calculus, called the strict-tolerant calculus that can be used to define syntactic
consequence relations that are sound and complete with respect to these four
fixed point consequence relations. In section 7.4, we develop a semantic version
of the strict-tolerant calculus, called assertoric semantics, that can be used
to determine the (strict-tolerant) assertoric status of LT sentences relative to
a fixed ground model, i.e., relative to a fixed interpretation of the truth-free
fragment of LT . In Section 7.5, we discuss a recent philosophical approach to
truth, due to Ripley [46], which we call the Strict Tolerant Conception of Truth
(STCT). As STCT heavily relies on the strict-tolerant distinction, it is interesting
to see how the technical of Section 7.3 and 7.4 relate to STCT. We will argue
that the strict-tolerant calculus and assertoric semantics jointly suggest that,
pace Ripley, the strict-tolerant distinction is a primitive one. In other words,
we argue that the strict and tolerant cannot be understood in terms of one
another. Section 7.6 highlights the most important distinctions between the
strict-tolerant calculus and other calculi that are also sound and complete with
respect to (some of the) fixed point consequence relations. Section 7.6 concludes.
An appendix gives a proof of a theorem of Section 7.4.

The remainder of this introduction defines and discusses the fixed point
consequence relations in strict-tolerant terms (Section 7.2.1) and explains, in
sections 7.2.2, 7.2.3 and 7.3.4, the essential ideas of sections 7.3, 7.4 and 7.5
respectively.

7.2.1 Fixed point consequence in strict-tolerant terms

Before we introduce the strict-tolerant slang and the four fixed point conse-
quence relations in terms of it, we define the notion of a (Strong Kleene, but let
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that be understood) fixed point valuation of LT . LT is a first order language
without function symbols, with identity (≈), a truth predicate (T ) and a quota-
tional constant symbol ([σ]) for each sentence σ of LT . As there are no function
symbols around, the set of closed terms of LT is given by Con(LT ), i.e., the
set of all (quotational and non-quotational) constant symbols. A ground model
M = (D,I) is a classical interpretation for L, the truth-free fragment of LT , (in
which ≈ is interpreted as identity and) such that:

Sen(LT ) ⊆D, I([σ]) = σ
With M = (D,I) a ground model and σ ∈ Sen(LT ) we will use σ to denote an
arbitrary constant (quotational or not) of LT such that I(σ) = σ. A ground
model M equips L with a classical valuation CM ∶ Sen(L) → {0,1}. A fixed
point valuation of LT relative to ground model M is a function VM ∶ Sen(LT )→{0, 1

2
,1} such that:

i. VM dictates that conjunction (∧), disjunction (∨), negation (¬), univer-
sal (∀) and existential (∃) quantification behave according to the Strong
Kleene schema1.

ii. VM respects ground model M : ∀σ ∈ L ∶ VM(σ) = CM(σ)
iii. VM satisfies the identity of truth: ∀σ ∈ LT ∶ VM(T (σ)) = VM(σ)

Kripke [33] showed that there are various fixed point valuations relative to a
(fixed) ground model M . We will use FP(LT ,M) to denote the class of all
fixed point valuations of LT relative to ground model M , whereas FP(LT ) will
denote the class of all fixed point valuations. That is:

V ∈ FP(LT )⇔ V ∈ FP(LT ,M) for some ground model M

There are various ways to interpret (the range of) a fixed point valuation.
As announced, we will do so in terms of strict and tolerant assertions and de-
nials. With respect to a fixed point valuation V ∶ Sen(LT ) → {0, 1

2
,1}, the

strict-tolerant slang is to be used as follows. Sentences that are valuated as 1
are strictly assertible, sentences that are valuated as 0 are strictly deniable and
sentences that are valuated as 1

2
are neither strictly assertible nor strictly deni-

able. Sentences that receive a value in {1, 1
2
} are tolerantly assertible, whereas

those that receive a value in {0, 1
2
} are tolerantly deniable. Indeed, sentences

that are valuated as 1
2

are neither strictly assertible nor deniable, but, at the
same time, both tolerantly assertible and deniable.

Exploiting the strict-tolerant terminology, we see that the fixed point equiva-
lent of (7.1) can be paraphrased as “whenever all premisses are strictly assertible,
some conclusion is strictly assertible”. In line with this paraphrase, we say that
the fixed point equivalent of (7.1) is the strict-strict consequence relation, de-
noted ⊧ss. Similarly, we can define the fixed point equivalents of (7.2), (7.3)
and (7.4), which are denoted as ⊧tt, ⊧st and ⊧ts respectively2. Here are the four
basic fixed point consequence relations:

1We use (→) to express material implication, defined as usual.
2The ⊧ij notation is due to [11].
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● Γ ⊧ss ∆ iff for every V ∈ FP(LT ):
∀α ∈ Γ ∶ V (α) = 1 ⇒ ∃β ∈ ∆ ∶ V (β) = 1

“All premisses strictly assertible ⇒ some conclusion strictly assertible”.

● Γ ⊧tt ∆ iff for every V ∈ FP(LT ):
∀α ∈ Γ ∶ V (α) ∈ {1, 1

2
}⇒ ∃β ∈ ∆ ∶ V (β) ∈ {1, 1

2
}

“All premisses tolerantly assertible ⇒ some conclusion tolerantly assertible”.

● Γ ⊧st ∆ iff for every V ∈ FP(LT ):
∀α ∈ Γ ∶ V (α) = 1 ⇒ ∃β ∈ ∆ ∶ V (β) ∈ {1, 1

2
}

“All premisses strictly assertible ⇒ some conclusion tolerantly assertible”.

● Γ ⊧ts ∆ iff for every V ∈ FP(LT ):
∀α ∈ Γ ∶ V (α) ∈ {1, 1

2
}⇒ ∃β ∈ ∆ ∶ V (β) = 1

“All premisses tolerantly assertible ⇒ some conclusion strictly assertible”.

⊧ss captures the intuitive principle that whenever one asserts all the premisses
of a valid argument, one must also assert its conclusion, while ⊧tt captures
the principle that whenever one denies the conclusion of a valid argument, one
must also deny one of its premisses. However, although they capture intuitive
principles, both ⊧ss and ⊧tt give rise to undesirable, non-classical, behavior of
material implication (→). For, observe that:

/⊧ss
α → α, α,α → β /⊧tt

β

Hence, ⊧ss violates identity while ⊧tt violates material modus ponens. To put
some flesh on the bones, we give two concrete examples of the violations of these
classical principles. To see that ⊧ss violates identity, let:

α ∶= λ ≈ [¬T (λ)] ∧ ¬T (λ)
As identity behaves classically, λ ≈ [¬T (λ)] is, in any fixed point valuation,
either valuated as 0 or 1. Whenever it is valuated as 1, ¬T (λ) is a Liar and
hence it must be valuated as 1

2
. In these valuations then, α also valuates as 1

2
,

and hence so does α → α. This establishes that ⊧ss violates identity. To see
that ⊧tt violates material modus ponens, let α be as before and let:

β ∶= λ /≈ [¬T (λ)]
Again, let V be a fixed point valuation in which λ ≈ [¬T (λ)] is valuated as 1.
Observe that V (α) = 1

2
, V (α → β) = 1

2
and V (β) = 0 and that these three obser-

vations jointly establish that ⊧tt violates material modus ponens. In contrast,
we have that:

⊧st α→ α, α,α → β ⊧st β, (7.5)

as the reader may verify by inspecting the “truth tables”. Hence, identity
and material modus ponens are both st-valid. In fact, as shown by [45], this
observation is an instance of:
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Fact 3 Any argument form that is classically valid is ⊧st-valid.

Fact 3 certainly is a nice property for a consequence relation to have, and it
may provide a reason for preferring ⊧st over ⊧ss and ⊧tt. However, with the
semantic paradoxes around, any “good” property of a fixed point consequence
relation comes at a price; the relation must also give up some intuitively plausible
semantic principles. The price that ⊧st has to pay for Fact 3 is:

Fact 4 ⊧st is non-transitive: α ⊧st β & β ⊧st γ /⇒ α ⊧st γ

To illustrate Fact 4, observe that:

λ ≈ [¬T (λ)] ⊧st ¬T (λ) (7.6)

To see that (7.6) holds, note that when λ ≈ [¬T (λ)] valuates as 1, ¬T (λ) is a
Liar, which must be valuated as 1

2
. Hence, we have (7.6). Further, observe that:

¬T (λ) ⊧st λ /≈ [¬T (λ)] (7.7)

Now, whenever ¬T (λ) is valuated as 1, λ /≈ [¬T (λ)] must also be valuated
as 1. For, suppose that ¬T (λ) is valuated as 1 and that λ /≈ [¬T (λ)] is not
valuated as 1. Then, as identity behaves classically (and given the behavior
of ¬) λ ≈ [¬T (λ)] must be valuated as 1. But then ¬T (λ) is a Liar, which
is valuated as 1

2
in any fixed point valuation. This establishes (7.7). Now, we

clearly have that:
λ ≈ [¬T (λ)] /⊧st

λ /≈ [¬T (λ)] (7.8)

Thus, (7.6), (7.7) and (7.8) jointly illustrate the non-transitivity of ⊧st.
Our discussion of ⊧ss, ⊧tt and ⊧st leaves us with ⊧ts. Here we can be short:

although the relation is of formal interest—leaving it out violates symmetry
considerations—it is of little interest as a genuine consequence relation. For
instance, observe that:

T (t) /⊧ts
T (t) (7.9)

To see that (7.9) holds, note that there are no restrictions on how a fixed point
valuation treats sentences of form T (t), with t a non quotational constant:
there are fixed point valuations3 in which T (t) valuates as 0, 1

2
and 1. Any

fixed point in which T (t) valuates as 1
2

establishes (7.9). As the reader may
verify for himself, ⊧ts has a lot more undesirable properties.

7.2.2 The Strict-Tolerant calculus

Now that we have introduced the four fixed point relations, we are ready to
sketch how we will capture them syntactically. We will develop a signed tableau
calculus, whose four signs (As,Ds,At and Dt) correspond to the four assertoric
acts associated with the strict-tolerant interpretation in the expected manner.
Formally, one may think of As

σ,D
s
σ,A

t
σ and Dt

σ as expressing that the semantic
value of sentence σ is contained in, respectively, {1},{0},{1, 1

2
} and {0, 1

2
}. Our

calculus, whose tableau expansion rules and closure conditions are discussed

3As Michael Kremer [29] observes, the consequence relations based on the class of all fixed
point valuations according to which all truth ascriptions to non-sentences are valuated as 0
or 1

2
, are not compact.
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below, is called the strict-tolerant calculus.
A signed—with As,Ds,At or Dt—sentence will also be called an assertoric

sentence. For sake of definiteness, we display the tableau rules for the quantifier
free part of LT below, where i ∈ {s, t}.

Ai
¬α

Di
α

Di
¬α

Ai
α

Ai
α∨β

Ai
α ∣ Ai

β

Di
α∨β

Di
α,D

i
β

Ai
α∧β

Ai
α,A

i
β

Di
α∧β

Di
α ∣Di

β

Ai
T ([α])

Ai
α

Di
T ([α])

Di
α

Ai
a≈b

Ai
b≈a

As
a≈b

At
a≈b

At
a≈b

As
a≈b

Ai
a≈b,A

i
φ(a)

Ai
φ(a/b)

Ai
a≈b,D

i
φ(a)

Di
φ(a/b)

Looking at the tableau rules, we easily see that these rules are valid in every
fixed point valuation V . For instance, the rule As

¬ is valid as:

∀V ∈ FP(LT ) ∶ V (¬α) = 1 ⇔ V (α) = 0

While the fact that At
¬ is valid means that:

∀V ∈ FP(LT ) ∶ V (¬α) ∈ {1, 1
2
}⇔ V (α) ∈ {0, 1

2
}

Similarly, the reader can verify that all other tableau rules are valid in this
sense. As any strict tableau rule has a tolerant counterpart and vice versa,
the validity of the tableau rules indicates that strict and tolerant assertion and
denial are governed by the same assertoric rules. However, although ¬α is
strictly / tolerantly assertible just in case α is strictly / tolerantly deniable, it
may very well be that ¬α is tolerantly assertible without being strictly assertible,
as the Liar testifies. This distinction is explained by the norm that governs the
(strict /tolerant) assertoric actions, which is formally represented by the closure
conditions of our tableau calculus. A set of assertoric sentences S is closed just
in case:

1. For some arbitrary sentence σ: {As
σ,D

s
σ} ⊆ S

2. For some truth-free4 sentence σ: {At
σ,D

t
σ} ⊆ S

3. For some arbitrary sentence σ: {As
σ,D

t
σ} ⊆ S

4. For some arbitrary sentence σ: {At
σ,D

s
σ} ⊆ S

5. For some constant c: Di
c≈c ∈ S i ∈ {s, t}

4In a truth-free sentence, the truth predicate may only occur within a quotational constant;
P ([T (c)]) is a truth-free sentence but T ([P (c)]) is not.
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6. For distinct sentences α,β: Ai
[α]≈[β] ∈ S i ∈ {s, t}

The first closure condition states that it is never allowed to strictly assert and
deny the same sentence. As we saw above, it is allowed to both tolerantly as-
sert and deny some sentences, as in the case of the Liar. However, the second
closure condition tells us that is not allowed to both tolerantly assert and deny
truth-free sentences, which may be thought of as “unproblematic declarative
sentences describing non-semantic states of affairs”. The third and fourth clo-
sure condition state that strictly (tolerantly) asserting σ rules out tolerantly
(strictly) denying σ and vice versa. The fifth closure condition indicates that it
is never allowed to deny (strictly or tolerantly) trivial identity statements and
the sixth closure condition indicates that it is never allowed to assert (strictly
or tolerantly) that two distinct sentences are identical.

