525 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Fog Radio Access Networks: Mobility management, interference mitigation and resource optimization

    Get PDF
    In order to make Internet connections ubiquitous and autonomous in our daily lives, maximizing the utilization of radio resources and social information is one of the major research topics in future mobile communication technologies. Fog radio access network (FRAN) is regarded as a promising paradigm for the fifth generation (5G) of mobile networks. FRAN integrates fog computing with RAN and makes full use of the edge of networks. FRAN would be different in networking, computing, storage and control as compared with conventional radio access networks (RAN) and the emerging cloud RAN. In this article, we provide a description of the FRAN architecture, and discuss how the distinctive characteristics of FRAN make it possible to efficiently alleviate the burden on the fronthaul, backhaul and backbone networks, as well as reduce content delivery latencies. We will focus on the mobility management, interference mitigation, and resource optimization in FRAN. Our simulation results show that the proposed FRAN architecture and the associated mobility and resource management mechanisms can reduce the signaling cost and increase the net utility for the RAN

    Sequentially Distributed Coalition Formation Game for Throughput Maximization in C-RANs

    Get PDF
    Cloud radio access network (C-RAN) has been proposed as a solution to reducing the huge cost of network upgrade while providing the spectral and energy efficiency needed for the new generation cellular networks. In order to reduce the interference that occur in C-RAN and maximize throughput, this paper proposes a sequentially distributed coalition formation (SDCF) game in which players, in this case the remote radio heads (RRHs), can sequentially join multiple coalitions to maximize their throughput. Contrary to overlapping coalition formation (OCF) game where players contribute fractions of their limited resources to different coalitions, the SDCF game offers better stability by allowing sequential coalition formation depending on the availability of resources and therefore providing a balance between efficient spectrum use and interference management. An algorithm for the proposed model is developed based on the merge-only method. The performance of the proposed algorithm in terms of stability, complexity and convergence to final coalition structure is also investigated. Simulation results show that the proposed SDCF game did not only maximize the throughput in the C-RAN, but it also shows better performances and larger capabilities to manage interference with increasing number of RRHs compared to existing methods

    Traffic Convexity Aware Cellular Networks: A Vehicular Heavy User Perspective

    Full text link
    Rampant mobile traffic increase in modern cellular networks is mostly caused by large-sized multimedia contents. Recent advancements in smart devices as well as radio access technologies promote the consumption of bulky content, even for people in moving vehicles, referred to as vehicular heavy users. In this article the emergence of vehicular heavy user traffic is observed by field experiments conducted in 2012 and 2015 in Seoul, Korea. The experiments reveal that such traffic is becoming dominant, captured by the 8.62 times increase in vehicular heavy user traffic while the total traffic increased 3.04 times. To resolve this so-called vehicular heavy user problem (VHP), we propose a cell association algorithm that exploits user demand diversity for different velocities. This user traffic pattern is discovered first by our field trials, which is convex-shaped over velocity, i.e. walking user traffic is less than stationary or vehicular user traffic. As the VHP becomes severe, numerical evaluation verifies the proposed user convexity aware association outperforms a well-known load balancing association in practice, cell range expansion (CRE). In addition to the cell association, several complementary techniques are suggested in line with the technical trend toward 5G.Comment: 15 pages, 5 figures, 1 table, to appear in IEEE Wireless Communications Magazin
    • …
    corecore