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Data-Mining-Techniken
für Aufrufgraph-basierte
Software-Defekt-Lokalisierung

Motivation und Ziel

Software ist selten gänzlich frei von Fehlern und manuelle Fehlersuche ist eine zeit-

aufwändige – und damit kostenintensive – Aufgabe. Automatische Fehlerlokalisie-

rungstechniken sind daher überaus wünschenswert. Dies trifft insbesondere für große

Softwareprojekte zu, in denen eine manuelle Fehlerlokalisierung nur mit erheblichem

Aufwand möglich ist.

Ein noch relativ junger Ansatz zur (halb-)automatischen Fehlerlokalisierung ist die

Anwendung von Data-Mining-Techniken auf Aufrufgraphen von Programmausfüh-

rungen. Solche Graphen stellen üblicherweise Methoden als Knoten und Methoden-

aufrufe als Kanten dar. Die entsprechenden Fehlerlokalisierungsansätze arbeiten mit

Fehlern, die in einigen – aber nicht allen – Programmausführungen auftreten. Kon-

kret können Graph-Mining-Techniken zum Einsatz kommen, die mit Aufrufgraphen

arbeiten, die als korrekte oder fehlerhafte Ausführung gekennzeichnet sind. Graph-

Mining findet in solchen Graphen Muster, die typisch für fehlerhafte Ausführungen

sind. Daraus kann dann – ggf. in Kombination mit weiteren Data-Mining-Techniken –

eine Fehlerlokalisierung abgeleitet werden. Eine Softwareentwicklerin bzw. ein Soft-

wareentwickler kann dann mit dieser Information den Fehler deutlich schneller finden

und beheben.

Ziel dieser Dissertation im angewandten Data-Mining ist es einerseits, Data-

Mining-Techniken für das spezielle Anwendungsproblem – Fehlerlokalisierung in

Software – zu entwickeln. Dazu gehört sowohl das Spezifizieren von geeigneten

Datenrepräsentationen wie verschiedenartigen Aufrufgraph-Typen, als auch die Ent-

wicklung von darauf abgestimmten Analyseprozessen. Andererseits ist es das Ziel,

Graph-Mining-Techniken weiterzuentwickeln. Diese Techniken sollen möglichst

über den konkreten Anwendungsfall hinaus, unabhängig von der Anwendungsdo-

mäne, einsetzbar sein.
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Beiträge und Vorgehen

Diese Arbeit betrachtet verschiedene Aspekte der Fehlerlokalisierung mit Aufruf-

graphen und leistet so vier wesentliche Beiträge. Dabei legt der erste Beitrag die

Grundlagen, die weiteren Beiträge erweitern diese indem sie weitere Fehlerarten

lokalisieren, skalierbare Ansätze für große Softwareprojekte untersuchen bzw. die

Data-Mining-Technik selbst weiterentwickeln:

Fehlerlokalisierung mit gewichteten Aufrufgraphen. Da aus Skalierbar-

keitsgründen eine Reduktion von Aufrufgraphen vor der Analyse unabdingbar ist,

geht an dieser Stelle viel Information verloren. Um dies zu kompensieren, stellt diese

Arbeit einen Ansatz vor, der Aufrufhäufigkeiten von Methoden als Kantengewichte

in Aufrufgraphen darstellt. Da bisher keine dedizierte Graph-Mining-Technik für ge-

wichtete Graphen existiert, schlägt diese Arbeit einen kombinierten Ansatz vor: Es

kommen herkömmliches Graph-Mining und eine numerische Data-Mining-Technik

zum Einsatz. Diese Vorgehensweise erlaubt es insbesondere, solche Fehler zu lokali-

sieren, die die Aufrufhäufigkeit von Methoden beeinflussen.

Hierarchische Fehlerlokalisierung mit Aufrufgraphen. Graph-Mining-Al-

gorithmen skalieren nicht für große Graphen. Von daher ist es trotz eingesetzter Re-

duktionen nicht möglich, die bisher entwickelten Techniken unmittelbar auf große

Softwareprojekte anzuwenden. Diese Arbeit verfolgt einen anderen Ansatz. Sie be-

schäftigt sich zunächst mit Graph-Repräsentationen verschiedener Granularitätsstu-

fen (Paket-, Klassen- und Methodenebene) und untersucht erstmalig deren Eignung

zur Lokalisierung von Fehlern. Basierend auf solchen Graphen werden dann hier-

archische Analyseverfahren entwickelt. Diese lokalisieren Fehler, indem sie auf ei-

ner groben Granularitätsstufe beginnen, potentiell fehlerhafte Regionen identifizieren

und dann Graphen feinerer Granularität dieser Regionen analysieren. Diese relativ

kleinen Ausschnittsgraphen führen deutlich seltener zu Skalierbarkeitsproblemen.

Fehlerlokalisierung mit Datenfluss-annotierten Aufrufgraphen. Mit bis-

herigen Aufrufgraph-basierten Techniken ist es nicht möglich, Fehler zu lokalisieren,

die nur den Datenfluss verändern. Das liegt daran, dass keine bisherige Aufrufgraph-

Darstellung Datenflüsse beinhaltet. Eine solche Darstellung zu finden ist allerdings

schwierig, da eine einzelne Kante typischerweise sehr viele Methodenaufrufe – und

somit Datenflüsse – repräsentiert. Diese Arbeit schlägt eine Aufrufgraph-Repräsenta-

tion und Analysetechnik vor, die Abstraktionen von Datenflüssen, generiert durch

einen Diskretisierungsansatz, beinhaltet. Dadurch können (neben anderen) vor allem

solche Fehler lokalisiert werden, die primär den Datenfluss beeinflussen.
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Gewicht-Constraint-basiertes approximatives Graph-Mining. Ein ande-

rer Ansatz Skalierbarkeitsproblemen zu begegnen neben den zuvor beschriebenen

hierarchischen Verfahren, ist das Formulieren von Constraints (Bedingungen) oder

auch das Zulassen von approximativen Ergebnismengen. Bisherige Constraint-ba-

sierte Graph-Mining-Algorithmen geben Garantien bzgl. der Vollständigkeit der Er-

gebnismengen, betrachten allerdings keine gewichteten Graphen. Dies hängt damit

zusammen, dass kein gesetzmäßiger Zusammenhang zwischen Graph-Topologie und

Gewichten besteht. Da sich in dieser Arbeit gewichtete Aufrufgraphen jedoch als

sinnvolles Konzept erwiesen haben, wird hier dennoch die Verwendung von Gewicht-

basierten Constraints untersucht. Es wird gezeigt, dass sie sowohl zu performanteren

Algorithmen führen, als auch dass in der praktischen Anwendung auf Garantien bzgl.

der Vollständigkeit verzichtet werden kann.