A notion that plays a crucial role in (tableau based) soundness and com-
pleteness proofs for classical logic is that of satisfiability. In our, to be given,
soundness and completeness proofs pertaining to the fixed point consequence
relations, a similar role is played by the notion of fixed point satisfiability. A set
of assertoric sentences S is said to be fixed point satisfiable just in case there
exists a fixed point valuation V such that:

As
σ ∈ S ⇒ V (σ) = 1, Ds

σ ∈ S ⇒ V (σ) = 0, (7.10)

At
σ ∈ S ⇒ V (σ) ∈ {1, 1

2
}, Dt

σ ∈ S ⇒ V (σ) ∈ {0, 1
2
}. (7.11)

The notion of fixed point satisfiability allows us to reformulate the fixed point
consequence relations in terms of sets of assertoric sentences. Observe that per
definition:

Γ ⊧st ∆ ⇔ {As
α ∣ α ∈ Γ} ∪ {Ds

β ∣ β ∈ ∆} is not fixed point satisfiable. (7.12)

Γ ⊧ss ∆ ⇔ {As
α ∣ α ∈ Γ} ∪ {Dt

β ∣ β ∈ ∆} is not fixed point satisfiable. (7.13)

Γ ⊧tt ∆ ⇔ {At
α ∣ α ∈ Γ} ∪ {Ds

β ∣ β ∈ ∆} is not fixed point satisfiable. (7.14)

Γ ⊧ts ∆ ⇔ {At
α ∣ α ∈ Γ} ∪ {Dt

β ∣ β ∈ ∆} is not fixed point satisfiable. (7.15)

This reformulation motivates the following definition of ⊢st, ⊢ss, ⊢tt and ⊢ts.
Say that a set of assertoric sentences S is expansion closed just in case there
exists a (finite) tableau starting in S which is closed. We let:

- Γ ⊢st ∆ ⇔ {As
α ∣ α ∈ Γ} ∪ {Ds

β ∣ β ∈ ∆} is expansion closed.

- Γ ⊢ss ∆ ⇔ {As
α ∣ α ∈ Γ} ∪ {Dt

β ∣ β ∈ ∆} is expansion closed.

- Γ ⊢tt ∆ ⇔ {At
α ∣ α ∈ Γ} ∪ {Ds

β ∣ β ∈ ∆} is expansion closed.

- Γ ⊢ts ∆ ⇔ {At
α ∣ α ∈ Γ} ∪ {Dt

β ∣ β ∈ ∆} is expansion closed.

By following the structure of tableau-based soundness and completeness proofs
for classical logic (see, e.g., [50]), we will prove, in Section 2, the main theorem
of this paper:

Theorem: With i, j ∈ {s, t}: Γ ⊢ij ∆ ⇔ Γ ⊧ij ∆
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That is, each of our syntactic consequence relations is sound and complete with
respect to its semantic counterpart. Further, Section 2 shows how to define
the classical calculus as a sub calculus of the strict-tolerant calculus and, by
exploiting the classical calculus, we give an instructive proof of Fact 3.

7.2.3 Assertoric Semantics

In Section 3, we present a semantic version of our strict-tolerant calculus, called
assertoric semantics. Assertoric semantics answers the actuality question: given
a fixed (actual) ground model M , which sentences are strictly / tolerantly as-
sertible and / or deniable in M? To answer the actuality question, assertoric
semantics augments the closure conditions of the strict-tolerant calculus with
closure conditions that model assertoric norms stemming from the ground model
M under consideration. Further, assertoric semantics slightly modifies the rules
of the strict-tolerant calculus in a straightforward manner to account for the
fact that we are dealing with a fixed ground model M . Given a ground model
M , assertoric semantics returns two LT valuation functions: the tolerant valua-
tion function Vt

M and the strict valuation function Vs
M . The functions Vt

M and
Vs

M inform us, respectively, about the tolerant and the strict assertoric status
of the LT sentences relative to M . It turns out that, as we will prove, Vt

M and
Vs

M are familiar functions. Vt
M is equivalent to the (Strong Kleene) minimal

fixed point valuation over M , whereas Vs
M is equivalent to the function that

Kripke [33] (implicitly) defined by quantifying over all fixed point valuations.
For instance, Vs

M will valuate the Liar as (0,0), indicating that it is forbidden
to strictly assert and to strictly deny the Liar (in M). According to Kripke, the
Liar is paradoxical, as there is no fixed point valuation (over M) that valuates
it as 1 and, also there is no fixed point valuation (over M) that valuates the
Liar as 0. The function Vt

M , however, will valuate the Liar as (1,1) indicating
that the Liar is both tolerantly assertible and deniable (in M). In terms of the
minimal fixed point, this corresponds with the Liar being valuated as 1

2
.

7.2.4 STCT

In [46], Ripley advocates a new approach to truth and semantics, which heavily
relies on the strict-tolerant distinction. Ripley’s conception of truth will be
called the Strict Tolerant Conception of Truth (STCT). Here are the most
distinguishing features of STCT.

1. STCT advocates an inferentialist, bilateralist theory of meaning.
In a nutshell, inferentialism is the view that meanings are to be explained
in terms of which inferences are valid, while bilateralism is a species of
interentialism (defended by e.g., Rumfitt [48]) according to which the va-
lidity of inferences is to explained in terms of conditions on assertion and
denial. Most notably, bilateralism acknowledges two primitive assertoric
speech acts: assertion and denial. This distinguishes bilateralism from
unilateralism (e.g., Geach [19]), which holds that assertion is the only
primitive assertoric speech act and according to which a denial is to be
understood as the assertion of a negation. Bilateralism reverses the order
of explanation; negation is to be understood in terms of denial.
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2. STCT advocates ⊧st as the norm according to which LT inferences should
be valuated as (in)correct. More precisely, the bilateralist theory of mean-
ing for LT is realized in the form of a 2-sided sequent calculus that is
sound and complete with respect to ⊧st. Indeed, being an inferentialist
position, the sequent calculus (characterization of ⊧st) is fundamental for
STCT.

3. STCT acknowledges four distinct (strict-tolerant) assertoric actions. The
commitment to four distinct assertoric actions (rather than one) is, prima
facie, an unattractive feature of STCT. However, Ripley [46] has argued
that this need not be the case, for the strict-tolerant distinction is not
a primitive one. Rather, the strict can be understood in terms of the
tolerant or vice versa.

As the non-transitivity of ⊧st is, prima facie, an undesirable property, an STCT

proponent has to argue that, here, first looks are deceiving. For such an argu-
ment, see [46]. In this paper, we will simply accept the non-transitivity of ⊧st

as a mathematical fact.
Our remarks on STCT will mainly concern distinguishing feature 3. By ex-

ploiting the strict-tolerant calculus and assertoric semantics, we will argue that
STCT is committed to acknowledging four primitive assertoric actions. Then, we
will consider whether our conclusion has consequences for STCT’s self-declared
commitment to bilateralism.

7.3 The Strict-Tolerant Calculus

The language LU
T with parameters in U . In order to set up our soundness

and completeness proofs, we will work with the language LU
T , which is obtained

by extending LT with a set of constant symbols U = {u1, u2, . . .} disjoint from
Con(LT ). Elements of U are called parameters. The language LU

T is obtained
by adding the parameters of U to LT and by closing off under the formation of
quotational constants. For example, although u1 ≈ u2 is not a sentence of LT , it
is a sentence of LU

T and, accordingly, [u1 ≈ u2] is a quotational constant of LU
T .

We will use Con(LU
T ) to denote the set of all (including parameters) constant

symbols of LU
T . The notion of a ground model and fixed point valuation of LU

T

are defined similar to the notions of a ground model and fixed point valuation
of LT . We will use FP(LU

T ) to denote the class of all fixed point valuations of
LU

T .

The Strict-Tolerant Calculus. The tableau expansion rules of the strict-
tolerant calculus will manipulate signed LU

T sentences. The expansion rules for
the quantifier-free part were displayed in the previous section. Here are the
expansion rules for the quantifiers, where i ∈ {s, t}:

Ai
∀xφ(x)

Ai
φ(x/c)

Di
∀xφ(x)

Di
φ(x/u)

u fresh
Ai
∃xφ(x)

Ai
φ(x/u)

u fresh
Di
∃xφ(x)

Di
φ(x/c)

In the rules Ai
∀ and Di

∃, c is an arbitrary element of Con(LU
T ). Likewise, in the

rules for identity that were displayed before, a and b are arbitrary elements of
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Con(LU
T ). The slogan ‘u is fresh’ that accompanies the rules Ai

∃ and Di
∀ means

that the parameter u ∈ U does not occur (in some sentence) on the path that is
extended when applying the Ai

∃ or Di
∀ rule.

The closure rules of the strict-tolerant calculus were displayed in the previ-
ous section. Note that by an arbitrary sentence (cf. closure conditions 1, 3, 4
and 6) we mean a sentence of LU

T , by a truth-free sentence (cf. closure condition
2) a sentence of LU = LU

T − {T } and by a constant (cf. closure condition 5) we
mean an element of Con(LU

T ). Sets of signed LU
T sentences that are not closed

are called open.

The relations ⊢st, ⊢ss, ⊢tt and ⊢ts. These relations were already defined in
the previous section by employing the notion of the expansion closure of a set
of assertoric sentences. Here, an assertoric sentence is a signed sentence of LU

T .
To be sure, with S a (finite or infinite) set of assertoric sentences, we say that
S is expansion closed just in case there is a tableau starting with some finite
S′ ⊆ S which is closed.

Fixed point satisfiability and fixed pointU satisfiability With S a set of
signed sentences of LT , we say that S is fixed point satisfiable just in case there
is some V ∈ FP(LT ) such that conditions (7.10) and (7.11) hold. Similarly, with
S a set of signed sentences of LU

T , we say that S is fixed pointU satisfiable just
in case there is some V ∈ FP(LU

T ) such that conditions (7.10) and (7.11) hold.
With S a set of signed sentences of LT , we have, as Sen(LT ) ⊆ Sen(LU

T ), that
both our satisfiability notions are applicable to S. The following lemma tells us
that it does not matter which of the two we apply.

Lemma 7.1 With S ⊆ Sen(LT ): S is fixed point satisfiable iff S is fixed
pointU satisfiable.
Proof: Left to the reader. ◻

Preservation of fixed pointU satisfiability. A tableau T is said to be fixed
pointU satisfiable just in case one of its paths is fixed pointU satisfiable. The
following lemma tells us that the tableau rules preserve fixed pointU satisfiabil-
ity.

Lemma 7.2 Preservation of fixed pointU satisfiability
Let T and T′ be tableaux such that T′ is an immediate extension of T, i.e.,
T′ is obtained from T by applying a tableau rule to a path of T. If T is fixed
pointU satisfiable, so is T′.
Proof: A case by case inspection of the tableau rules which can safely be left to
the reader. ◻

Together with the observation that no closed set of assertoric sentences is fixed
pointU satisfiable, Lemma 7.2 easily implies the soundless lemma.

Lemma 7.3 Soundness Lemma
Let S be a finite set of signed sentences of LU

T . If there exists a closed tableau
starting with S, then S is not fixed pointU satisfiable.
Proof: Let T be a closed tableau starting with S. Thus, there is a finite se-
quence of tableaux T0,T1,Tn = T such that T0 = S and such that Ti+1 is an
immediate extension of Ti. Suppose S is fixed pointU satisfiable. Then T0 is
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fixed pointU satisfiable per definition and, as the tableau rules preserve fixed
pointU satisfiability (cf. Lemma 7.2), so is Tn = T. However, as T is closed,
this is impossible. ◻

Our lemma’s culminate in the soundness theorem:

Theorem 7.1 Soundness: i, j ∈ {s, t},Γ,∆ ⊆ Sen(LT ): Γ ⊢ij ∆ ⇒ Γ ⊧ij ∆
Proof: From the definition of ⊧ij in terms of fixed point satisfiability (as in
(7.12), (7.13), (7.14) and (7.15) ), Lemma 7.1 and Lemma 7.3. ◻

Downwards saturated sets. A set of assertoric sentences S is called down-
wards saturated just in case S satisfies the following conditions, where i ∈ {s, t}:

1. Ai
¬α ∈ S ⇒Di

α ∈ S, Di
¬α ∈ S ⇒ Ai

α ∈ S

2. Ai
α∨β ∈ S ⇒ Ai

α ∈ S or Ai
β ∈ S, Di

α∨β ∈ S ⇒Di
α ∈ S & Di

β ∈ S

3. Ai
α∧β ∈ S ⇒ Ai

α ∈ S & Ai
β ∈ S, Di

α∧β ∈ S ⇒Di
α ∈ S or Di

β ∈ S

4. Ai
T ([α]) ∈ S ⇒ Ai

α ∈ S, Di
T ([α]) ∈ S ⇒Di

α ∈ S

5. Ai
∀xφ(x) (Di

∃xφ(x)) ∈ S ⇒ Ai
φ(x/c) (Di

φ(x/c)) ∈ S for all c ∈ Con(LU
T )

6. Ai
∃xφ(x) (Di

∀xφ(x)) ∈ S ⇒ Ai
φ(x/c) (Di

φ(x/c)) ∈ S for some c ∈ Con(LU
T )

7. Ai
a≈b ∈ S ⇒ Ai

b≈a ∈ S

8a. As
a≈b ∈ S ⇒ At

a≈b ∈ S, 8b. At
a≈b ∈ S ⇒ As

a≈b ∈ S

Sub: Ai
a≈b & Ai

φ(a) (Ai
a≈b & Di

φ(a)) ∈ S ⇒ Ai
φ(a/b) (Di

φ(a/b)) ∈ S

Let S be a set of strict assertoric sentences, i.e., X i
σ ∈ S ⇒ i = s. We say that

S is strictly downwards saturated (also, downwardss saturated) just in case S
satisfies (the strict version5 of) the conditions 1-7 and Sub.

Upwards saturated sets. Each downwards saturation condition C that is
labeled with 1-8 has form P ⇒ Q and the upwards saturation condition associ-
ated with such a C is given by P ⇐ Q. A set of assertoric sentences S is called
upwards saturated just in case S satisfies the upwards saturation conditions
associated with the downwards saturation conditions labeled by 1-8, together
with Sub (that is the reading of Sub is not reversed). A set of strict asser-
toric sentences S is called strictly upwards saturated (also, upwardss saturated)
just in case S satisfies the upwards saturation conditions associated with the
downwards saturation conditions labeled by 1-7, together with Sub (that is the
reading of Sub is not reversed).

