26 research outputs found

    Hilbert's epsilon as an Operator of Indefinite Committed Choice

    Get PDF
    Paul Bernays and David Hilbert carefully avoided overspecification of Hilbert's epsilon-operator and axiomatized only what was relevant for their proof-theoretic investigations. Semantically, this left the epsilon-operator underspecified. In the meanwhile, there have been several suggestions for semantics of the epsilon as a choice operator. After reviewing the literature on semantics of Hilbert's epsilon operator, we propose a new semantics with the following features: We avoid overspecification (such as right-uniqueness), but admit indefinite choice, committed choice, and classical logics. Moreover, our semantics for the epsilon supports proof search optimally and is natural in the sense that it does not only mirror some cases of referential interpretation of indefinite articles in natural language, but may also contribute to philosophy of language. Finally, we ask the question whether our epsilon within our free-variable framework can serve as a paradigm useful in the specification and computation of semantics of discourses in natural language.Comment: ii + 73 pages. arXiv admin note: substantial text overlap with arXiv:1104.244

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Proceedings of the Workshop on the lambda-Prolog Programming Language

    Get PDF
    The expressiveness of logic programs can be greatly increased over first-order Horn clauses through a stronger emphasis on logical connectives and by admitting various forms of higher-order quantification. The logic of hereditary Harrop formulas and the notion of uniform proof have been developed to provide a foundation for more expressive logic programming languages. The λ-Prolog language is actively being developed on top of these foundational considerations. The rich logical foundations of λ-Prolog provides it with declarative approaches to modular programming, hypothetical reasoning, higher-order programming, polymorphic typing, and meta-programming. These aspects of λ-Prolog have made it valuable as a higher-level language for the specification and implementation of programs in numerous areas, including natural language, automated reasoning, program transformation, and databases

    Proof theoretic criteria for logical constancy

    Get PDF
    Logic concerns inference, and some inferences can be distinguished from others by their holding as a matter of logic itself, rather than say empirical factors. These inferences are known as logical consequences and have a special status due to the strong level of confidence they inspire. Given this importance, this dissertation investigates a method of separating the logical from the non-logical. The method used is based on proof theory, and builds on the work of Prawitz, Dummett and Read. Requirements for logicality are developed based on a literature review of common philosophical use of the term, with the key factors being formality, and the absolute generality / topic neutrality of interpretations of logical constants. These requirements are used to generate natural deduction criteria for logical constancy, resulting in the classification of certain predicates, truth functional propositional operators, first order quantifiers, second order quantifiers in sound and complete formal systems using Henkin semantics, and modal operators from the systems K and S5 as logical constants. Semantic tableaux proof systems are also investigated, resulting in the production of semantic tableaux-based criteria for logicality