Ergebnisse und Ausblick
In dieser Dissertation werden verschiedene Data-Mining-basierte Techniken zur Feh-

lerlokalisierung in Software entwickelt, sowie Graph-Mining-Techniken weiterent-

wickelt. Die Fehlerlokalisierung weist in der Evaluation durchschnittlich doppelt so

präzise Ergebnisse auf wie eine verwandte Aufrufgraph-basierte Technik. Die Ergeb-

nisse können durch die Berücksichtigung von Datenflüssen nochmals verbessert wer-

den. Des Weiteren wird in dieser Arbeit erstmalig eine Aufrufgraph-basierte Technik

mit Fehlern aus der Praxis eines großen Softwareprojekts erfolgreich evaluiert. Beim

Gewicht-Constraint-basierten Graph-Mining wird in dieser Arbeit eine Ausführungs-

beschleunigung um den Faktor 3,5 erzielt, bei gleichbleibender Präzision in der Feh-

lerlokalisierung. Um die Generalität dieses Ansatzes zu zeigen, wird er zusätzlich mit

Graph-Daten einer ganz anderen Domäne, der Transportlogistik, evaluiert.

Wie alle Fehlerlokalisierungstechniken sind auch die in dieser Arbeit vorgeschla-

gen Techniken nicht in der Lage, alle Arten von Fehlern zu lokalisieren. – Ihre Stär-

ken liegen in der Lokalisierung solcher Fehler, die sich auf die Aufrufgraphen bzw.

auf die Datenflüsse niederschlagen. Eine Ergänzung durch andere Techniken ist daher

sinnvoll, um ein möglichst breites Spektrum an Fehlerarten abzudecken.

Eine immer wichtiger werdende Entwicklung in der Softwaretechnik ist die Ent-

wicklung von mehrfädiger Software für Mehrprozessorsysteme. In solchen Umge-

bungen treten eigene Arten von Fehlern auf (z.B. Synchronisationsfehler), die be-

sonders schwierig zu lokalisieren sind. Dies ist vor allem darin begründet, dass sie

indeterministisch auftreten. Diese Arbeit zeigt unter anderem, dass ein Teil dieser

Fehler bereits mit Aufrufgraph-basierten Techniken lokalisiert werden kann. Durch

erweiterte Graph-Repräsentationen und Lokalisierungstechniken, die die Spezifika

paralleler Ausführungen explizit berücksichtigen, ist die Lokalisierung weiterer Feh-

lerarten (z.B. bestimmte Wettlaufsituationen) zu erwarten.
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1 Introduction
Software is rarely free from defects that cause failing behaviour. On the one side,

failures experienced by the users are annoying, and they cost the economy billions

of dollars annually [RTI02]. This is in particular severe when failures occur after

the software was released. On the other side, manual debugging of software can be

extremely expensive, too. More concretely, localising defects is considered to be

the most time-consuming and difficult activity in this context [DLZ05, JH05], and

studies have shown that 35% of the overall development time is spent for debugging

activities [RTI02]. Automated means to localise defects and to guide developers de-

bugging a programme are therefore more than desirable [ZNZ08]. If a developer

obtains some hints where defects might be located, debugging becomes more effi-

cient. Certainly, the respective techniques should localise a defect as precisely as

possible. More specifically, they should exclude most of the code from being anal-

ysed by humans. Furthermore, a defect-localisation technique should be able to deal

with a wide range of defects. However, research has shown that none of the exist-

ing techniques for defect localisation is perfect, i.e., is able to localise any kind of

defect [RAF04, SJYH09]. It is therefore still worthwhile to investigate further direc-

tions of defect-localisation techniques that support developers in eliminating failing

behaviour.

One way to localise defects in software is to analyse dynamic call graphs with

graph-mining techniques [CLZ+09, DFLS06, LYY+05]. Such graphs are represen-

tations of programme executions. Analysing call graphs aims at finding anomalies

in failing executions. Graph mining in turn is a general technique for the analysis

of graph structures, and it is one of the more recent developments in data mining

[AW10c, CH06]. Graph mining bears the potential to produce very precise min-

ing results, in particular compared to more traditional techniques that rely on data

representations that are less complex. The rationale is that many real-world arte-

facts – such as programme executions – can be represented very precisely by means

of graph structures. The power of analysing such structures has impressively been

demonstrated by the PageRank algorithm [BP98] for ranking results in web search,

as well as by many further link-mining applications [YHF10].

Software engineering and defect localisation in particular has been identified as a

rewarding and challenging area for applied data mining [DDG+08, HG08, XTLL09].

Further, tackling challenging application problems – such as defect localisation in

software – might lead to innovations in the data-analysis domain and in the appli-

cation domain as well [HCXY07]. In this dissertation, we elaborately investigate

1
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graph-mining techniques for the analysis of dynamic call graphs and ultimately for

the localisation of defects in software. This direction of research has been of in-

terest in both scientific communities, data mining [AW10b, LYY+05] and software

engineering [CLZ+09, DFLS06]. This dissertation in applied data mining likewise is

motivated, solves challenges and contributes in both fields, data mining and software

engineering. In particular, this includes advances in defect localisation, problem-

oriented graph data representations and analysis techniques.

1.1 Localising Defects in Software

Research in the field of software reliability has been extensive, and various techniques

have been developed for defect localisation – some of them building on data mining.

Techniques for defect localisation are either static or dynamic, i.e., they deal with

source code only, or they analyse programme executions, respectively.

Static techniques typically rely on code-quality measures or on identifying typical

defect-prone programming patterns. Programme components with suspicious val-

ues of the measures or patterns identified to be defect prone are then good hints for

localising defects. However, static approaches typically lead to many false-positive

warnings, and they have difficulties discovering important classes of hard-to-find de-

fects [RAF04].

Dynamic techniques in turn analyse programme executions and typically compare

the characteristics from correct and failing executions. This helps to identify anoma-

lies in the executions, which localisation techniques then suspect to refer to defects.

The different approaches use different information derived from executions, as well

as different methodologies to derive defect localisations. Two of the best dynamic ap-

proaches, which have outperformed a number of competitors, are SOBER [LFY+06]

and Tarantula [JH05] with its variations [AZGvG09]. However, even though these

techniques have proven to detect certain defects very well, they do not analyse all kind

of information that could be obtained from programme executions and is potentially

of relevance. To name one example, Tarantula only makes use of the information

whether a certain piece of code is executed or not. Certain defects however might

alter the number of times a piece of code is executed, which these approaches do not

consider.