Upwards closure. It can be shown, by arguments familiar from, e.g., [16],
that for each set of assertoric sentences S there is a smallest upwards saturated
set extending S. We call this set the upwards closure of S. Similarly, each
downwardss saturated set of strict assertoric sentences has a smallest upwardss

saturated set extending it, which will be called the strict upwards closure of S.

The following theorem will constitute the heart of our completeness proof.

5The tolerant versions are trivially satisfied as S is a set of strict assertoric sentences.
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Theorem 7.2 Open downwards saturated sets are fixed pointU satis-
fiable
Proof: Let S be an open, downwards saturated set of signed sentences of LU

T .
Define an equivalence relation, ≡ on Con(LU

T ) as follows:

≡ = {(a, b) ∣ As
a≈b ∈ S} ∪ {(a, a) ∣ a ∈ Con(LU

T )}
Now ≡ is indeed an equivalence relation on Con(LU

T ). Reflexivity follows per
definition and transitivity and symmetry follow from the downwards saturation
conditions (including Sub) pertaining to identity. For any c ∈ Con(LU

T ), we
let ⟨c⟩ be the equivalence class (induced by ≡) containing c. We now define a
ground model M = (D,I) as follows. Our domain D consists of all sentences of
LU

T together with all equivalence classes that do not contain quote names:

D = Sen(LU
T ) ∪ {⟨c⟩ ∣ for no σ ∈ Sen(LU

T ) ∶ [σ] ∈ ⟨c⟩}
The interpretation function I is defined as follows. For any c ∈ Con(LU

T ):
I(c) = { ⟨c⟩; for no σ ∈ Sen(LU

T ) ∶ [σ] ∈ ⟨c⟩
σ; [σ] ∈ ⟨c⟩

Note that the second clause is well-defined; given that S is open, we never
have that Ai

[α]≈[β] ∈ S for distinct α,β ∈ Sen(LU
T ). Hence, there is at most

one [σ] ∈ Sen(LU
T ) occurring in an equivalence class ⟨c⟩. The extension of ≈ is

dictated by the fact that ≈ is the identity relation on D, while the extension of
an n-ary predicate P /=≈ of LU is given as follows:

I(P ) = {(I(t1), . . . , I(tn)) ∣ As
P (t1,...tn)

∈ S or At
P (t1,...tn)

∈ S}
The ground model M defined as such gives rise to a classical valuation CM ∶

Sen(LU) → {1,0}. We use this valuation to define the set ws, which may be
called (the strict version of) the world. Below, At(LU) is the set of all atomic
sentences of LU .

ws = {As
σ ∣ σ ∈ At(LU),CM(σ) = 1} ∪ {Ds

σ ∣ σ ∈ At(LU),CM(σ) = 0}
We will now show how we can construct a fixed point valuation based on M .
To do so, we first define Ss as the set consisting of all strict assertoric sentences
occurring in S respectively. Thus:

Ss
= {Xs

σ ∣Xs
σ ∈ S,X ∈ {A,D}}

Next, we extend Ss to the set Ss
w by adding ws to it:

Ss
w = Ss

∪ws

Note that, although Ss
w contains only strict assertoric sentences, it contains

(“encoded in strict terms”) information about the tolerant assertoric sentences
of At(LU) that occurred in S. Also, observe that Ss

w is open and downwardss

saturated. Let Ss
w
⇑ be the upwardss closure of Ss

w and define the function VM

as follows:
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VM(σ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 As
σ ∈ S

s
w
⇑

1
2
{As

σ,D
s
σ} ∩ Ss

w
⇑
= ∅

0, Ds
σ ∈ S

s
w
⇑

Indeed, VM is well-defined: as Ss
w is open and downwardss saturated, Ss

w
⇑ is

open, downwardss saturated and upwardss saturated (by arguments familiar

from [16]). Hence, as Ss
w
⇑ is open we never have that both Aσ and Dσ occur

in Ss
w
⇑, so that VM is well-defined. Further, from the fact that Ss

w
⇑ is both

downwardss and upwardss saturated, it follows that VM is a Strong Kleene
valuation of LU

T which respects the identity of truth. Moreover, as Ss
w contains

either Aσ or Dσ for each atomic LU sentence in accordance with CM , it follows
that Ss

w
⇑ contains either Aσ or Dσ for each LU sentence in accordance with CM .

Hence, VM respects the ground model M . Thus, VM ∈ FP(LU
T ). Finally, as

Ss ⊆ Ss
w
⇑, we have that:

As
σ ∈ S

s ⇒ VM(σ) = 1, Ds
σ ∈ S

s ⇒ VM(σ) = 0 (7.16)

As Ss contains the strict part of S, it suffices, in order to show that S is fixed
point satisfiable, to show that:

At
σ ∈ S ⇒ VM(σ) ∈ {1, 1

2
}, Dt

σ ∈ S ⇒ VM(σ) ∈ {0, 1
2
} (7.17)

We will show that At
σ ∈ S ⇒ VM(σ) ∈ {1, 1

2
}; the argument for the Dt case

is completely dual. We give a reductio argument. Suppose that At
σ ∈ S and

VM(σ) = 0 and observe that the latter is equivalent to Ds
σ ∈ S

s
w
⇑. We will show

that At
σ ∈ S implies that Ds

σ /∈ Ss
w
⇑ by transfinite induction. In order to do so,

we define the sequence {Sρ}ρ∈On consisting of sets of assertoric sentences.

- ρ = 0: Sρ = Ss
w

- ρ = υ + 1: Sρ is obtained by extending Sυ by applying the upwardss rules
(including Sub) that are allowed on the basis of Sυ. For instance, if As

α

and As
β ∈ Sυ then As

α, As
β ,A

s
α∧β ∈ Sρ. Similarly for all other upwardss

rules.

- ρ is a limit ordinal: Sρ = ⋃υ<ρ S
υ.

Clearly, {Sρ}ρ∈On is an increasing sequence and has a fixed point which is equal

to Ss
w
⇑. Hence, it suffices to show that for any ρ ∈ On:

At
σ ∈ S ⇒Ds

σ /∈ Sρ (7.18)

Induction basis. From the fact that S is open, it follows that At
σ ∈ S ⇒Ds

σ /∈
Ss. From the way in which we defined the world, we get that At

σ ∈ S ⇒ Ds
σ /∈

Ss
w = S0.

Successor step. Suppose that (7.18) holds for ρ. We show that (7.18) also
holds for ρ + 1. To do so, we show that extending Sρ by applying an upwardss

rule to Sρ results in a set for which (7.18) still holds. We illustrate two cases,
leaving the rest for the reader. In both cases, we argue by contraposition. First
case: suppose that At

¬α ∈ S and Ds
¬α ∈ Sρ+1. From the first it follows, as S
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is downwardss closed, that Dt
α ∈ S. From the second, it follows that As

α ∈ Sρ

per definition of Sρ+1. Hence, we have that At
α ∈ S and Ds

α ∈ Sρ, which gives a
contradiction with the assumption that (7.18) holds for ρ. Second case: suppose
that At

α∨β ∈ S and Ds
α∨β ∈ Sρ+1. From the latter, it follows that Ds

α ∈ Sρ and

Ds
β ∈ S

ρ. As S is downwards saturated, At
α∨β ∈ S implies that At

α ∈ S or Dt
β ∈ S.

So we have that: (At
α ∈ S & Ds

α ∈ Sρ) or (At
β ∈ S & Ds

β ∈ S
ρ). Either way, we

get a contradiction with the assumption that (7.18) holds for ρ.
Limit step. Suppose that ρ is a limit ordinal and that (7.18) holds for all

υ < ρ. As Sρ is the union of all Sυ with υ < ρ, (7.18) also holds for Sρ.
So, we have established that (7.18) holds for all ordinals, from which it

follows that At
σ ∈ S ⇒Ds

σ /∈ Ss
w
⇑, which is what we had to show. ◻

To establish completeness, we follow a route familiar from, e.g., [50]. First, we
establish finite completeness, i.e., we show that, for finite Γ and ∆, with i, j ∈{s, t}: if Σ ⊧ij ∆ then Σ ⊢ij ∆. Second, we show that ⊧ij is compact. Then, the
completeness theorem (pertaining to arbitrary sets of sentences) immediately
follows from finite completeness and compactness. Finite completeness follows
rather easily from the finite tableau expansion lemma.

Lemma 7.4 Finite tableau extension lemma
Let T0 be a finite tableau. By applying tableau rules, we can extend T0 to a
(possibly infinite) tableau T with the following properties: every closed path of
T is finite and every open path of T is downwards saturated.

Proof: Let {ti}i∈N be an enumeration of Con(LU
T ). We will start with T0 and

use tableau rules to construct a sequence of finite extensions T0,T1,T2, . . .. If
some Tn is closed, then the construction halts, i.e., Tm = Tn for all m ≥ n and
we set T = Tn. In any case, we set T = ⋃i∈N Ti. Suppose that Tn is already
constructed. Here is how Tn+1 is obtained from Tn:

- Define T′
n as follows. For each open path P of Tn and with j ∈ {s, t}:

when Xj
σ ∈ P and when Xj

σ is of form A
j

∀xφ(x)
or Dj

∃xφ(x)
, extend P by

adding, for each i ≤ n, respectively, Aj

φ(x/ti)
or Dj

φ(x/ti)
. Let T′

n be the

tableau thus obtained.

- Define T′′
n as follows. For each open path P of T′

n and with j ∈ {s, t}:
when Xj

σ ∈ P and when Xj
σ is of form X

j
¬α, Xj

α∨β
, Xj

α∧β
, Xj

T ([α])
, Dj

∀xφ(x)

or Aj

∃xφ(x)
, extend P by applying the appropriate tableau rule. Let T′′

n

be the tableau thus obtained.

- Define Tn+1 as follows. Close off each open path of T′′
n under the tableau

rules for identity. Tn+1 is the tableau thus obtained.

In the construction, a closed path is never extended, so all closed paths are finite.
In addition, the construction ensures that each open path of T is downwards
saturated. ◻

Theorem 7.3 Finite Completeness
Let S be finite set of assertoric sentences. 1) If S is not fixed point satisfiable,
then there exists a closed tableau starting with S. 2) Hence, with Γ and ∆ finite
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set of assertoric sentences and with i, j ∈ {s, t}, we have that: if Γ ⊧ij ∆ then
Γ ⊢ij ∆.
Proof: To establish our first claim, we argue by contraposition. If there does
not exists a closed tableau starting with S, the construction from Lemma 7.4
delivers, with T0 = S, an open downwards saturated path P such that S ⊆ P .
Use P to construct a fixed point valuation VM as in Theorem 7.2 and observe
that, as S ⊆ P , VM establishes that S is fixed point satisfiable. This establishes
the first claim.

The second claim is a (familiar) consequence of the first claim which we

illustrate only for the st-variant. Again, we argue by contraposition. If Γ /⊢st
∆

then, per definition of ⊢st, we have that no tableau starting with {As
σ ∣ σ ∈ Γ}

∪ {Ds
σ ∣ σ ∈ Γ} is closed. Hence, from our first claim it follows that {As

σ ∣ σ ∈ Γ}
∪ {Ds

σ ∣ σ ∈ Γ} is fixed point satisfiable. Thus, per definition of fixed point
satisfiability, there exists a fixed point valuation in which all of Γ is valuated as
1 and in which all of ∆ is valuated as 0. Hence, not any fixed valuation which is
such that when all of Γ is valuated as 1, some of ∆ is valuated as 1 or 1

2
. Hence,

Γ /⊧st
∆. ◻

Theorem 7.4 Compactness
Let S be an infinite set of signed sentences of LT . If each finite subset S is fixed
point satisfiable, then S is fixed point satisfiable.

Proof: Enumerate the elements of S, i.e., let S = {si}i∈N. We will use tableau
rules to construct a sequence of finite extensions T0,T1,T2, . . .. Let T0 be
the empty tableau. Suppose Tn has been constructed. Extend Tn to T∗

n by
adding sn to each open path of Tn. Then extend T∗

n to Tn+1 via the three
steps of Lemma 7.4. As for each n, {si ∣ i ≤ n} is fixed point satisfiable, the
soundness theorem tells us that each tableaux Ti has at least one open path.
Set T = ⋃i∈N Ti. From the construction, it follows that each closed path of
T is finite and that each open path is downwards saturated. Also note that
T is a finitely branching tree with infinitely many points (signed sentences).
According to König’s lemma (see, for instance [50]), T has an infinite path P .
From the construction it follows that P is open, downwards saturated and that
it contains all the elements of S. Hence, from Theorem 7.2 and Lemma 7.1 it
follows that S is fixed point satisfiable.

We have now established completeness for arbitrary sets of sentences, as we will
illustrate for the st case. Let Γ and ∆ be arbitrary sets of sentences of LT and
suppose that Γ /⊢st

∆. This means that, for no finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ we
have that Γ′ ⊢st ∆′. From the finite completeness theorem, it follows that for
every such Γ′ and ∆′ we have that {As

σ ∣ σ ∈ Γ′} ∪ {Ds
σ ∣ σ ∈ ∆′} is fixed point

satisfiable. From compactness, it follows that {As
σ ∣ σ ∈ Γ} ∪ {Ds

σ ∣ σ ∈ ∆} is
fixed point satisfiable. Hence Γ /⊧st

∆. Thus:

Theorem 7.5 With i, j ∈ {s, t} ∶ ⊢ij is sound and complete w.r.t. ⊧ij.
Proof: Given above. ◻

In the remainder of this section, we exploit the strict-tolerant calculus to
make a couple of remarks on the classical behavior of ⊧st. We show how an
instructive proof of Fact 3 can be given by defining the classical calculus as a
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sub-calculus of the strict-tolerant calculus. Before we do that, we define ⊧cl, the
classical consequence relation over ground models.

