4 research outputs found

    Data mining for AMD screening: A classification based approach

    Get PDF
    This paper investigates the use of three alternative approaches to classifying retinal images. The novelty of these approaches is that they are not founded on individual lesion segmentation for feature generation, instead use encodings focused on the entire image. Three different mechanisms for encoding retinal image data were considered: (i) time series, (ii) tabular and (iii) tree based representations. For the evaluation two publically available, retinal fundus image data sets were used. The evaluation was conducted in the context of Age-related Macular Degeneration (AMD) screening and according to statistical significance tests. Excellent results were produced: Sensitivity, specificity and accuracy rates of 99% and over were recorded, while the tree based approach has the best performance with a sensitivity of 99.5%. Further evaluation indicated that the results were statistically significant. The excellent results indicated that these classification systems are ideally suited to large scale AMD screening processes

    Frequent Sub-graph Mining on Edge Weighted Graphs

    No full text

    Data-Mining Techniques for Call-Graph-Based Software-Defect Localisation

    Get PDF
    Defect localisation is an important problem in software engineering. This dissertation investigates call-graph-mining-based software defect localisation, which supports software developers by providing hints where defects might be located. It extends the state-of-the-art by proposing new graph representations and mining techniques for weighted graphs. This leads to a broader range of detectable defects, to an increased localisation precision and to enhanced scalability
    corecore