Example 1.1: The example Java programme given in Listing 1.1 could have a defec-

tive loop condition in Line 16. This would be a call-frequency-affecting bug, as such
a defect would affect the execution frequency of Line 17 and thus the call frequency

of method a. Approaches such as Tarantula would not notice this effect.

Analysing dynamic call graphs is a relatively recent dynamic defect-localisation

approach [CLZ+09, DFLS06, LYY+05]. It is promising, since such graphs contain

much detailed and fine-grained information regarding programme executions, which

2
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1 public class Example {
2 static java.util.Random generator;
3

4 public static void main(String[] args) {
5 generator = new java.util.Random();
6 if (generator.nextInt(100) < 99)
7 a(0);
8 b(3);
9 }

10

11 private static void a(int x) {
12 // some application code
13 }
14

15 private static void b(int y) {
16 for (int i = 0; i < y; i++)
17 a(generator.nextInt(100));
18 }
19 }

Listing 1.1: An example Java programme.

can hardly be found in any other representation. In particular, call graphs reflect the

structure of method invocations of an execution – or the relationship of more fine-

grained or more coarse-grained programme components, as we will see. In method-

level call graphs, methods are represented as nodes and method calls as edges.

Example 1.2: In a typical execution of the example programme given in Listing 1.1,

method main calls method a once, before it calls method b. Method b then calls

method a three times. The call graph in Figure 1.1(a) reflects this behaviour.

Besides the advantages of call-graph analysis, mining graphs is much more com-

plex than many other analysis techniques. Therefore, to cope with the size of call

graphs, they are typically reduced to compact representations where one edge stands

for a number of method calls. However, call-graph-based defect localisation can still

be computationally expensive and can lead to scalability problems.

While related work in call-graph-based defect localisation has investigated basic

call-graph representations, we extend call graphs with more information relevant for

the localisation of defects. In particular, this information refers to the context of

method invocations, execution frequencies and dataflows. These extensions aim at

broadening the rage of detectable defects.

3
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Figure 1.1: Example call graphs referring to the programme given in Listing 1.1.

Example 1.3: Figure 1.1(b) continues Example 1.2. It is an example for a reduced

representation of the graph given in Figure 1.1(a). Further, it includes call frequencies

as numerical edge weights. Fluctuating frequency values can be identified by analysis

techniques and might be a hint for a defect.

The graph in Figure 1.1(c) contains additional information related to the dataflow.

It is annotated with tuples of weights at the edges and can be analysed by mining

techniques. In this simplified example, the first tuple element is the call frequency,

as before. The other three tuple elements stand for the number of method calls with

parameter values falling into the intervals ‘low’, ‘medium’ and ‘high’. Concretely,

imagine that method b calls method a with values 98, 83 and 50 for parameter x. The
tuple 3,0,1,2 then stands for three calls in total, zero calls with a low value, one call

with a medium value and two calls with a high value.

Until today, call-graph-based defect localisation has not been studied extensively.

Therefore, many questions concerning such techniques are currently unanswered.

This includes the question what kind of defects can be localised and how well the

techniques scale. In this dissertation, we investigate the potential of call-graph-based

techniques and different call-graph representations for defect localisation. There-

fore, it is not the primary aim to develop a technique which rules out any existing

technique, but to comprehensively investigate the usage of call graphs for defect lo-

calisation.

1.2 Call-Graph Mining for Defect Localisation

Mining call graphs as described before introduces two main challenges for data ana-

lysis, that partly depend on each other:

1. Finding adequate data representations

2. Analysing the resulting graphs
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Data Representations. Finding adequate data representations is an inherent part

of the knowledge-discovery process [CCK+00, FPSS96]. This non-trivial process is

the general data-analysis procedure, aiming at the discovery of “valid, novel, poten-

tially useful and ultimately understandable patterns in data” [FPSS96]. Data mining

is only one step within the process; the other steps range from understanding the ap-

plication domain to the deployment of the analysis technique. Finding an adequate

data representation and acquiring this data are the steps preceding the actual data-

mining step. In particular, problem-specific data representations have been identi-

fied to be key for the success of any applied data-mining problem [HG08]. In the

software-engineering application domain of this dissertation, call graphs are the ded-

icated data representation. However, it is not obvious how exactly to represent the

call-graph structure (topology) in order not to lose any important information and to

obtain graphs of a manageable size. Other aspects are the granularity of call graphs

and the question how to incorporate more domain-specific information such as infor-

mation regarding calls of methods that belong to the programming language. Graphs

at granularities different from the method level have rarely been investigated in a

defect-localisation context, and finding representations is challenging as one would

like not to lose too much information in coarse graph representations. Further, it

is demanding to come up with adequate representations for call frequencies and –

more importantly – for dataflows, which we identify to be crucial for the localisa-

tion of certain defects. Another challenging area is the definition of call graphs for

multithreaded programmes, where parts of the programme are executed in parallel.

Mining Weighted Call Graphs and Localising Defects. Besides the data

representation, defining the actual analysis procedure is the other main challenge for

call-graph-based defect localisation. It leads to three further subproblems:

• How to mine call graphs that are weighted?

• How to deal with scalability issues caused by large graphs?

• How to derive actual defect localisations?

Weighted subgraph mining. As we will see, we identify different types of weighted
graphs to be natural and adequate representations for our mining problem. However,

weighted-subgraph mining has not been investigated comprehensively, and there are

no obvious ways for the analysis of our weighted call graphs. Most techniques that

have been proposed for mining weighted graphs are very specific for the respective

mining problem and application domain, and they cannot be applied for defect lo-

calisation. It is therefore an unsolved problem how subgraph mining with weighted

graphs can be achieved in general. This problem is difficult to solve, since it brings

together the domain of graph structures (topologies) and the domain of numerical

weights. These two domains are in general not connected by means of a guaranteed
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law. This makes it difficult to deal with both kinds of information within the same

algorithm.

Scalability issues. Scalability of subgraph-mining algorithms is challenging, since

frequent subgraph mining inherently involves subgraph-isomorphism problems. This
problem is known to be NP-complete [GJ79]. Therefore, finding efficient algorithms

is not easy. For instance, approximate and constraint-based algorithms might solve

the scalability problem, but bear a trade-off between scalability and possibly worse

defect-localisation results. This is as such techniques lead to smaller result sets that

might contain less information relevant for defect localisation. Besides adopted min-

ing techniques, the scalability problem can be tackled by a fall back to the data-

representation problem. When doing so, the aim is to find suitable graph representa-

tions that can be mined more easily. However, this bears a similar trade-off.