The relation ⊧cl. Let, for any ground model M , CL(LT ,M) be the set of all
classical valuations of LT . A classical valuation V in CL(LT ,M) must respect
the ground model M , i.e., V (σ) = CM(σ) for all σ ∈ L, but it may give the
truth predicate an arbitrary (classical) extension. Hence, a classical valuation
may (and sometimes must, in the presence of Liar like statements) violate the
identity of truth. CL(LT ) will denote the class of all classical valuations of LT

which respect some ground model M . That is:

V ∈CL(LT )⇔ V ∈CL(LT ,M) for some ground model M

We now define ⊧cl, “classical consequence in presence of ground models” by
quantifying over all “ground model respecting classical interpretations of LT ”,
i.e, by quantifying over CL(LT ):
● Γ ⊧cl ∆ iff for every V ∈CL(LT ):

∀α ∈ Γ ∶ V (α) = 1 ⇒ ∃β ∈ ∆ ∶ V (β) = 1

The phrase “⊧st is highly classical” may now be taken to be a paraphrase of: if
Γ ⊧cl ∆ then Γ ⊧st ∆. In order to give an instructive proof of the latter claim,
we define the classical tableau calculus.

The classical tableau calculus. We define the classical calculus as a (all
too familiar) sub-calculus of the strict-tolerant calculus, exploiting only those
rules of the strict-tolerant calculus that take us from strictly signed sentences
to other strictly signed sentences and without the rules pertaining to the truth
predicate. The closure conditions of the classical calculus are the same as those
of the strict-tolerant calculus.

The relation ⊢cl. We may use the classical tableau calculus to define the rela-
tion ⊢cl of “syntactic classical consequence in the presence of ground models” as
follows: Γ ⊢cl ∆ iff: for some finite Γ′ ⊆ Γ,∆′ ⊆ ∆ there is tableau starting with{As

σ ∣ σ ∈ Γ′} ∪ {Ds
σ ∣ σ ∈ ∆′} that is closed according to the classical calculus.

In order to show that “⊧st is highly classical” in a precise manner, we will exploit
the following two lemma’s:

Lemma 7.5 If Γ ⊢cl ∆ then Γ ⊢st ∆ (and hence Γ ⊧st ∆)
Proof: The claim that Γ ⊢cl ∆ then Γ ⊢st ∆ follows from the fact that the
closure conditions of the classical rules are the same as those of the strict-tolerant
calculus, that its rules are a subset of the rules of the strict-tolerant calculus and
from the definition of ⊢cl and ⊢st in terms of the classical respectively strict-
tolerant calculus. The addendum “and hence Γ ⊧st ∆” follows from soundness
of ⊢st with respect to ⊧st ◻

Lemma 7.6 ⊢cl is sound and complete with respect to ⊧cl

Proof: Follow a typical soundness and completeness proof for classical logic
based on a 2-signed tableau calculus (see, e.g. [50]) and carry out some minor
adjustments to account for ground models in a way similar to the proof of
Theorem 7.2. ◻
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We now have enough ammunition to prove the promised:

Proposition 7.1 If Γ ⊧cl ∆ then Γ ⊧st ∆
Proof: Let Γ ⊧cl ∆. According to Lemma 7.6, ⊢cl is complete with respect to
⊧cl and so we have that Γ ⊢cl ∆. From Lemma 7.5, it then follows that Γ ⊧st ∆.
◻

In the introduction, we illustrated some undesirable properties of ⊧ss and ⊧tt;
the first was shown to violate identity whereas the latter was shown to violate
material modus ponens. In contrast, as ⊧st is highly classical (cf. Proposition
7.1) it satisfies both identity and material modus ponens. As the reader may
have noticed, the relations ⊧ss and ⊧tt are complementary with respect to iden-
tity and material modus ponens: although ⊧ss violates identity, ⊧tt satisfies
identity, and although ⊧tt violates material modus ponens, ⊧ss satisfies that
property. These observations suggest that, more generally, the non-classical be-
havior of ⊧ss and ⊧tt may not be shared by their (set-theoretic) union ⊧or:

● Γ ⊧or ∆ ⇔ Γ ⊧ss ∆ or Γ ⊧tt ∆

The following example illustrates that this suggestion does not hold water: ⊧or

is not highly classical in the sense of Proposition 7.1. First, observe that:

(T (c1) ∧ ¬T (c1)) ∨ T (c3) ⊧cl (T (c2) ∨ ¬T (c2)) ∧ T (c3) (7.19)

Proposition 7.1 implies that (7.19) also holds when ⊧cl is replaced by ⊧st. How-
ever, (7.19) does not hold when ⊧cl is replaced by either ⊧ss or ⊧tt, as the
tableaux displayed below illustrate.

At
(T (c1)∧¬T (c1))∨T (c3)

Ds
(T (c2)∨¬T (c2))∧T (c3)

At
T (c1)∧¬T (c1)

Ds
T (c2)∨¬T (c2)

X

Ds
T (c3)

✓

As
T (c3)

X

As
(T (c1)∧¬T (c1))∨T (c3)

Dt
(T (c2)∨¬T (c2))∧T (c3)

As
T (c1)∧¬T (c1)

X

As
T (c3)

Dt
T (c2)∨¬T (c2)

✓

Dt
T (c3)

X

A check mark (✓) put below a branch indicates that (upon any further ex-
pansions of the tableau), the branch remains open, whereas a cross (X) indi-
cates (upon further expansions of the tableau) the branch will close. Hence,
the left tableau illustrates that (T (c1) ∧ ¬T (c1)) ∨ T (c3) does not ⊧ss entail(T (c2) ∨ ¬T (c2)) ∧ T (c3), whereas the right tableau illustrates that (T (c1) ∧
¬T (c1)) ∨ T (c3) does not ⊧tt entail (T (c2) ∨ ¬T (c2)) ∧ T (c3).

7.4 Assertoric Semantics

The strict-tolerant calculus gives us a syntactic characterization of the four
fixed point consequence relations. But, so one may ask, which sentences are,
actually (strictly -tolerantly) assertible and or deniable? More precisely, given
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a fixed ground model M , what is the assertoric status of the LT sentences in
strict-tolerant terms? In this section, we show that the strict-tolerant calculus
suggests a very natural and precise answer to the actuality question. We give
this answer in terms of assertoric semantics6, which is a semantic version of
the strict-tolerant calculus; assertoric semantics converts ground models into
semantic valuations LT . Let us explain the essential ideas of assertoric semantics
and how it relates to the strict-tolerant calculus.

The closure conditions of the strict-tolerant calculus are thought of as the
norms pertaining to (strict-tolerant) assertion and denial. Assertoric semantics
acknowledges those norms and augments them with straightforward assertoric
norms due to the ground model M , pertaining to sentences of L; if, with σ ∈

Sen(L), CM(σ) = 1 , then it is forbidden to (strictly or tolerantly) deny σ in
M , while if CM(σ) = 0 then it is forbidden to (strictly or tolerantly) assert
σ in M . Also, assertoric semantics slightly modifies the rules of the strict-
tolerant calculus to acknowledge the fact that we are considering a fixed ground
model M = (D,I); the rules for the quantifiers now acknowledge the fact that
the quantifiers range over D and the rules for the truth predicate are now
applicable whenever an arbitrary constant σ denotes (as specified by I) the
sentence σ. Further, the rules pertaining to identity statements are dropped
(as their function is taken care of by M and the adjusted T -rules) while the
rules for the propositional connectives remain the same. Below, we display the
assertoric rules of LT , i.e., the semantic counterpart of the rules of the strict-
tolerant calculus as just discussed. An assertoric rule is either of conjunctive
type ⊓ or of disjunctive type ⊔. Depending on its type, an assertoric rule is
depicted in either one of the following two ways.

X i
σ

Π(X i
σ) ⊔

X i
σ

Π(X i
σ)⊓ (7.20)

The assertoric rules of LT are, together with their type, displayed in the follow-
ing table, where i ∈ {s, t}:

¬
Ai
¬α{Di
α}⊓

Di
¬α{Ai
α}⊔

∨
Ai
(α∨β)

{Ai
α,A

i
β
}⊔

Di
(α∨β)

{Di
α,D

i
β
}⊓

∧
Ai
(α∧β)

{Ai
α,A

i
β
}⊓

Di
(α∧β)

{Di
α,D

i
β
}⊔

∃
Ai
∃xφ(x)

{Ai
φ(x/c)

∣ c ∈ Con(LT )}⊔
Di
∃xφ(x)

{Di
φ(x/c)

∣ c ∈ Con(LT )}⊓
∀

Ai
∀xφ(x)

{Ai
φ(x/c)

∣ c ∈ Con(LT )}⊓
Di
∀xφ(x)

{Di
φ(x/c)

∣ c ∈ Con(LT )}⊔
T

Ai
T (σ)

{Ai
σ} ⊓

Di
T (σ)

{Di
σ} ⊔

6Assertoric semantics was first developed and used by Wintein [57]. The semantic valuation
function used by [57] coincides with the strict valuation function as defined below.
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Recall that, in the rules for the truth predicate, σ is an arbitrary constant which
denotes the sentence σ. Hence, the assertoric rules are specified relative to a
fixed ground model M = (D,I). Further, observe that the assertoric rules for
the quantifiers treat quantification substitutionally; for sake of simplicity, we
assume that M is such that for every object d in D there is a constant c of
LT such that I(c) = d. The type (⊔ or ⊓) distinction pertaining to assertoric
sentences is used to define the notion of a branch of an assertoric sentence X i

σ.
A branch of X i

σ is closely related to a completed path in a tableau which starts
with X i

σ. The set of all branches of X i
σ is called the assertoric tree associated

with X i
σ, denoted T

σ
Xi . The assertoric tree of X i

σ is closely related to the com-
pleted tableau which starts with X i

σ.

Branches and Trees. A set B is a branch of X i
σ just in case the following four

conditions hold.

1. X i
σ ∈ B

2. (Y i
α ∈ B and Y i

α has type ⊓) ⇒ Zi
β ∈ B for all Zi

β ∈ Π(Y i
α)

3. (Y i
α ∈ B and Y i

α has type ⊔) ⇒ Zi
β ∈ B for some Zi

β ∈ Π(Y i
α)

4. No strict subset of B satisfies conditions 1,2 and 3.

The assertoric tree T
σ
Xi is the set of all branches of X i

σ:

T
σ
Xi = {B ∣ B is a branch of X i

σ }
As branches are sets of assertoric sentences, the closure conditions of the strict-
tolerant calculus are applicable to them. As discussed above, assertoric seman-
tics augments these closure conditions with closure conditions that are associ-
ated with the ground model M that is under consideration. Here is how.

ClosureM conditions for branches and trees. A branch is said to be
groundM closed, just in case:

∃σ ∈ Sen(L) ∶ (Ai
α ∈ B & CM(σ) = 0) or (Di

α ∈ B & CM(σ) = 1)
A branch is called closedM just in case it is groundM closed or it is closed ac-
cording to the closure conditions of the strict-tolerant calculus. An assertoric
tree is called closedM just in case all its branches are closedM . Branches and
trees that are not closedM are called openM . Due to the structure of branches,
the definition of the closureM conditions can be highly simplified. As an inspec-
tion of the assertoric rules reveals, branches have the property that either all
their elements have sign Xs or all their elements have sign Xt. Hence, a branch
will never be closedM due to the occurrence of As

σ (Ds
σ) and Dt

σ (At
σ). Further,

the closure conditions of the strict-tolerant calculus pertaining to identity and
At

σ-Dt
σ clashes are also taken care of by the notion of groundM -closure. These

observations allow for the following reformulation of the closureM conditions.
With B ∈ T

σ
Xi , B is closedM just in case:

B is groundM -closed or ∃σ ∈ Sen(LT ) ∶ {As
σ,D

s
σ} ⊆ B (7.21)
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Hence, with B a branch of some tolerant assertoric tree T
σ
Xt : B is closedM just

in case:
B is groundM -closed. (7.22)

Assertoric semantics thus associates four assertoric trees with each sentence
σ: the strict assertion tree T

σ
As , the strict denial tree T

σ
Ds , and their tolerant

counterparts T
σ
At and T

σ
Dt . Intuitively, T

σ
As keeps track of all the assertoric

commitments that are associated with a strict assertion of σ in M , while the
closureM of T

σ
As indicates that it is not possible to live up to those commit-

ments. When T
σ
As is closedM we say that it is forbidden to strictly assert σ in

M . When T
σ
As is openM , we say that it is allowed to strictly assert σ. The

(closureM conditions pertaining to the) trees T
σ
Ds , T

σ
At and T

σ
Dt are interpreted

similarly. The assertoric trees and the closureM conditions will be used to define
the strict and the tolerant valuation of LT in M .