    Model and Proof Theory of Constructive ALC, Constructive Description Logics

    Get PDF
    Description logics (DLs) represent a widely studied logical formalism with a significant impact in the field of knowledge representation and the Semantic Web. However, they are equipped with a classical descriptive semantics that is characterised by a platonic notion of truth, being insufficiently expressive to deal with evolving and incomplete information, as from data streams or ongoing processes. Such partially determined and incomplete knowledge can be expressed by relying on a constructive semantics. This thesis investigates the model and proof theory of a constructive variant of the basic description logic ALC, called cALC. The semantic dimension of constructive DLs is investigated by replacing the classical binary truth interpretation of ALC with a constructive notion of truth. This semantic characterisation is crucial to represent applications with partial information adequately, and to achieve both consistency under abstraction as well as robustness under refinement, and on the other hand is compatible with the Curry-Howard isomorphism in order to form the cornerstone for a DL-based type theory. The proof theory of cALC is investigated by giving a sound and complete Hilbert-style axiomatisation, a Gentzen-style sequent calculus and a labelled tableau calculus showing finite model property and decidability. Moreover, cALC can be strengthened towards normal intuitionistic modal logics and classical ALC in terms of sound and complete extensions and hereby forms a starting point for the systematic investigation of a constructive correspondence theory.Beschreibungslogiken (BLen) stellen einen vieluntersuchten logischen Formalismus dar, der den Bereich der Wissensrepräsentation und das Semantic Web signifikant geprägt hat. Allerdings basieren BLen meist auf einer klassischen deskriptiven Semantik, die gekennzeichnet ist durch einen idealisierten Wahrheitsbegriff nach Platons Ideenlehre, weshalb diese unzureichend ausdrucksstark sind, um in Entwicklung befindliches und unvollständiges Wissen zu repräsentieren, wie es beispielsweise durch Datenströme oder fortlaufende Prozesse generiert wird. Derartiges partiell festgelegtes und unvollständiges Wissen lässt sich auf der Basis einer konstruktiven Semantik ausdrücken. Diese Arbeit untersucht die Model- und Beweistheorie einer konstruktiven Variante der Basis-BL ALC, die im Folgenden als cALC bezeichnet wird. Die Semantik dieser konstruktiven Beschreibungslogik resultiert daraus, die traditionelle zweiwertige Interpretation logischer Aussagen des Systems ALC durch einen konstruktiven Wahrheitsbegriff zu ersetzen. Eine derartige Interpretation ist die Voraussetzung dafür, um einerseits Anwendungen mit partiellem Wissen angemessen zu repräsentieren, und sowohl die Konsistenz logischer Aussagen unter Abstraktion als auch ihre Robustheit unter Verfeinerung zu gewährleisten, und andererseits um den Grundstein für eine Beschreibungslogik-basierte Typentheorie gemäß dem Curry-Howard Isomorphismus zu legen. Die Ergebnisse der Untersuchung der Beweistheorie von cALC umfassen eine vollständige und korrekte Hilbert Axiomatisierung, einen Gentzen Sequenzenkalkül, und ein semantisches Tableaukalkül, sowie Beweise zur endlichen Modelleigenschaft und Entscheidbarkeit. Darüber hinaus kann cALC zu normaler intuitionistischer Modallogik und klassischem ALC durch vollständige und korrekte Erweiterungen ausgebaut werden, und bildet damit einen Startpunkt für die systematische Untersuchung einer konstruktiven Korrespondenztheorie

    19th Brazilian Logic Conference: Book of Abstracts

    Get PDF
    This is the book of abstracts of the 19th Brazilian Logic Conferences. The Brazilian Logic Conferences (EBL) is one of the most traditional logic conferences in South America. Organized by the Brazilian Logic Society (SBL), its main goal is to promote the dissemination of research in logic in a broad sense. It has been occurring since 1979, congregating logicians of different fields — mostly philosophy, mathematics and computer science — and with different backgrounds — from undergraduate students to senior researchers. The meeting is an important moment for the Brazilian and South American logical community to join together and discuss recent developments of the field. The areas of logic covered in the conference spread over foundations and philosophy of science, analytic philosophy, philosophy and history of logic, mathematics, computer science, informatics, linguistics and artificial intelligence. Previous editions of the EBL have been a great success, attracting researchers from all over Latin America and elsewhere. The 19th edition of EBL takes place from May 6-10, 2019, in the beautiful city of João Pessoa, at the northeast coast of Brazil. It is conjointly organized by Federal University of Paraíba (UFPB), whose main campus is located in João Pessoa, Federal University of Campina Grande (UFCG), whose main campus is located in the nearby city of Campina Grande (the second-largest city in Paraíba state) and SBL. It is sponsored by UFPB, UFCG, the Brazilian Council for Scientific and Technological Development (CNPq) and the State Ministry of Education, Science and Technology of Paraíba. It takes place at Hotel Luxxor Nord Tambaú, privileged located right in front Tambaú beach, one of João Pessoa’s most famous beaches

    Metafictional anaphora:A comparison of different accounts

    Get PDF
    I argue that pronominal anaphora across mixed parafictional/ metafictional discourse (e.g. In The Lord of the Rings, Frodoi goes through an immense mental struggle. Hei is an intriguing fictional character! ) poses a problem for a workspace account. I evaluate different possible solutions based on a descriptivist approach, Zalta's logic of abstract objects and Recanati's dot-object theory
    corecore