Deriving defect localisations. There are many different ways to derive a defect

localisation based on results from mining weighted subgraphs. Such a localisation

technique should be efficiently computable, should cover a possibly wide range of

different types of defects and should ultimately be useful for software developers.

Thus, finding a technique that fulfils all these characteristics is difficult.

1.3 Contributions of this Dissertation
In order to solve the challenges mentioned in Sections 1.1 and 1.2, this dissertation

features contributions in both domains: in software engineering and at the different

stages of the knowledge-discovery process. The contributions described in the fol-

lowing two paragraphs are our basic approach for defect localisation with weighted

call graphs. The following paragraphs build on this approach and extend it in order

to broaden the range of detectable defects and to scale for larger software projects.

These extensions deal with both the data representation and the mining techniques.

The last paragraph subsumes the results in defect localisation.

Weighted-Call-Graph Representations. Reducing the size of call graphs as

directly obtained from programme executions is mandatory, caused by scalability

problems. However, this leads to a loss of information which might be relevant for

defect localisation. In this dissertation, we propose an approach that reduces the size

of the graphs. It does so to an extent that keeps important structural information.

Further, our approach annotates call frequencies as numeric edge weights. This in-

formation would be lost otherwise. This call-graph representation allows in particular

for the localisation of an important class of defects, call-frequency-affecting bugs.

Data-Mining-Based Defect Localisation with Weighted Call Graphs. To

analyse the weighted call graphs proposed – in the absence of a suitable out-of-the-

box technique for weighted graph mining – we propose a combined approach: It

6



1.3. CONTRIBUTIONS OF THIS DISSERTATION

utilises vanilla frequent-subgraph-mining techniques in a first step and employs a tra-

ditional data-mining technique, feature selection, in a subsequent analysis step. To

broaden the range of detectable defects, we further propose combination strategies to

incorporate the detection of another class of defects, structure-affecting bugs. Ulti-
mately, we derive a ranking of methods, ordered by their likelihood to be defective.

A software developer can then use this ranking to investigate the methods, starting

with the one suspected to be most suspicious.

Hierarchical Defect Localisation with Graphs at Different Granularities.
Graph-mining algorithms do not scale well for large graphs, even if tough call-graph-

reduction techniques are applied. Therefore, it is not possible to apply existing call-

graph-based defect-localisation techniques to large software projects. In order to

apply the developed defect-localisation techniques to such large projects, we develop

hierarchical procedures in this dissertation. To this end, we firstly propose novel

call-graph representations at different levels of granularity, i.e., at the package, class

and method level. We then investigate their usefulness for defect localisation and

propose various hierarchical analysis procedures. These procedures localise defects

starting at the most coarse-grained call-graph representation. There they identify po-

tentially defective regions in the code. Then, they proceed with finer-grained graphs

of the previously identified regions etc. Such graphs, representing small regions of

the whole graph, lead to scalability issues in much fewer cases.

Defect Localisation with Dataflow-Enabled Call Graphs. Existing call-

graph-based defect-localisation techniques do not allow for the localisation of de-

fects that affect the dataflow of a programme execution rather than the method-call

structure. This is as such techniques obviously can only detect defects that influ-

ence the call graph, which is not the case with such defects. Finding a respective

call-graph representation is difficult, as edges in a call graph typically represent huge

numbers of method calls and correspondingly huge numbers of dataflows. In this

dissertation, we propose dataflow-enabled call graphs that extend call graphs with

abstractions referring to the dataflow. We derive the graphs using discretisation tech-

niques. Furthermore, we extend the defect-localisation technique to deal with the

resulting graphs. With these extensions, we are able to localise defects that primarily

affect the dataflow, besides other classes of defects.

Mining Weighted Graphs with Weight-Based Constraints. Besides the

aforementioned hierarchical approach, constraint-based mining is a further approach

with the potential to increase scalability. Such algorithms lead to smaller result sets

and make use of pruning opportunities in the mining algorithms. However, existing

constraint-based graph-mining algorithms do not deal with weighted graphs. This

is as most weight-based constraints do not fulfil certain properties – most impor-
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tantly anti-monotonicity – which theoretically forbids their usage as pruning crite-

rion. In this dissertation, we do develop weight-based constraints and integrate them

into pattern-growth algorithms for frequent subgraph mining. We do so as weight-

based constraints seem to be a well suited general approach for mining weighted

graphs. As mentioned, weight-based constraints cannot be employed for pruning –

in theory. In this dissertation, we do so nevertheless and study the effects. The ratio-

nale for this investigation is that there is evidence that weights and graph structures

are frequently correlated in real-world graphs [MAF08]. As mining with such con-

straints can lead to approximate results, i.e., to incomplete result sets, we study the

completeness and the usefulness of such constraints. The result is that weight-based

constraints lead to both a better performance of mining algorithms and well results

in practice. Concretely, we demonstrate that guaranteeing completeness of mining

results in abdicable in the analysis problems investigated – not only in our software-

engineering application. Besides defect localisation, we evaluate our approach with

datasets from transportation logistics and consider different analysis problems, i.e.,

graph classification and explorative mining. We do so to demonstrate the broad ap-

plicability of the weight-based constraints proposed.

Results in Software-Defect Localisation. The results of defect localisation

using the call-graph representations and localisation techniques developed in this

dissertation are encouraging: Compared to existing call-graph-based techniques, the

approaches developed display on average a doubled localisation precision. These

results can be improved when employing dataflow-enabled call graphs. Compared

to more established approaches from the software-engineering domain [AZGvG09,

JH05, LFY+06], our approach was able to derive better defect-localisation results in

12 out of 14 cases in our test suite. Further, for the first time, we successfully apply

call-graph-mining-based defect localisation to real-world defects from a real and rel-

atively large software project (Mozilla Rhino, ≈ 49k lines of code). In our setup, our

approach narrows down the amount of code a developer has to examine to about 6%

of the whole project on average. In constraint-based mining, we achieve a speed-up

of 3.5 while obtaining even slightly better defect-localisation results.

1.4 Outline of this Dissertation

We now describe the contents of the remainder of this dissertation. Chapters 2

and 3 introduce the background and the related work, respectively. Chapters 4 and 5

describe our basic defect-localisation approach, and Chapters 6–8 are extensions

thereof. Chapters 5–8 include evaluations of the respective techniques. Chapter 9

concludes.

In Chapter 2, we describe the background of this dissertation. In particular, we

introduce the backgrounds from graph theory, software engineering and data mining.
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These descriptions are limited to an extent that one can follow the descriptions in the

succeeding chapters.