The strict and tolerant valuation of LT . The strict valuation Vs
M and

the tolerant valuation Vt
M are defined in accordance with the following schema,

where i ∈ {s, t}:

V
i
M(σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1,0), T
σ
Ai is openM & T

σ
Di is closedM(1,1), T

σ
Ai is openM & T

σ
Di is openM(0,0), T

σ
Ai is closedM & T

σ
Di is closedM(0,1), T

σ
Ai is closedM & T

σ
Di is openM

Let us give an example to illustrate our definitions. Let M = (D,I) be a ground
model such that I(λ) = ¬T (λ) and I(τ) = T (τ). With i ∈ {s, t}, we have that

T
¬T (λ)∨T (τ)

Ai = {Ai
1,A

i
2} and T

¬T (λ)∨T (τ)

Di = {Di}, where:

Ai
1 = {Ai

¬T (λ),D
i
T (λ),D

i
¬T (λ),A

i
T (λ)} Ai

2 = {Ai
T (τ)}

Di
= {Di

¬T (λ),A
i
T (λ),A

i
¬T (λ),D

i
T (λ),D

i
T (τ)}

As both As
2 and At

2 are openM , so are T
¬T (λ)∨T (τ)
As and T

¬T (λ)∨T (τ)
At . However,

as Ds is closedM whereas Dt is openM , it holds that T
¬T (λ)∨T (τ)
As is closedM

while T
¬T (λ)∨T (τ)
At is openM . Hence, we have that:

V
s
M(¬T (λ)∨ T (τ)) = (1,0), V

t
M(¬T (λ) ∨ T (τ)) = (1,1)

It is left to the reader to establish that:

V
s
M(¬T (λ)) = (0,0), V

t
M(¬T (λ)) = (1,1) (7.23)

V
s
M(T (τ)) = (1,1), V

t
M(T (τ)) = (1,1) (7.24)

Vs
M(¬T (τ)) = (1,1), Vt

M(¬T (τ)) = (1,1) (7.25)

V
s
M(T (τ)∧ ¬T (τ)) = (0,1), V

t
M(T (τ) ∧ ¬T (τ)) = (1,1) (7.26)

A couple of remarks concerning the interpretation of these valuations are in
place. Equation (7.23) states that the Liar is neither strictly assertible nor
strictly deniable, while it is both tolerantly assertible and deniable. Equation
(7.24) states that the Truthteller is both strictly assertible and deniable and,
also, that the Trutheller is both tolerantly assertible and deniable. Some caution
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is in order here. According to STCT, there is nothing wrong with a sentence
being both tolerantly assertible and deniable. In fact, the Liar is the canonical
example of a sentence which is, according to STCT, both assertible and deni-
able. There may very well be objections against the very idea of the tolerant
account of assertion and denial, but these need not concern us here. According
to STCT, however, the strict assertion of a sentence rules out its strict denial.
So, how should we interpret Vs

M(T (τ)) = (1,1), which seems to tell us that
the Truthteller is both strictly assertible and deniable? Well, as indicating that
it is both allowed to strictly assert the Truthteller and also to strictly deny
it, but that it is not allowed to do so “at the same time”; strictly asserting
the Trutheller means giving up the (“a priori”) possibility of strictly denying it,
while strictly denying the Truthteller means giving up the (“a priori”) possibility
of strictly asserting it. According to assertoric semantics, strictly asserting and
denying T (τ) “at the same time” is—given the assertoric rules for negation—
tantamount to strictly asserting T (τ) ∧ ¬T (τ). And equation (7.26) testifies
that this is not allowed; Vs

M(T (τ) ∧ ¬T (τ)) = (0,1) indicates that it is not al-
lowed to strictly assert T (τ)∧¬T (τ), while it is allowed to strictly deny it. So,
where Vs

M valuates both T (τ) and ¬T (τ) as (1,1) (cf. (7.24) (7.25) ) it valu-
ates their conjunction as (0,1). This suggests that Vs

M is a non-compositional
valuation function. In fact, Vs

M is a familiar 4-valued non-compositional val-
uation function, while Vt

M is a familiar compositional valuation function. As
we will see below, Vs

M is equivalent to the function that Kripke [33] defined by
quantifying over all (Strong Kleene) fixed points relative to a fixed ground model
M , whereas Vt

M is equivalent to the (Strong Kleene) minimal fixed point overM .

The functions K4
M and KM . In [33], Kripke defines two valuation functions,

which we will denote as K4
M and KM . The function K4

M is defined by quantifying
over FPM(LT ):

- K4
M(σ) = (1,0)⇔∃VM ∶ VM(σ) = 1 and /∃ VM ∶ VM(σ) = 0

- K4
M(σ) = (1,1)⇔∃VM ∶ VM(σ) = 1 and ∃VM ∶ VM(σ) = 0

- K4
M(σ) = (0,0)⇔/∃ VM ∶ VM(σ) = 1 and /∃ VM ∶ VM(σ) = 0

- K4
M(σ) = (0,1)⇔/∃ VM ∶ VM(σ) = 1 and ∃VM ∶ VM(σ) = 0

The function KM can be defined along the following lines. Define a partial order
≤ on FPM(LT ) by stipulating that

VM ≤ V ′
M ⇔∀σ ∈ Sen(LT ) ∶ VM (σ) = 1 ⇒ V ′

M(σ) = 1

It can be shown that (FPM(LT ),≤) has a minimal element, V min
M , which is

called the minimal fixed point valuation. The function KM translates V min
M as

having range {(1,0), (1,1), (0,1)}. That is:

KM(σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1,0), V min

M (σ) = 1;(1,1), V min
M (σ) = 1

2
;(0,1), V min

M (σ) = 0.

With the definition of K4
M and KM in place, we can make the remark that Vs

M

and Vt
M are familiar functions precise. For, we have that:
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Theorem 7.6 Vs
M = K4

M

Proof: See [63]. ◻

Theorem 7.7 Vt
M = KM

Proof: See appendix. ◻

The initial assertoric possibilities with respect to LT sentences in a ground
model M are described by Vs

M and Vt
M . However, upon performing asser-

toric actions, we take up certain assertoric commitments, which (may) rule
out certain other assertoric actions as forbidden. The latter process is de-
scribed by the strict-tolerant calculus. For instance, with T (τ) the Truthteller,
Vs

M(T (τ)) = Vt
M(T (τ)) = (1,1) indicates that we can initially perform any of

the four assertoric actions (As,Ds,At or Dt) with respect to T (τ). However, a
strict assertion of the Truthteller rules out both a strong and a tolerant denial
of it, whereas a tolerant denial of the Truthteller rules out a strict assertion of
it. More generally, the transmission of assertoric possibilities due to (strict and
tolerant) assertions and denials is captured by the strict-tolerant calculus. For,
we have that:

Γ ⊢st ∆ ⇔ strictly asserting all of Γ rules out strictly denying all of ∆.
Γ ⊢ss ∆ ⇔ strictly asserting all of Γ rules out tolerantly denying all of ∆.
Γ ⊢tt ∆ ⇔ tolerantly asserting all of Γ rules out strictly denying all of ∆.
Γ ⊢ts ∆ ⇔ tolerantly asserting all of Γ rules out tolerantly denying all of ∆.

As Vs
M and Vt

M describe the initial assertoric possibilities and as the strict-
tolerant calculus describes the transmission of assertoric possibilities, it seems
interesting to describe the dynamics of sequences of assertoric actions in a precise
framework. Doing so, however, is beyond the scope of this paper.

7.5 Remarks on STCT

The plan of this section was announced in the introduction. We will mainly be
considered with the following feature of STCT:

- STCT acknowledges four distinct (strict-tolerant) assertoric actions. The
commitment to four distinct assertoric actions (rather than one) is, prima
facie, an unattractive feature of STCT. However, Ripley [46] has argued
that this need not be the case, for the strict-tolerant distinction is not
a primitive one. Rather, the strict can be understood in terms of the
tolerant or vice versa.

Looking at the strict-tolerant calculus, it is very natural (and we did so in the
course of this paper) to interpret its four signs as force indicators. Doing so,
however, we seem to be committed to the view that there are four primitive as-
sertoric speech acts. Why then, does Ripley think of STCT as having bilateralist
and not, say, fourlateralist commitments? Here is his answer:

[The strict-tolerant distinction] it is not a primitive distinction; we
can understand tolerant assertion and denial in terms of their strict
cousins, as I’ve presented them here, or we can equally well under-
stand strict in terms of tolerant. So long as we have a grip on one,
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there is no difficulty in coming to understand the other.
(Ripley, [46, p20])

In a sense, this remark is to the point. But, so I will argue, not in the required
sense. The remark is to the point relative to a particular fixed point valuation
VM . With VM a fixed point valuation, we will say that σ is stronglyVM

assert-
ible just in case VM(σ) = 1. The notion of a sentence being stronglyVM

deniable,
tolerantlyVM

assertible and tolerantlyVM
deniable are defined analogously. Rel-

ative to VM , we can indeed understand strict in terms of tolerant (and vice
versa), as:

σ is stronglyVM
assertible ⇔ σ is not tolerantlyVM

deniable (7.27)

σ is stronglyVM
deniable ⇔ σ is not tolerantlyVM

assertible (7.28)

Fair enough. But (7.27) and (7.28) only indicate that strict and tolerant can be
understood in terms of one another if, given a ground model M , there would be
a privileged fixed point valuation V ∗

M which would inform us about the assertoric
status of the LT sentences. One way to argue that there must be such a priv-
ileged fixed point valuation is to give in to the intuition that Michael Kremer
[29] calls the supervenience of semantics. Kremer contrasts the supervenience
of semantics with another intuition, which he calls the fixed point conception of
truth:

- Supervenience of semantics: Once all the empirical facts have been settled,
so are all the semantic facts. In terms of our formal theory, the intuition
becomes: for any given ground model, there is exactly one correct inter-
pretation of the truth predicate. (Kremer [29, p238])

- Fixed point conception of truth: This criterion takes the notion of a fixed
point to give the whole meaning of true. Or, in Kripke’s words, the in-
tuitive concept of truth is expressed by the formula: ‘we are entitled to
assert (or deny) of a sentence that it is true precisely under the circum-
stances when we can assert (or deny) the sentence itself’.

(Kremer [29, p241])

Clearly, due to its inferentialist commitments, STCT is committed to the fixed
point conception of truth7: the meaning of true is given by the inferential (as-
sertoric) rules of the truth predicate, and those do not single out a particular
fixed point as privileged.

So, given STCT’s inferential commitments, (7.27) and (7.28) do not suffice
as a justification of the claim that the strict and the tolerant can be understood
in terms of one another. In fact, the results of the previous section can be used
to illustrate the insufficiency of (7.27) and (7.28) more concretely. Suppose that
we are in an initial situation, as described at the end of the previous section.
There, we saw that the strict and tolerant assertoric possibilities with respect

7If one thinks that, given a ground model M , there is exactly one correct fixed point
valuation V ∗

M
, it would make sense to define a consequence relation by quantifying over the

class of all V ∗
M

valuations. Thus, the fact that STCT defines its privileged consequence relation
⊧

st by quantifying over all fixed point valuations testifies of its commitment to the fixed point
conception of truth.

209



to LT sentences in M are described by Vs
M and Vt

M respectively. Clearly then,
in an initial situation the strict-tolerant conversion cannot proceed in line with
(7.27) and (7.28); Vt

M and Vs
M are distinct functions and Vs

M is not even a fixed
point valuation. Thus, an initial situation suggests that STCT is committed to
taking the strict-tolerant distinction as a primitive one and hence, to acknowl-
edge that there are four primitive assertoric speech acts.

But not so fast. For, so one may argue, the above objections notwithstand-
ing, STCT is not forced to give up its claim that we can get away with two
primitive assertoric speech acts. Here is an argument which purports to estab-
lish just that.

Argument 1 There are only two primitive assertoric speech acts: assertion
and denial. However, there are two distinct norms that govern the practice of
asserting and denying sentences: a strict and a tolerant one. For instance, the
distinction between a strict and tolerant assertion is not a force distinction be-
tween two speech acts, but rather a distinction in the norm according to which
a single speech act (assertion) is qualified as allowed / forbidden. In fact, this
is clearly illustrated by the definition of Vs

M and Vt
M , as these functions are

(modulo an insignificant difference in signs) obtained from the same assertoric
trees. The only difference is that Vs

M is obtained by judging the assertoric trees
to be open / closed in terms of the strict norm of assertion, whereas the closure
judgements that induce Vt

M arise from the tolerant norm.

Although this argument seems plausible when we restrict our attention to
Vs

M and Vt
M , the closure conditions of the strict-tolerant calculus reveal that

it is incorrect. For, recall that a sufficient condition for the closure of a set of
assertoric sentences S is that:

{As
σ,D

t
σ} ⊆ S or {At

σ,D
s
σ} ⊆ S (7.29)

Hence, strictly (tolerantly) asserting σ rules out tolerantly (strictly) denying σ
and vice versa. In the definition of Vs

M and Vt
M , (7.29) played no role as these

functions do not consider the interactions between strict and tolerant. However,
(7.29) is a condition sine qua non for our syntactic characterization of the fixed
point consequence relations via the strict-tolerant calculus. Thus, according to
the strict-tolerant calculus, there are no two separate norms—a tolerant and a
strict one—but rather there is a single norm that governs the practice of strictly
and tolerantly asserting and denying sentences. According to the strict-tolerant
calculus, there are four distinct primitive assertoric speech acts which are gov-
erned by a single norm that is formally represented by its closure conditions.
Hence, argument 1 fails.

Here is another argument that a STCT proponent may invoke for this claim
that the strict and tolerant are on a par.

Argument 2 What is really at the heart of STCT is the commitment to (a
syntactic characterization of ) ⊧st. The strict and tolerant are on a par as we
can characterize this relation in two ways: by putting constraints on strict as-
sertion and denial (only) or by putting constraints on tolerant assertion and
denial (only).
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According to the strict-tolerant calculus, this claim is plainly wrong. Clearly,
we can characterize ⊧st by putting constraints on strict assertion and denial
only, as the definition of ⊢st, which can be paraphrased as A, testifies.

A Strictly asserting all premisses rules out strictly denying all consequences.

However, we can’t do so by putting constraints on tolerant assertion and de-
nial only. According to the strict-tolerant calculus, the strict and tolerant are,
with respect to ⊧st, not on a par. Rather, strict assertions and denials have
a privileged status. It may be argued that the discrepancy between the strict
and tolerant alluded to is a phenomenon that is specific to the strict-tolerant
calculus. Thus, there may be other calculi that allow us to characterize ⊧st and
according to which argument 2 can be sustained. As of yet, I have no argument
which rules out such a possibility in principle. Then again, I take it that the
strict-tolerant calculus is a very natural way of characterizing the (consequence
relations induced by) strict and tolerant assertions and denials. The naturalness
of the strict-tolerant calculus at least suggests that argument 2 is false. At any
rate, it shifts the burden of proof to someone who claims that “the strict and
tolerant are on a par”.

In what follows, we simply assume that we have established that according to
STCT, the strict and tolerant cannot be conceived of as being on a par. In
other words, we take it that STCT is committed to acknowledge that there are
four primitive assertoric speech acts. We now ask the question whether, in light
of this commitment, STCT’s self-declared bilateralism has to be reconsidered.
Inferentialism is the view that meanings are to be explained in terms of which
inferences are valid, while bilateralism is a species of interentialism according to
which the validity of inferences is to explained in terms of conditions on assertion
and denial. According to STCT, the relation ⊧st specifies which inferences are
valid. As we pointed out, ⊧st validity can be explained in terms of conditions
on (strict) assertion and (strict) denial. Hence, in this sense, STCT can clearly
uphold its commitment to bilateralism. On the other hand, it is not outrageous
to assert that an advocate of bi-lateralism is committed to view that there are
only two primitive assertoric speech acts. On this understanding of bilateralism,
STCT has, per definition, to give up its commitment to bilateralism. Thus,
whether or not STCT has to give up its commitment to bilateralism depends
on what you mean by bilateralism. At any rate, STCT has to give up its claim
that the strict tolerant distinction is not a primitive one. Or so we argued. The
philosophical implications of a commitment to four distinct assertoric speech
acts are beyond the scope of this paper.