In Chapter 3, we discuss related work. This chapter is divided into two parts, one

on defect localisation and one on data mining. In the defect-localisation part, we

discuss the different existing approaches for defect localisation (not including call-

graph-mining-based techniques) and contrast them to the techniques developed in

this dissertation. In the data-mining part, we discuss existing techniques for mining

weighted graphs, for mining significant subgraphs (including approximative tech-

niques) and for constraint-based subgraph mining. These techniques are related, as

we propose different ways for mining weighted graphs in this dissertation, including

an approximate constraint-based technique.

Chapter 4 is about call-graph representations. This includes representations pro-
posed by other authors from the closely related work, as well as the call-graph rep-

resentations that are new in this dissertation. In particular, we introduce different

kinds of weighted call graphs. We discuss all these graph representations within the

same chapter, as they are closely related to each other, and as this allows for a better

comparison. In particular, we focus on call graphs at the method level in this chapter,

i.e., one node in a call graph represents a method. Then, we comment on call-graph

representations on other levels of granularity, we propose graph representations for

multithreaded programmes, and we say how we actually derive call graphs from pro-

gramme executions.

In Chapter 5, we describe defect localisation based on the call-graph represen-

tations discussed before. Again, we discuss closely related techniques dealing with

traditional graph representations within the same chapter as the techniques newly pro-

posed in this dissertation. This is, we discuss existing structural techniques for defect

localisation, followed by novel frequency-based approaches. We also propose possi-

bilities to combine both kinds of approaches in order to be able to detect a broader

range of defects. Then, we present an evaluation that compares selected graph repre-

sentations and mining techniques. Besides the techniques described in this chapter,

we also compare our newly proposed approach to established approaches from the

related work in software engineering.

Chapter 6 is about hierarchical defect localisation. This is, we generalise our call-
graph representations to deal with call graphs at several levels of granularity. This

allows us to propose hierarchical mining procedures that start with call graphs at

coarse levels of granularity, before zooming-in into regions of the call graphs sus-

pected to be defective. This aims at a scalable technique for defect localisation. We

evaluate this technique with a relatively large software project along with real defects.

In Chapter 7, we deal with the localisation of dataflow-affecting bugs. We first

introduce dataflow-enabled call graphs, which are call graphs incorporating abstrac-
tions referring to the dataflow. Then we say how we derive dataflow-enabled call

graphs by means of tracing and supervised discretisation. In order to localise data-
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flow-affecting bugs along with other types of defects, we adopt our mining technique

from the preceding chapters. Finally, we evaluate this new approach.

Chapter 8 is about constraint-based mining of weighted graphs. This technique is
motivated by our defect-localisation problem, but is actually a more general technique

for mining weighted graphs. Concretely, we introduce weight-based constraints, and

we explain how to integrate them into pattern-growth-based frequent subgraph min-

ing. In this chapter, we also explain different analysis settings where mining with

weight-based constraints is of relevance, including the application to defect locali-

sation. Ultimately, we evaluate the different analysis settings with graph data from

software engineering and transportation logistics.

Chapter 9 concludes this dissertation. Besides a short summary, we highlight the

lessons learned, and we explain some directions for future work.

Portions of the whole work have been published in [EB10, EBH08a, EBH08b]

(weighted call-graph representations and basic defect-localisation techniques, Chap-

ters 4 and 5), [EB09, EOB11] (hierarchical defect localisation, Chapter 6), [EKKB10]

(localisation of dataflow-affecting bugs, Chapter 7), [EHB10a, EHB10b] (constraint-

based mining of weighted graphs, Chapter 8) and [EPGB10] (multithreading defect

localisation, Appendix A).
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2 Background

This dissertation is about applied data mining, it has a dedicated field of applica-

tion, software defect localisation, and it focuses on techniques for the analysis of

call graphs. This chapter therefore first introduces the formal graph-theoretic back-

grounds (Section 2.1). Then it discusses important concepts from the field of ap-

plication, software engineering (Section 2.2), and finally, it introduces the relevant

data-mining techniques (Section 2.3).

2.1 Graph Theory

We now introduce the basic concepts of graphs and trees from a graph-theoretic point

of view that are relevant in this dissertation (Sections 2.1.1 and 2.1.2, respectively).

2.1.1 Graphs

In this dissertation, graphs are typically labelled:

Definition 2.1 (Labelled graphs)
A labelled graph is a four-tuple: G ∶= (V,E,L, l). V is the set of vertices1, E ⊆ V ×V
the set of edges, L a set of categorical labels and l ∶ V ∪E → L a labelling function.
E(G) denotes the set of edges of G, V (G) the set of vertices and L(G) the set of
labels.

Sometimes we do not explicitly mention the labels of edges. In this case, all edges

have the same default label. Further, graphs can be weighted:

Definition 2.2 (Labelled weighted graphs)
A labelled weighted graph is a six-tuple: G ∶= (V,E,L, l,W,w). V , E, L and l are as
in Definition 2.1, W ⊆ R is the domain of the weights, and w ∶ E → W is a function
which assigns weights to edges.

All techniques discussed in this dissertation can easily be extended to cover nodes

that are weighted (w ∶ V ∪E → W ). Further, tuples of weights can be handled with

the following variation: W ⊆ Rn, n ∈ N.
1In this dissertation, we use vertex and node interchangeably.
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Notation 2.1 (Properties of graphs)
All graphs can be directed or undirected (e ∈ E is an ordered tuple or an unordered

set, respectively). Further, all graphs can be connected (any two nodes are connected
by at least one path) or unconnected (there exists at least one pair of nodes that is
not connected by a path; the graph consist of several components). See [Die06] for
further details.

If not mentioned explicitly, we deal with directed and connected graphs in this

dissertation. To explicitly distinguish graphs from trees (see Section 2.1.2), we call

graphs that might include cycles also general graphs.

Definition 2.3 (Subgraphs (see [Die06]))
A labelled graph G′ is a subgraph of a labelled graph G (and G a supergraph of G′)
if and only if V (G′) ⊆ V (G),E(G′) ⊆ E(G), L(G′) ⊆ L(G), and G′ preserves the
labelling defined in G. G′ ⊆ G denotes such a subgraph-supergraph relationship. If
G′ ⊆ G and G′ ≠ G, G′ is called a proper subgraph of G, denoted G′ ⊂ G.

Note that weights are not considered for the definition of subgraphs.

Definition 2.4 (Subgraph-isomorphism problem)

The question whether a given graph G′ is a subgraph from another given graph G
(G′ ⊆ G) is called the subgraph-isomorphism problem.

The subgraph-isomorphism problem as defined before for general graphs is known

to be NP-complete [GJ79].

2.1.2 Trees

Trees are variants of graphs. As they are relevant in the software-engineering domain,

too, we now briefly introduce the most important notions.

Definition 2.5 (Trees (see [Die06]))
An acyclic connected graph, i.e., a connected graph which edges do not form a circle,
is called a tree (see Definition 2.1 and Notation 2.1 for the definition of connected
graphs).

In this dissertation, trees are (as graphs) always labelled, and they can be weighted,
too (in this case, Definition 2.2 applies accordingly).

Notation 2.2 (Properties of trees)
Nodes having only one outgoing/incoming edge are called leaves, nodes that are
connected to the same node are called siblings. When trees are undirected (and
unordered, see Notation 2.3), they are also called free trees [CMNK05]. When trees
are directed and two nodes are connected by an edge, one calls them parent and child.
A tree T with a dedicated root node r ∈ V (T ) is called a rooted tree.
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Notation 2.3 (Unordered and ordered trees)
As with graphs, trees are by default unordered, as V and E are unordered sets.
Rooted trees can also be ordered. In this case, one has to define an order between all
siblings that are children from the same parent node.

In the context of software engineering, we typically deal with both labelled and

directed rooted unordered trees and labelled and directed rooted ordered trees.

Definition 2.6 (Subtrees (see [CMNK05]))

The definition of subtrees is the same as the one for subgraphs given in Definition 2.3.
When dealing with ordered trees, the ordering among the siblings in the subtree has
in addition to be a subordering of the corresponding vertices in the supertree.

Chi et al. [CMNK05] describe further variations for the definition of subtrees be-

sides the one for induced subtrees given in Definition 2.6.

2.2 Software Engineering

As we now know the theoretical background of graphs and trees, we now first dis-

cuss the most important graphs in software engineering (Section 2.2.1). We then

clarify our notion on failing behaviour in software (Section 2.2.2) and introduce the

foundations of software testing and debugging (Section 2.2.3).

2.2.1 Graphs in Software Engineering

Graphs have been used for a long time in different subdisciplines of software engi-

neering. The most important distinction is if the graphs are static or dynamic, i.e., if
they represent aspects from the source code or from programme executions, respec-

tively. In the following, we introduce the graphs that are relevant in this dissertation.

Control-Flow Graphs (CFGs)

Control-flow graphs (CFGs) [All70] are static representations of source code, fre-

quently used in compiler technology. In a CFG, the source code is divided into

several so-called basic blocks. Each basic block consists of all statements that are

always executed conjunctively, i.e., new blocks start when the control flow changes

(due to, e.g., an if or for statement). CFGs are unweighted general graphs:

Notation 2.4 (Control-flow graphs (CFGs, see [All70]))

In a CFG, each basic block is represented as a node, and control dependencies are
represented as edges connecting these nodes.
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Example 2.1: Figure 2.1(a) is the control-flow graph (CFG) from the example source

code given in Listing 2.1.

Programme-Dependence Graphs (PDGs)

Programme-dependence graphs (PDGs) [OO84] are static graphs as well, and they

are typically used in programme slicing [KL88] and optimisation [FOW87]. While

CFGs reflect the pure control structure of a programme, PDGs incorporate addition-

ally dataflow-related information. To this end, they require a finer level of granularity

than CFGs, as dataflows might occur between the individual statements within a basic

block in a CFG. As CFGs, PDGs are unweighted general graphs:

Notation 2.5 (Programme-dependence graphs (PDGs, see [OO84]))

In a PDG, every statement forms its own node (with few exceptions). Further, there is
a dedicated entry node, and there are extra nodes representing every parameter of a
method2. A control edge connects a node a with a node b if and only if the execution
of node b depends on node a. Besides control edges, nodes in PDGs are connected
by means of edges of another type (technically of another label; say, ‘data’ instead
of ‘control’) when there is a dataflow between the nodes.

Example 2.2: Figure 2.1(b) is the programme-dependence graphs (PDG) from the

example source code given in Listing 2.1. Control dependencies are displayed by

solid lines, data dependencies by dashed lines.

Static and Dynamic Call Graphs

Call graphs can be both static or dynamic [GKM82]. A static call graph [All74] can

be obtained from the source code. It represents all methods of a programme as nodes

and all possible method invocations as edges. We deal with dynamic call graphs
(sometimes also called call trees) in this dissertation. They represent an execution

of a particular programme and reflect the actual invocation structure of the particular

execution. Chapter 4 provides detailed definitions for the various variants of call

graphs.

Without any further treatment, an (unreduced) call graph is an unweighted rooted
ordered tree. The main method of a programme is the root, and the methods invoked

directly are its children. Originally, the siblings are ordered by the time of execu-

tion. However, unreduced call graphs become very large and are typically reduced to

smaller call graphs, which are weighted or unweighted general graphs.
In Chapter 4 (and as well in Chapters 6 and 7), we discuss call graphs to a larger

extend, including the different reduction techniques, further variants of the graphs

and the question how to actually derive such graphs from programme executions. As

2In this dissertation, in a software context, we use method interchangeably with function.
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1 public static int mult(int a, int b) {
2 int res = 0;
3 int i = 1;
4 while (i <= a) {
5 res += b;
6 i++;
7 }
8 return res;
9 }

Listing 2.1: Example Java method performing an integer multiplication.

while i <= a

res += b;
i++;

 true

return res;

 false

res = 0;
i = 1;

(a) CFG

entry mult

res = 0;

i = 1;

while i <= a

a = a_in;

b = b_in;

res += b;return res;i++;

(b) PDG

Figure 2.1: A control-flow graph (CFG) and a programme-dependence graph (PDG)

for the method int mult(int a, int b) as given in Listing 2.1.
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main

a b

a a a

(a)

main

a b

a a a

(b)

main

a b

a a ... a

(c)

Figure 2.2: (a) An unreduced dynamic call graph, (b) a call graph with a structure-
affecting bug and (c) with a frequency-affecting bug.

we will see in Section 4.2 and Chapter 6, call graphs can also be defined at levels

of granularity different from the method level. For instance, basic blocks, classes or

packages might form the nodes of a call graph.

2.2.2 Bugs, Defects, Infections and Failures in Software
In the field of debugging, one usually avoids the terms fault, bug and error, but dis-
tinguishes between defects, infections and failures [Zel09]. In this frequently-cited

classification, these terms have the following meaning:

• Defects are the places in the source code which cause a problem.

• Infections are incorrect programme states (usually triggered by defects).

• Failures are an observable incorrect programme behaviour (e.g., a user expe-

riences wrong calculations).