7.6 Syntactic approaches to Strong Kleene Truth

In this section, we will compare our characterization of the fixed point conse-
quence relations with other approaches that characterize (some of those) rela-
tions.

In [29], Michael Kremer gives a 2-sided sequent calculus which is sound and
complete with respect to the derived fixed point consequence relation ⊧&, which
he defines by stipulating that Γ ⊧& ∆ iff both Γ ⊧ss ∆ and Γ ⊧tt ∆. Although
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Kremer points out that his results can be modified to deal with ⊧ss and ⊧tt as
well, he does not discuss ⊧st and ⊧ts. In fact, Kremer is not concerned with the
strict-tolerant distinction at all. In comparison with Kremer then, our approach
is more general, as it captures ⊧st and ⊧ts as well. Also, our approach is mo-
tivated by distinct philosophical considerations, the strict-tolerant distinction,
which are reflected directly in our calculus via our four signs.

Ripley [45] gives a unified 3-sided sequent calculus which can be used to de-
fine syntactic consequence relations that capture (i.e., are sound and complete
with respect to) ⊧st, ⊧ss, ⊧tt and ⊧ts. As such, it is natural to compare our
approach to that of [45]. Here are, what I consider, the two most significant
distinctions between our approach and that of [45].

1. The three positions in a 3-sided sequent of the calculus of [45] correspond
to the three distinct semantic values, 1, 1

2
and 0, of a fixed point valuation. Our

four signs, in contrast, correspond directly to the four strict-tolerant assertoric
actions that are constitutive for the strict-tolerant interpretation of fixed point
valuations. In that sense, our calculus is better suited (in fact, tailor made)
to study the notions of strict / tolerant assertion and denial than the sequent
calculus of [45]. Further, an important benefit of the strict-tolerant calculus is
its connection with assertoric semantics, as explained in Section 3. As a conse-
quence, the strict-tolerant calculus has the possibility to assess STCT’s claim in
a precise manner, as we illustrated in Section 4.

2. Strictly speaking, [45] is not concerned with the four fixed point conse-
quence relations as we defined them. The reason is that for us, a fixed point
valuation is defined as a valuation that is i Strong Kleene, ii respects a clas-
sical ground model M and iii respects the identity of truth. In contrast, the
four consequence relations considered by [45] are defined by quantifying over
all Strong Kleene valuations of LT which respect the identity of truth; con-
dition ii is dropped. Clearly, dropping ii radically changes the extensions of
the consequence relations. To see this, observe that for us a sentence of form
P (c)∨¬P (c) (where P ∈ L) is always strictly assertible, whereas this is not the
case according to [45]. Now, it is common practice to define theories of truth
relative to a classical ground model. More importantly, it seems also method-
ologically preferable to do so: the reason that a truth-free sentence valuates as
1
2

cannot involve the behavior of the truth predicate. As such, a study of this
behavior better abstracts away from these reasons. Accordingly, we feel that
it is worthwhile to study the four consequence relations with classical ground
models around. In this sense, our approach resembles that of Kremer [29], who
also requires that a fixed point valuation respects a classical ground model.

A last point of comparison is another paper of Ripley. In [46], Ripley ar-
ticulates STCT and, in order to do so, he restricts his attention to ⊧st. To
characterize ⊧st syntactically, Ripley does not rely on the 3-sided sequent cal-
culus of [45], but rather, he presents a 2-sided sequent calculus which is sound
and complete with respect to ⊧st. The 2-sided calculus can, in the usual sense,
be considered as the sequent calculus variant of ⊢st as defined in this paper:
signing a sentence with As (Ds) in our calculus corresponds with placing that
sentence on the left (right) in the calculus of [46]. The characterization of ⊧st

as in [46] takes away the qualms (mentioned in 1 above) we have with respect
to the 3-sided sequent approach of [45]. However, as the results in this paper
point out, the natural approach to ⊧st by [46] does not carry over to ⊧ss and
⊧tt (or ⊧ts) . The reason for this is that the calculus of [46] only recognizes a
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single assertoric sense whereas, to characterize all four fixed point relations in
(strict-tolerant) assertoric terms, a calculus needs to distinguish between strict
and tolerant assertion and denial. Further, [46] is, just like [45], not considered
with fixed point valuations that are induced by ground models.

7.7 Concluding remarks

We presented a tableau system, the strict-tolerant calculus, and used it to charac-
terize all four fixed point consequence relations over LT (⊧st, ⊧ss, ⊧tt and ⊧ts) in
a uniform manner. Next, we showed how a semantic version of the strict-tolerant
calculus, called assertoric semantics, can be used to capture the (strict-tolerant)
assertoric status of the LT sentences relative to a particular ground model. By
exploiting the strict-tolerant calculus and assertoric semantics, we then argued
that the strict-tolerant distinction is, pace Ripley, a primitive distinction. We
concluded by indicating some important (methodological) distinctions between
the strict-tolerant calculus and other calculi that are sound and complete with
respect to (some of the) fixed point consequence relations.

Appendix

In this appendix, we will prove Theorem 7.7 of Section 3. Our proof will exploit
a proof of [63], which showed how to represent the (Strong Kleene) minimal fixed
point in terms of the function V

gr
M , defined in terms of the method of closure

games. We will show that Vt
M is equivalent to V

gr
M , from which it follows—by

the results of [63]—that Vt
M is equivalent to the minimal fixed point. We will

first present the definition of Vgr
M

via the method of closure games, which relies
heavily on the assertoric rules for LT as presented in Section 3. Here are the
essential concepts involved in the definition of Vgr

M .

Strategies, (grounded) expansions, closure conditions, valuations
1. A strategy for player ⊔ is a function f which maps each Xt

σ of8 type ⊔ to one
element of Π(Xt

σ). The set of all strategies of player ⊔ is denoted by F .
2. A strategy for player ⊓ is a function g which maps each Xt

σ of type ⊓ to one
element of Π(Xt

σ). The set of all strategies of player ⊓ is denoted by G.
3. With f ∈ F , g ∈ G and Xt

σ a tolerant assertoric sentence, exp(Xt
σ, f, g)

denotes the expansion of Xt
σ by f and g. exp(Xt

σ, f, g) is an infinite—whenever
we hit an atomic sentence that is not a sentential truth ascription we keep on
repeating it—sequence of AD sentences whose first element is Xt

σ and whose
successor relation respects f and g. As an example, with g ∈ G such that
g(At

P (c1)∧P (c2)
) = At

P (c2)
, exp(At

P (c1)∧P (c2)
, f, g) is:

At
P (c1)∧P (c2)

,At
P (c2)

,At
P (c2)

,At
P (c2)

, . . .

The set of all expansions in M is9 denoted by EXPM .
4. A closure condition †(M) = {O†

M ,C
†
M} is a bipartition of EXPM into the sets

8The method of closure games does not rely on the strict-tolerant distinction. Here, we
present the method in terms of tolerant assertoric sentences (only) to make the connection
with Vt

M more direct.
9The assertoric rules for truth testify that the set of all expansions depends on the ground

model under consideration.
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O
†
M
/= ∅, consisting of the open† expansions in M , and C†

M
/= ∅, containing the

closed† expansions in M .

5. A closure condition †(M) = {O†
M ,C

†
M} gives rise to closure conditions for

AD sentences:

O
†
M
(Xt

σ)⇔∃f ∈ F∀g ∈ G ∶ exp(Xt
σ, f, g) ∈ O†

M

C
†
M(Xt

σ)⇔ not O†
M(Xt

σ)
6. The closure conditions for AD sentences are used to induce V†

M
:

V
†
M
(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1,0), O
†
M
(At

σ) and C†
M
(Dt

σ)(1,1), O
†
M
(At

σ) and O†
M
(Dt

σ)(0,0), C
†
M(At

σ) and C†
M(Dt

σ)(0,1), C
†
M(At

σ) and O†
M(Dt

σ)
(7.30)

7. An expansion is grounded just in case it contains, for some α ∈ At(L), Xt
α; we

say that Xt
α is the ground of the expansion. Expansions that are not grounded

are called ungrounded. Grounded expansions are either correct in M or incorrect
in M . A (grounded) expansion is correct in M just in case its ground Xt

α is
such that:

X = A & CM(α) = 1 or X =D & CM(α) = 0

Gcor
M ⊆ EXPM is the set consisting of all expansions which are grounded and

correct in M . Ginc
M ⊆ EXPM is the set consisting of all expansions which are

grounded and incorrect in M .

The function V
gr
M is induced, in accordance with (7.30), by stipulating that all

and only the expansions of Gcor
M are open, i.e., Ogr

M
= Gcor

M . In [63], it was
shown that Vgr

M ∶ Sen(LT ) → {(1,0), (0,0), (0,1)} is equivalent to the minimal
fixed point V min

M ∶ Sen(LT ) → {1, 1
2
,0} by taking (1,0), (0,0) and (0,1) to be

abbreviations of 1, 1
2

and 0 respectively.

Here, we define the dual of Vgr
M , denoted V

gr
M , by stipulating that all and

only the expansions of Ginc
M are closed, i.e., Cgr

M = Ginc
M . Due to the fact that a

branch (as defined in Section 3) is set of expansions, we have that:

Lemma 7.7 V
gr
M
= Vt

M

Let T
σ
Xt be a tolerant assertoric tree of σ. Clearly, it suffices to show that:

T
σ
Xt is open ⇔∃f ∈ F∀g ∈ G ∶ exp(Xt

σ, f, g) ∈ Ogr
M ,

which follows from a comparison of the closure conditions for branches with
C

gr
M

and by observing that a branch of T
σ
Xt can be obtained by fixing an f ′ ∈ F

and by putting all assertoric sentences that occur on some expansion that is
contained in {exp(Xt

σ, f
′, g) ∣ g ∈ G} into a single set. ◻

We will show that, modulo a “(0,0) − (1,1) conversion”, Vgr
M ∶ Sen(LT ) →{(1,0), (0,0), (0,1)} and V

gr
M ∶ Sen(LT ) → {(1,0), (1,1), (0,1)} are identical.

As Vgr
M is known to be the minimal fixed point, this proves Theorem 7.7.
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Lemma 7.8 V
gr
M

and V
gr
M

are equivalent modulo a “(0,0)− (1,1) conver-
sion”.
Proof: First, note that it suffices to show that for any σ ∈ Sen(LT ):

i V
gr
M (σ) = (1,0)⇔ V

gr
M (σ) = (1,0)

ii V
gr
M (σ) = (0,1)⇔ V

gr
M (σ) = (0,1)

With Xt
σ a (tolerant) assertoric sentence, X̂t

σ will denote its AD inverse: Ât
σ =

Dt
σ and D̂t

σ = A
t
σ. With S a set of (tolerant) assertoric sentences. Ŝ will denote

the AD inverse of S, i.e. the set consisting of the AD inverses of the elements
of S. As shown in [63] in more detail, symmetry considerations reveal that:

∃f∀g exp(Xt
σ, f, g) ∈ S⇔ ∃g∀f exp(X̂t

σ, f, g) ∈ Ŝ (7.31)

i ⇒ Suppose that Vgr
M (σ) = (1,0), i.e., that Ogr

M(At
σ) and C

gr
M (Dt

σ). As Ogr
M ⊆

O
gr
M , Ogr

M(At
σ) implies that Ogr

M(At
σ). Further, Ogr

M(At
σ) means that player ⊔ has

a strategy which ensures that the expansion of At
σ will end up in Gcor

M . As the
AD inverse of Gcor

M is Ginc
M , this implies, via (7.31), that player ⊓ has a strategy

g which ensures that the expansion of Dt
σ will end up in Ginc

M . But this means
that player ⊔ does not have a strategy which ensures that the expansion of Dt

σ

will end up in EXPM −Ginc
M = O

gr
M . Thus, Cgr

M (Dt
σ) and so Vgr

M (σ) = (1,0).
i ⇐ Suppose that Vgr

M (σ) = (1,0), i.e., that Ogr
M(At

σ) and C
gr
M (Dt

σ). As Ogr
M ⊆

O
gr
M , Cgr

M (Dt
σ) implies that Cgr

M (Dt
σ). Further, from C

gr
M (Dt

σ), it follows that ⊓
has a strategy g which ensures that the expansion of Dt

σ will end up in Ginc
M .

This implies, via (7.31) and as Gcor
M is the AD inverse of Ginc

M , that player ⊔
has a strategy f which ensures that the expansion of Dt

σ will end up in Gcor
M .

Hence Ogr
M(At

σ) and so Vgr
M (σ) = (1,0).

ii Just like i. ◻

Theorem 7.7 Vt
M = KM

Proof: From Lemma 7.7 and Lemma 7.8. ◻
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Chapter 8

A Calculus for Belnap’s
Logic in Which Each Proof
Consists of Two Trees1

8.1 Abstract

In this paper we introduce a Gentzen calculus for (a functionally complete vari-
ant of) Belnap’s logic in which establishing the provability of a sequent in general
requires two proof trees, one establishing that whenever all premises are true
some conclusion is true and one that guarantees the falsity of at least one premise
if all conclusions are false. The calculus can also be put to use in proving that
one statement necessarily approximates another, where necessary approxima-
tion is a natural dual of entailment. The calculus, and its tableau variant, not
only capture the classical connectives, but also the ‘information’ connectives of
four-valued Belnap logics. This answers a question by Avron.

8.2 Introduction

In logics based on Belnap’s [6, 7] well-known bilattice FOUR (see Figure 8.2)
everything gets doubled. The two truth values of classical logic are replaced
by their four possible combinations (we write t for ‘true and not false’, f for
‘false and not true’, n for ‘neither true nor false’, and b for ‘both true and
false’),2 and there are two natural orderings on these values instead of the
single classical ordering on {true, false}. One of these orderings, ≤t, depicted
in the Hasse diagram for the logical lattice L4 in Figure 8.2, is connected to
the degree of truth a statement may assume; the other, ≤k, the ordering in the
approximation lattice A4, to its degree of definedness.3 Four values bring more

1This paper is joint work with Reinhard Muskens.
2Wintein [57] gives an alternative reading of Belnap’s four values in terms of the assertibility

and deniability of statements.
3Ginzberg [20] considers a general theory of bilattices, but we will stick to the logic based

on Belnap’s FOUR here. For general information about bilattices, see Fitting’s papers, e.g.
[17].
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truth functions with them than two do and this leads to a doubling of logical
operators.4 The classical ¬, ∧ and ∨ are now naturally complemented with duals
− (‘conflation’), ⊗ (‘consensus’) and ⊕ (‘gullibility’), and in a predicate logical
setting the quantifiers ∀ and ∃ moreover come with cousins Π and Σ.5 Also,
while in classical logic one can define entailment either as transmission of truth
or, completely equivalently, transmission of non-falsity (‘if the conclusion is false
one of the premises must be’), these two notions come apart in the four-valued
setting, since there is transmission of truth but not of non-falsity from t to b,
for example. Entailment is naturally defined by stipulating that ϕ ⊧ ψ if and
only if the values of ϕ and ψ are in the ≤t ordering in every model (for every
assignment) and this boils down to requiring that both forms of transmission
must hold from ϕ to ψ.6

The doublings do not stop here. Entailment itself also obtains a natural dual,
for, replacing ≤t in the above definition by ≤k, we can say that ϕ necessarily
approximates ψ, ϕ ∣≈ ψ, if and only if the values of ϕ and ψ are in the ≤k ordering
in every model. We feel that this notion of necessary approximation carries some
interest given the pivotal role of the approximation (or ‘knowledge’) ordering in
the semantics of programming languages.

The main purpose of this paper is a simple one. We want to add one more
doubling to the ones mentioned already by giving a proof system for four-valued
predicate logic in which each proof consists of two Gentzen proof trees, one
establishing transmission of truth, the other transmission of non-falsity. The
system can also be used to show that necessary approximation holds. In that
case one proof tree again corresponds to transmission of truth but the other to
transmission of falsity, not non-falsity. While Muskens [38] presents a Gentzen
calculus in which only one proof tree is needed to establish provability, and
while one tree may be thought to be nicer than two, this advantage is offset by
the fact that the system of [38] is obviously biased towards the L4 ordering, as

4In Belnap [6, 7] only the classical operators are considered.
5See Fitting [17] for further motivation of these operators. One possible application of

⊗ and ⊕ that Fitting mentions is that they could be part of a logic programming language
designed for distributed implementation, a suggestion that is quite in line with Belnap’s
original motivation.

6This is the notion of entailment considered in Belnap [6, 7], but not that of Arieli & Avron
[1], who use a single-barrelled notion. The two notions of entailment are co-extensional on sets
of formulas based on classical connectives only, but not on formulas based on a functionally
complete set of connectives or on a set of connectives that expresses all ≤k-monotone functions.
Belnap [6, p43] is quite clear about his views on the connection between entailment and the
lattice L4. Considering the question when an argument in his logic is a good one, he writes:

The abstract answer relies on the logical lattice we took so much time to develop.
It is: entailment goes uphill. That is, given any sentence A and B (compounded
from variables by negation, conjunction and disjunction), we will say that A

entails or implies B just in case for each assignment of one of the four values to
the variables, the value of A does not exceed (is less-than-or-equal-to) the value
of B.

On the same page Belnap refers to Dunn [13], who shows that preservation of truth and
preservation of non-falsity coincide for classical sentences, but he nevertheless insists on defin-
ing entailment as preservation of truth and non-falsity:

But I agree with the spirit of a remark of Dunn’s, which suggests that the False
really is on all fours with the True, so that it is profoundly natural to state
our account of “valid” or “acceptable” inference in a way which is neutral with
respect to the two.
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Figure 8.1: Belnap’s bilattice FOUR depicted in terms of its constituting lattices
L4 and A4.

its sequent rules for ∧, ∨, ∀ and ∃ are natural and familiar, while those for ⊗,
⊕, Π and Σ come out rather convoluted. The present calculus is more natural,
with sequent rules in the second group completely dual to those in the first. It
is also more natural in the sense that the ‘structural elements’ of [38] can be
done away with (without giving up analiticity).

Naturalness is also our defense against the objection that there are now uni-
form methods by which signed (analytic) proof systems for finite valued logics
can be obtained (see e.g. Baaz et al. [4]). While this is clearly an important
general result, the proof systems that are obtained in particular cases are some-
times unnecessarily complicated and the system generated for Belnap’s logic
using the method of [4] is a case in point. The binary connectives, for instance,
are provided with tableau rules that have up to four disjunctive clauses, while
these clauses themselves may consist of sets of signed statements rather than of
single signed statements. Consider, for example, the tableau rules for b ∶ ϕ ∧ ψ
and f ∶ ϕ ∧ψ obtained in this manner.

b ∶ ϕ ∧ψ

t ∶ ϕ,b ∶ ψ ∣ b ∶ ϕ, t ∶ ψ ∣ b ∶ ϕ,b ∶ ψ

f ∶ ϕ ∧ ψ

f ∶ ϕ ∣ f ∶ ψ ∣ n ∶ ϕ,b ∶ ψ

The proof system of the present paper exploits the fact that t, f , n and b are best
thought of as combinations of truth values. We choose our four signs to capture
the “underlying” values of (non-)truth and (non-)falsity and, in doing so we
arrive at a proof system that is tailor made for Belnap’s logic. In the tableau
variant of our system, a signed tableau rule for a binary connective is either
of disjunctive or conjunctive type and always involves exactly two immediate
descendants. In this sense, our system resembles the tableau calculus for first
order logic of Smullyan [50].

The remainder of the paper is organized as follows. The next section gives
the syntax and semantics of Belnap’s logic; Section 8.4 introduces the ‘two trees’
proof system; Section 8.5 answers a question by Avron by discussing a tableau
variant of this proof system which extends that of Avron [3]; and Section 8.6 is
a conclusion. An appendix gives a series of Gentzen rules for defined operators.

8.3 L4: Syntax and Semantics

In setting up the four-valued predicate logic L4 we will by and large follow
Muskens [38], and refer to this paper for discussion of the concepts involved.
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The set of formulas of L4 is defined just as it is done in standard predicate
logic, except that − and ⊗ are added to the familiar ¬, ∧, ∀ and =. A model is
a pair ⟨D,I⟩ where D ≠ ∅ and I is a function with as domain the language (set
of non-logical constants) L, such that I(f) is an n-ary function on D if f ∈ L
is an n-ary function symbol and I(R) is a pair of n-ary relations on D if R ∈ L

is an n-ary relation symbol. We denote the first element of this pair as I+(R),
the second element as I−(R). We use a to denote a (variable) assignment and
ax

d to denote the assignment that is like a except for assigning d to x. The value
of a term t in a model M under an assignment a is defined in the usual way
and written as [[t]]M,a, or [[t]]M if t is closed.

Definition 8.1 We define the three-place relations M ⊧ ϕ[a] (formula ϕ is
true in model M under assignment a) and M =∣ ϕ[a] (ϕ is false in M under
a) as follows.

1. M ⊧ Rt1 . . . tn[a]⇔ ⟨[[t1]]M,a, . . . , [[tn]]M,a⟩ ∈ I+(R),
M=∣ Rt1 . . . tn[a]⇔ ⟨[[t1]]M,a, . . . , [[tn]]M,a⟩ ∈ I−(R);

2. M ⊧ t1 = t2[a]⇔ [[t1]]M,a = [[t2]]M,a,
M=∣ t1 = t2[a]⇔ [[t1]]M,a ≠ [[t2]]M,a;

3. M ⊧ ¬ϕ[a]⇔M=∣ ϕ[a],
M=∣ ¬ϕ[a]⇔M ⊧ ϕ[a];

4. M ⊧ −ϕ[a]⇔M /=∣ ϕ[a],
M=∣ −ϕ[a]⇔M /⊧ ϕ[a];

5. M ⊧ ϕ ∧ψ[a]⇔M ⊧ ϕ[a] & M ⊧ ψ[a],
M=∣ ϕ ∧ψ[a]⇔M=∣ ϕ[a] or M=∣ ψ[a];

6. M ⊧ ϕ⊗ψ[a]⇔M ⊧ ϕ[a] & M ⊧ ψ[a],
M=∣ ϕ⊗ψ[a]⇔M=∣ ϕ[a] & M=∣ ψ[a];

7. M ⊧ ∀xϕ[a]⇔M ⊧ ϕ[ax
d] for all d ∈ D,

M=∣ ∀xϕ[a]⇔M=∣ ϕ[ax
d] for some d ∈ D.

The following definition gives the connection between the elements of FOUR
and combinations of truth and falsity.

Definition 8.2 The value of a formula ϕ in a model M under an assignment
a, [[ϕ]]M,a, is defined as follows.

[[ϕ]]M,a
= t iff M ⊧ ϕ[a] and M /=∣ ϕ[a],

[[ϕ]]M,a
= f iff M /⊧ ϕ[a] and M=∣ ϕ[a],

[[ϕ]]M,a
= n iff M /⊧ ϕ[a] and M /=∣ ϕ[a],

[[ϕ]]M,a
= b iff M ⊧ ϕ[a] and M=∣ ϕ[a].

In this paper we will restrict all discussion to sentences (closed formulas) and
all mention of assignment functions will be dropped.

Definition 8.3 With Ξ and Θ sets of sentences of L, we define the following
relations.
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• Ξ ⊧tr Θ iff, for all models M, [[ϕ]]M ∈ {t,b} for all ϕ ∈ Ξ implies [[ψ]]M ∈{t,b} for some ψ ∈ Θ

• Ξ ⊧nf Θ iff, for all models M, [[ϕ]]M ∈ {t,n} for all ϕ ∈ Ξ implies [[ψ]]M ∈{t,n} for some ψ ∈ Θ

• Ξ ⊧f Θ iff, for all models M, [[ϕ]]M ∈ {f ,b} for all ϕ ∈ Ξ implies [[ψ]]M ∈{f ,b} for some ψ ∈ Θ

• Ξ ⊧ Θ iff Ξ ⊧tr Θ and Ξ ⊧nf Θ

• Ξ ∣≈ Θ iff Ξ ⊧tr Θ and Ξ ⊧f Θ

Entailment (⊧) and necessary approximation (∣≈) are the two relations of primary
interest in this paper. Their relations to the orderings ≤t and ≤k were discussed
in the introduction. They are derived relations, in the sense that ⊧ is defined
as the preservation of truth and non-falsity, while ∣≈ is defined as preservation
of truth and falsity. A syntactic characterisation of ⊧ can therefore be obtained
by laying down proof rules corresponding to ⊧tr and ⊧nf , while one for ∣≈ can
be given by establishing proof rules corresponding to ⊧tr and ⊧f . We will do so
in our ‘two trees’ formalism, to be discussed in the next section.

As usual, the language will be extended with abbreviations and in fact all
truth-functions are expressible since {⊗,−,∧,¬} is functionally complete (see
Muskens [37] for a proof). We will define ∨ and ∃ in the standard way. The
following abbreviations may also be used.

Definition 8.4 We will write

n for −p⊗¬p (where p is some fixed 0-place relation symbol);
b for −n;
f for b ∧ n;
t for ¬f;
ϕ⊕ψ for −(−ϕ⊗ −ψ);
ϕ @ ψ for (ϕ ∧ b) ∨ (ψ ∧ n);
ϕ / ψ for (ϕ ∧ψ) @ (¬ϕ ∨ψ);
Πxϕ for ∀xϕ @ ∃xϕ; and
Σxϕ for ∃xϕ @ ∀xϕ.

The first four zero-place connectives have the obvious denotation. The connec-
tive ⊕ is the natural dual of ⊗ and denotes join in A4. A sentence of the form
ϕ @ ψ is true iff ϕ is true and false iff ψ is false; ϕ / ψ is related to Blamey’s
[8] transplication and can be read as ‘ψ, presupposing ϕ’. This formula has the
value of ψ if ϕ is true, but is neither true nor false otherwise. The Π and Σ
quantifiers are the duals of ∀ and ∃ and correspond to arbitrary meet and join
in the approximation lattice A4. The operators /, Π and Σ will play no further
role in this paper, but are interesting in their own right.

The proof system of the next section will be based on the four-sided sequents
that were used in [38], following an idea described in Langholm [34]. Here is a
pictorial representation of such a sequent.

Γ1 ∆1

Γ2 ∆2
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We linearise notation by attaching two signs i and j to formulas. i can be n
(north) or s (south), j can be e (east) or w (west). The sequent displayed above
will be written as

{ϕn,w ∣ ϕ ∈ Γ1} ∪ {ϕn,e ∣ ϕ ∈ ∆1} ∪ {ϕs,w ∣ ϕ ∈ Γ2} ∪ {ϕs,e ∣ ϕ ∈ ∆2}.
The arrow in the picture is meant to signify transmission from left to right,
meaning that whenever a model verifies all sentences in Γ1 and falsifies all
sentences in Γ2 it must also either verify a sentence in ∆1 or falsify a sentence
in ∆2. If this is not the case we say that the sequent is refuted⇀ by some model,
a notion we define as follows.

Definition 8.5 A model M refutes⇀ a sequent Γ if

ϕn,w
∈ Γ Ô⇒ [[ϕ]]M ∈ {t,b}

ϕn,e
∈ Γ Ô⇒ [[ϕ]]M ∈ {f,n}

ϕs,w
∈ Γ Ô⇒ [[ϕ]]M ∈ {f,b}

ϕs,e
∈ Γ Ô⇒ [[ϕ]]M ∈ {t,n}

The dual notion is transmission from right to left, i.e. whenever a model falsifies
all sentences in ∆1 and verifies all sentences in ∆2 it also falsifies a sentence in
Γ1 or verifies a sentence in Γ2. The corresponding notion of refutation↼ can be
defined directly, but also in the following way.

Definition 8.6 Let Γ be a sequent. We define the dual of Γ, dual(Γ), to be the
sequent which results from Γ by simultaneously replacing every superscript n in
Γ by s, every s by n, every w by e, and every e by w. A model M refutes↼ a
sequent Γ if M refutes⇀ dual(Γ). M refutes Γ if M either refutes⇀ or refutes↼

Γ.