In this dissertation, we use the term bug when referring to different types of fail-

ing behaviour. We now introduce a more detailed differentiation of our own (unless

otherwise stated), which is in particular useful when dealing with call-graph-based

defect localisation:

• Crashing and non-crashing bugs [LYY+05]: Crashing bugs lead to an un-

expected termination of the programme. Prominent examples include null-

pointer exceptions and divisions by zero. In many cases, e.g., depending on

the programming language, the respective defects are not hard to find: A stack

trace is usually shown which gives hints where the infection occurred. Harder

to cope with are non-crashing bugs, i.e., failures which lead to wrong results

without any hint that something went wrong during the execution [LYY+05,

LCH+09].

As non-crashing bugs are hard to find, all approaches to localise defects with

call-graph mining (including the ones proposed in this dissertation) focus on
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them and leave aside crashing bugs. However, when call graphs can be gen-

erated from crashing programme executions, there are no obstacles in localis-

ing the respective defects with call-graph-based techniques in the same way as

non-crashing bugs.

• Occasional and non-occasional bugs: Occasional bugs are failures which oc-
cur with some but not with any input data. In the context of multithreaded pro-

grammes, occasional bugs can also arise when the programme input remains

the same, but different thread schedules are executed. Finding occasional bugs

is particularly difficult, as they are harder to reproduce, and more programme

executions are necessary for debugging. Furthermore, they occur more fre-

quently, as non-occasional bugs are usually detected early, and occasional bugs
might only be found by means of extensive testing.

As all call-graph-based defect-localisation techniques (including the ones pro-

posed in this dissertation) rely on comparing call graphs of failing and correct

programme executions, they deal with occasional bugs only. In other words,

besides examples of failing programme executions, there needs to be a certain

number of correct executions.

• Structure and call-frequency-affecting bugs (call-graph-affecting bugs):
This distinction is particularly useful when designing call-graph-based defect-

localisation techniques. Structure-affecting bugs are defects resulting in differ-
ent structures (topologies) of the call graph where some parts are missing or

occur additionally in failing executions. In contrast, call-frequency-affecting
bugs (frequency-affecting bugs for short) are defects which lead to a change

in the number of calls of a certain subtree in failing executions, rather than to

completely missing or new substructures. In general, it happens frequently that

a structure-affecting bug also affects the call frequencies (as a side effect) and

vice versa. See Example 2.3 for an illustration of both kinds of defects. We

call the class of both kinds of defects, structure and frequency-affecting bugs,

also call-graph-affecting bugs.

While the call-graph-based techniques from the related work focus on struc-
ture-affecting bugs, we develop a defect-localisation technique in Chapter 5

that is able to localise both structure and frequency-affecting bugs.

• Call-graph and dataflow-affecting bugs: In contrast to call-graph-affecting

bugs, dataflow-affecting bugs manifest themselves by infected data exchanged

between programme components. In this dissertation, we focus on infected

data values exchanged via method-call parameters or return values, e.g., cases

where a method returns a wrong value. Dataflow-affecting bugs might affect

the call graph as a side effect. Chapter 7 provides more details and examples.
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Pure dataflow-affecting bugs are usually not covered by call-graph-based defect

localisation, but we present a technique in Chapter 7 which is able to discover

both call-graph and dataflow-affecting bugs.

Example 2.3: The graphs in Figure 2.2 are representations from executions of the

programme given in Listing 1.1.

Figure 2.2(b) is a call graph where the call of method a from method main is

missing, compared to the original graph in Figure 2.2(a). This is an example for

a structure-affecting bug. The original cause for the infection might be a defective

if-condition in the main method.

In the graph given in Figure 2.2(c), a defective loop condition or a defective if-
condition inside a loop in method b are typical causes for the increased number of

calls of method a. This is an example for a frequency-affecting bug.

2.2.3 Software Testing and Debugging
Software testing is an inherent part of the software development process [Som10].

The overall aim of testing is to ensure that programmes3 provide the functionality

specified before, without eventually leading to any failures. The aim of debugging
is to find and fix the defects that cause deviations from the specification (failures).

Software quality assurance (or validation and verification), which includes testing

and debugging, is a wide field of research of its own. We now briefly explain some

fundamental terms and techniques, in order to understand the techniques discussed

in this dissertation.

Different Testing Approaches

Testing plays an important role in the whole software-development process, as it

takes place at all stages of the process, from coding to final tests before the software

is released. In the different stages of the software-development process, one does

unit testing, component testing, integration testing and system testing [Bei90]. Unit
testing takes place during coding, and it ensures that the smallest testable pieces of

a programme produce the expected results. Component testing does the same for

larger agglomerations of units. Integration testing ensures the correct functionality

of several components. System testing looks at the functionality of a whole software

system. This can consist of one large programme or of a collection of programmes;

we consider mainly the first case in this dissertation, as each programme leads to its

own call graph.

Regression testing is performed when previous versions of a programme are avail-

able, along with their tests [Bei90]. When only small parts from a programme are

changed between two versions, one can expect that most tests from the old version

3The programme examined is typically called programme under test.
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pass in the new version as well. Only where functionality was changed between the

versions, tests are supposed to fail – all other failing tests can be hints for real failing

behaviour in a programme.

In this dissertation, we rely on system tests examining the executions of entire

programmes. However, when sets of call graphs from a smaller component than the

whole programme can be derived, there are no principal obstacles in applying the

call-graph-based techniques developed in this dissertation. In real-world software

projects, regression tests will typically be used to perform system tests (and can be

used to drive our defect-localisation techniques), as tests from previous versions are

frequently available.

Performing Software Tests

Software tests are formal procedures, consisting of programme inputs and expected

outputs [Bei90]. The programme inputs include system configurations, programme

parameters and files and user input red by the programme. The expected output

includes everything that is produced by the programme, such as files written and

output displayed on screen. Designing software tests is its own field of research,

typically aiming at covering many different (but non-overlapping) executions of a

programme which execute possibly large parts of the source code.

To derive the expected output and to compare it with the actual output, one typ-

ically relies on test oracles [How78]. Their purpose is to decide whether a certain

execution yields any observable problems, i.e., failures. Such an oracle can be a

programme that produces the correct result and compares it to the output from the

programme under test, or it can be the data itself that the programme under test is

supposed to calculate, e.g., calculated manually. Besides unexpected output, other

kinds of observable problems such as deadlocks can be considered to be a failure.

Test oracles should be able to detect such behaviour as well.