Ξ ⊧tr Θ iff there is no model refuting⇀ {ϕn,w ∣ ϕ ∈ Ξ} ∪ {ϕn,e ∣ ϕ ∈ Θ}, while
Ξ ⊧nf Θ iff no model refutes↼ {ϕn,w ∣ ϕ ∈ Ξ} ∪ {ϕn,e ∣ ϕ ∈ Θ}, i.e. iff no model
refutes⇀ {ϕs,e ∣ ϕ ∈ Ξ}∪{ϕs,w ∣ ϕ ∈ Θ}. Lastly, we have that Ξ ⊧f Θ iff no model
refutes⇀ {ϕs,w ∣ ϕ ∈ Ξ} ∪ {ϕs,e ∣ ϕ ∈ Θ}.

8.4 Proofs

Definition 8.7 A sequent has a proof tree if it follows in the usual way from
the following sequent rules. (We let −n = s,−s = n,−e = w,−w = e.)

(R)
Γ, ϕi,w , ϕi,e

(¬)
Γ, ϕi,j

Γ,¬ϕ−i,j

(−)
Γ, ϕi,j

Γ,−ϕ−i,−j

(∧ne
sw)

Γ, ϕi,j Γ, ψi,j

Γ, (ϕ ∧ψ)i,j , where ⟨i, j⟩ ∈ {⟨n, e⟩, ⟨s,w⟩}
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(∧nw
se )

Γ, ϕi,j , ψi,j

Γ, (ϕ ∧ψ)i,j , where ⟨i, j⟩ ∈ {⟨n,w⟩, ⟨s, e⟩}

(⊗ne
se )

Γ, ϕi,e Γ, ψi,e

Γ, (ϕ⊗ ψ)i,e
(⊗nw

sw )
Γ, ϕi,w, ψi,w

Γ, (ϕ⊗ ψ)i,w
(∀ne

sw)
Γ, [c/x]ϕi,j

Γ,∀xϕi,j
, where c is not in Γ or ϕ and ⟨i, j⟩ ∈ {⟨n, e⟩, ⟨s,w⟩}

(∀nw
se )

Γ, [t/x]ϕi,j

Γ,∀xϕi,j
, where ⟨i, j⟩ ∈ {⟨n,w⟩, ⟨s, e⟩}

(id)
Γ, t = ti,j

, where ⟨i, j⟩ ∈ {⟨n, e⟩, ⟨s,w⟩}
(L)

Γ, [t2/x]ϕi′,j′

Γ, t1 = t2
i,j , [t1/x]ϕi

′
,j
′
, where ⟨i, j⟩ ∈ {⟨n,w⟩, ⟨s, e⟩}.

This calculus can be used to define several notions of entailment.

Definition 8.8 We will write

• Ξ ⊢tr Θ iff {ϕn,w ∣ ϕ ∈ Ξ} ∪ {ϕn,e ∣ ϕ ∈ Θ} has a proof tree;

• Ξ ⊢nf Θ iff {ϕs,e ∣ ϕ ∈ Ξ} ∪ {ϕs,w ∣ ϕ ∈ Θ} has a proof tree;

• Ξ ⊢f Θ iff {ϕs,w ∣ ϕ ∈ Ξ} ∪ {ϕs,e ∣ ϕ ∈ Θ} has a proof tree;

• Ξ ⊢ Θ iff Ξ ⊢tr Θ and Ξ ⊢nf Θ;

• Ξ ∣∼ Θ iff Ξ ⊢tr Θ and Ξ ⊢f Θ.

In order to check that Ξ ⊢ Θ it must clearly be shown that {ϕn,w ∣ ϕ ∈ Ξ}∪{ϕn,e ∣
ϕ ∈ Θ} and its dual {ϕs,e ∣ ϕ ∈ Ξ} ∪ {ϕs,w ∣ ϕ ∈ Θ} have proof trees. Here, for
example, is one half of the proof that ¬(ϕ / ψ) ⊢ ϕ / ¬ψ (for all rules for defined
symbols, see the Appendix):

(R)
ϕn,w, ψs,w, ϕn,e

(R)
ϕn,w, ψs,w, ψs,e

(¬)
ϕn,w, ψs,w, ¬ψn,e

(/ne)
ϕn,w, ψs,w, (ϕ / ¬ψ)n,e, (/sw)(ϕ / ψ)s,w, (ϕ / ¬ψ)n,e

(¬)
¬(ϕ / ψ)n,w, (ϕ / ¬ψ)n,e
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And here is the other half:7

(R)
ϕn,e, ϕn,w, ψn,w

(R)
ψn,e, ϕn,w, ψn,w

(/ne)(ϕ / ψ)n,e, ϕn,w, ψn,w

(¬)(ϕ / ψ)n,e, ϕn,w, ¬ψs,w

(/sw)(ϕ / ψ)n,e, (ϕ / ¬ψ)s,w

(¬)
¬(ϕ / ψ)s,e, (ϕ / ¬ψ)s,w

This proof method, with each proof consisting of two proof trees instead of the
usual single tree, is complete.

Theorem 8.1 For all sets of sentences Ξ and Θ:

1. Ξ ⊢tr Θ ⇐⇒ Ξ ⊧tr Θ

2. Ξ ⊢nf Θ ⇐⇒ Ξ ⊧nf Θ

3. Ξ ⊢f Θ ⇐⇒ Ξ ⊧f Θ

4. Ξ ⊢ Θ ⇐⇒ Ξ ⊧ Θ

5. Ξ ∣∼ Θ ⇐⇒ Ξ ∣≈ Θ

Proof. The proof rests upon the completeness proof given in [38]. That pa-
per considers sequent calculi for a language containing the logical operators{n,=,¬,−,∧,∀}. Here, n is a 0-place operator with the expected interpretation
and {n,¬,−,∧,}, just as {¬,∧,−,⊗}, is functionally complete. In [38], a sequent
is defined as a set of signed (as in this paper) formulae together with any sub-
set of the set of structural elements { /⇀, /↽}. The main sequent calculus that is
considered ([38, Definition 6]) contains three sequent rules involving structural
elements. However, [38, Remark 5.3] defines an alternative sequent calculus,
called the tr-calculus, which is closely related to that of the present paper and
which does away with structural elements. The tr-calculus consists of the fol-
lowing rules that are also present in the calculus of this paper:8 (R), (¬), (−),
∧ne

sw, ∧nw
se , ∀ne

sw, ∀nw
se , (id), and (L). Besides these familiar rules, the tr-calculus

contains the following rule for n:

(n)
Γ,ni,w

First note that a sequent (in the sense of our paper) has a proof tree if and only
if it is tr-provable, since (n) is a derivable rule in our calculus and all rules in
our calculus are at least admissible in the tr-calculus. It then follows by the
results of [38] that a sequent Γ has a proof tree iff no model refutes⇀ it. The
statements 1-5 follow easily from this. ◻

7In many cases it may not be necessary to expand a second proof tree. For example, if all
formulas under consideration are classical, in the sense that they are built up using ¬, ∧, ∀
and = only, the second tree will be isomorphic to the first, as can easily be shown. Addition
of − will not change this; but addition of ⊗ or any of its ilk does.

8In [38], (R) and (L) were restricted to atomic formulae, while in the present paper this
atomicity constraint is lifted.
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Remark 1 As Remark 5.4 in [38] explains, the use of structural elements in that
paper makes it possible to formulate rules for ⊗ and ⊕ without any violation of
the subformula property. The present paper shows that a move to a ‘two trees’
system makes it possible to have the subformula property without structural
elements.

8.5 Answer to a Question by Avron

In [3], Arnon Avron develops a unified tableau system, exploiting four signs, in
terms of which sound and complete proof systems can be defined for various
logics. One of the logics considered is an extension of Belnap’s four valued logic
with an appropriate implication connective, which is denoted as ⊃ and defined
as follows.

[[ϕ ⊃ ψ]]M4 = { [[ψ]]M4 , if [[ϕ]]M4 ∈ {t,b}
t, if [[ϕ]]M4 /∈ {t,b}

Here, M4 is a four valued model (sentences take values in {t, f ,b,n}) for a
propositional language, L⋆, in the connectives {¬,∧,∨,⊃}. With the definition
of ⊃ just given, the definition of such a model can be left to the reader. The
semantic consequence relation for L⋆ that is considered by Avron is the preser-
vation of truth (i.e., the values t and b are designated) as measured by M4

models; we denote this relation by ⊧tr
⋆ . Avron’s tableau system is shown to be

sound and complete with respect to ⊧tr
⋆ .

However, the connectives of the language L⋆, {¬,∧,∨,⊃}, are, in contrast
to the connectives {¬,∧,−,⊗} that were considered in this paper, not truth
functionally complete with respect to {t, f ,b,n}. About the relation between
his tableau system and connectives such as − and ⊗, Avron asks the following
question:

For the Belnap logic, there is a second set of connectives that is
sometimes considered (the knowledge / information ones). Can these
be captured by tableau rules too? (Avron [3, p14])

Due to the close relation between sequent calculi and tableau systems, the results
of this paper answer this question affirmatively. Table 1 gives tableau expansion
rules for the connectives ¬, −, ∧ and ⊗ that correspond closely to the Gentzen
rules that were given before, but use Avron’s [3] notation. Avron uses T+, T−,
F+ and F− in order to sign sentences; here + corresponds to our n, − to s, T to
w, and F to e.

Together with the obvious closure condition (a branch is closed if it contains
either {T+ϕ,F+ϕ} or {T−ϕ,F−ϕ}) this readily gives characterisations of ⊧tr,⊧nf , ⊧f , ⊧, and ∣≈ on the propositional fragment of the language (rules for the
quantifiers can easily be added). In order to check whether Ξ ⊧tr Θ, for example,
a tableau for {T+ϕ ∣ ϕ ∈ Ξ}∪ {F+ϕ ∣ ϕ ∈ Θ} should be expanded, while checking
whether Ξ ⊧nf Θ requires expansion of {F−ϕ ∣ ϕ ∈ Ξ} ∪ {T−ϕ ∣ ϕ ∈ Θ} and
checking whether Ξ ⊧ Θ in general requires both.

The tableau system given here properly extends Avron’s. It extends it be-
cause the rules for ¬ and ∧ given here correspond to Avron’s rules, Avron’s rules
for ∨ are derivable, and his rules for ⊃ are derivable once ϕ ⊃ ψ is taken to be
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T+
¬ϕ

T−ϕ

T−
¬ϕ

T+ϕ

F+
¬ϕ

F−ϕ

F−
¬ϕ

F+ϕ

T+
−ϕ

F−ϕ

T−
−ϕ

F+ϕ

F+
− ϕ

T−ϕ

F−
−ϕ

T+ϕ

T+ϕ ∧ψ

T+ϕ, T+ψ

T−ϕ ∧ψ

T−ϕ ∣ T−ψ

F+ϕ ∧ψ

F+ϕ ∣ F+ψ

F−ϕ ∧ψ

F−ϕ, F−ψ

T+ϕ⊗ψ

T+ϕ, T+ψ

T−ϕ⊗ψ

T−ϕ, T−ψ

F+ϕ⊗ψ

F+ϕ ∣ F+ψ

F−ϕ⊗ψ

F−ϕ ∣ F−ψ

Table 8.1: Expansion rules for propositional connectives.

an abbreviation of ¬(ϕ @ −ϕ) ∨ ψ.9 The extension is proper, as {¬,∧,−,⊗} are
functional complete while [2, Theorem 14] shows that {¬,∧,∨,⊃} is not.

While our tableau system characterising ⊧tr thus extends Avron’s system
characterising ⊧tr

⋆ , we feel that the entailment relation that correctly captures
the spirit of Belnap’s logic, the one in which entailment corresponds with ≤t, is⊧, not ⊧tr (see also footnote 6).

8.6 Conclusion

We have shown how Belnap’s logic can be provided with an analytic Gentzen
calculus that is completely natural. The price is that, in general, every proof
now comes with two proof trees instead of one. While this idea may seem
strange at first, it fits well with the observation that doubling of concepts is a
general phenomenon in Belnap’s logic.

8.7 Appendix: Gentzen Rules for Defined Op-
erators

(n)
Γ,ni,w

(∨nw
se )

Γ, ϕi,j Γ, ψi,j

Γ, (ϕ ∨ψ)i,j , where ⟨i, j⟩ ∈ {⟨n,w⟩, ⟨s, e⟩}

(∨ne
sw)

Γ, ϕi,j , ψi,j

Γ, (ϕ ∨ψ)i,j , where ⟨i, j⟩ ∈ {⟨n, e⟩, ⟨s,w⟩}

(∃nw
se )

Γ, [c/x]ϕi,j

Γ,∃xϕi,j
, where c is not in Γ or ϕ and ⟨i, j⟩ ∈ {⟨n,w⟩, ⟨s, e⟩}

(∃ne
sw)

Γ, [t/x]ϕi,j

Γ,∃xϕi,j
, where ⟨i, j⟩ ∈ {⟨n, e⟩, ⟨s,w⟩}

9Note that this formula has the right semantics, as ϕ @ −ϕ gets the value t if ϕ has a value
in {t,b} and gets the value f otherwise.
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(@ne
nw)

Γ, ϕn,j

Γ, (ϕ @ ψ)n,j
(@se

sw)
Γ, ψs,j

Γ, (ϕ @ ψ)s,j

(⊕ne
se )

Γ, ϕi,e, ψi,e

Γ, (ϕ⊕ ψ)i,e (⊕nw
sw )

Γ, ϕi,w Γ, ψi,w

Γ, (ϕ⊕ψ)i,w
(/ne)

Γ, ϕn,e Γ, ψn,e

Γ, (ϕ / ψ)n,e
(/se)

Γ, ϕn,e Γ, ψs,e

Γ, (ϕ / ψ)s,e

(/nw)
Γ, ϕn,w, ψn,w

Γ, (ϕ / ψ)n,w
(/sw)

Γ, ϕn,w, ψs,w

Γ, (ϕ / ψ)s,w

(Πne
se )

Γ, [c/x]ϕi,e

Γ,Πxϕi,e
(Πnw

sw )
Γ, [t/x]ϕi,w

Γ,Πxϕi,w

(c not in Γ or ϕ)

(Σne
se )

Γ, [t/x]ϕi,e

Γ,Σxϕi,e
(Σnw

sw )
Γ, [c/x]ϕi,w

Γ,Σxϕi,w

(c not in Γ or ϕ)
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