In this dissertation, we assume that both test cases and test oracles are available, as

we focus on the later defect-localisation step. This assumption is reasonable, since

testing is an inherent part of modern software development [Som10]. Furthermore,

in most software projects, (regression) system tests are available, including both test

cases and test oracles.

Debugging

Debugging is as well its own field of research [Zel09]. It includes everything from

dealing with test cases, observing programme executions, localising defects and ulti-

mately fixing them. It has also been described as the process of relating a failure to

an infection to a defect [Zel09].
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In this dissertation, we develop techniques for the defect-localisation part of de-

bugging. This is, we aim at helping software developers in localising defects in order

to fix them once a failing behaviour has been experienced.

2.3 Data Mining
We now introduce the foundations of data mining that are relevant in this dissertation.

We discuss the data-mining process and applied data mining (Section 2.3.1), selected

data-mining techniques for tabular data (Section 2.3.2) and finally frequent-pattern-

mining techniques, including graph mining (Section 2.3.3).

2.3.1 The Data-Mining Process and Applied Data Mining
The literature has proposed a number of data-mining process models (e.g., [CCK+00,

FPSS96]). Sometimes, the term data mining stands for a single step within a larger

framework, frequently called the process of knowledge discovery in databases.

The CRISP-DM Data-Mining Process Model

A well-known representative of data-mining process models is CRISP-DM (CRoss-

Industry Standard Process for Data Mining) [CCK+00], which has been proposed by

an industry consortium. It describes an iterative process with a number of loops going

back to earlier stages: business understanding, data understanding, data preparation,
modelling (the actual data-mining step), evaluation and deployment (see Figure 2.3).
This process illustrates that data mining or knowledge discovery consists of a number

of stages apart from the actual modelling: At first, one needs an understanding of the

business or the domain of the application. Then, one needs to understand the data one

is working with or one plans to collect. Next, one needs to prepare the data in order

to be suited for the data-mining algorithm chosen. Only when the chosen algorithm

leads to well evaluation results, the whole process can be deployed.

In this dissertation, the first five steps from the CRISP-DM process model are of

relevance. More specifically, the main contribution of this dissertation is not only in

the modelling part, but also in the data-preparation part of the process:

• Business understanding: At first, we have to develop an understanding for the

principles of software technology and the nature of the various defects, infec-

tions and failures.

• Data understanding: When we know the domain, we have to understand which

data is available and – as we are not faced with an industry project where the

aim is to analyse data that is already available – which data we can collect, e.g.,

from programme executions.
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Business
Understanding

Data
Understanding

Data
Preparation

Modelling

Evaluation

Deployment

Data

Figure 2.3: The CRISP-DM data-mining process model [CCK+00].

• Data preparation: When we know which data is available and can be collected,

we have to decide how to represent the data. In this dissertation, we develop a

number of call-graph representations.

• Modelling: Depending on the data representation chosen, we can chose – or

develop – an analysis technique or a combination of different techniques, such

as frequent subgraph mining and feature selection.

• Evaluation: When all previous steps are done, we have to evaluate our ap-

proach consisting of all previous steps.

The next step would be to deploy the whole process, possibly in an industrial envi-
ronment. However, this part of the process is not in the focus of this dissertation.

Applied Data Mining

Besides research on the general data-mining process model, an increasingly impor-

tant direction of research is applied data mining, also called domain-specific mining
[HG08] or domain-driven data mining (D3M ) [CYZZ10]. This direction of research

partly builds on the recognition that data-mining research in the past has mainly fo-

cussed on building new, faster and more precise techniques, and that relatively little

attention has been paid for actual real-world applications [CYZZ10]. Another im-

portant recognition is that not much attention has been paid on the integration of
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sophisticated scientific and engineering domain knowledge. Thus, specific data rep-

resentations as well as dedicated analysis techniques are deemed to be essential for

the success of applied data mining in any domain [HG08].

This dissertation is in the field of applied data mining in software engineering.

The call-graph representations developed in this dissertation are specific data rep-

resentations that incorporate domain knowledge relevant for the analysis problem.

The analysis techniques developed – either as a combination of existing techniques

or as a new analysis technique – are specific for the data representations developed

beforehand.

2.3.2 Data-Mining Techniques for Tabular Data

Most (conventional) data-mining techniques deal with tabular data, i.e., the data to
be analysed is stored in tables as in relational databases, and one tuple (a row in the

table) refers to one object in the real world. A typical example is customer data, where

one tuple refers to one person, and the columns describe numerical or categorical

properties such as age, gross income and sex. Based on such data, various data-

mining tasks can be defined, such as classification, regression and cluster analysis
– for every task there are many different algorithms and implementations available

(see, e.g., [BBHK10, HK00, HMS01, Mit97, WF05]). In classification, the task is

to predict an unknown categorical class of a tuple, e.g., if a person is creditworthy

or not, based on a collection of data from the past. In regression, the task is to

predict a numerical attribute. In cluster analysis, the task is to group (or partition) the

tuples into previously unknown groups (or partitions) of tuples that share the same

properties and have properties different from the other groups (or partitions).

Besides the big success of the data-mining tasks and techniques dealing with tabu-

lar data, not every kind of real-world objects can adequately be described using tuples

in such a table. As an example, chemical molecules can intuitively be described as a

graph structure, where atoms are the nodes, and bindings are the edges of a labelled

graph. Of course, based on such a representation, a number of measures can be de-

rived and can be stored in a tuple of numerical and categorical values. As an example,

one could derive the number of nodes, the information whether the graph contains cy-

cles and maybe as well the total weight of a molecule. However, despite that such

a representation might be suited for certain applications, it does not keep all infor-

mation encoded in the corresponding graph representation. Therefore, the tabular

representation might not be suited for certain applications, or might not allow de-

riving a certain precision of analyses. The same applies to the software-engineering

domain, where call graphs can represent a programme execution more adequately

than a table that contains, e.g., different measures corresponding to information such

as the number of methods called during an execution.
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In this dissertation, we rely on techniques for the analysis of graphs (see Sec-

tion 2.3.3) and make use of one conventional data-mining technique, feature selec-
tion, which we describe in the following.

Feature Selection

Many data-mining techniques suffer from the so-called “curse of dimensionality”:
They either do not scale well for high-dimensional data, or the data becomes less

meaningful with an increasing number of dimensions [BGRS99]. Feature-selection
techniques can help to reduce the number of dimensions in tabular data. They aim at

finding subsets of attributes (tuple elements or columns in a table) that still describe

the data well, or they aim at scoring these attributes by assigning them with a score

that measures their usefulness. In the following, we focus on such usefulness-scoring-

based feature-selection techniques, as they are relevant for the analysis techniques

developed in this dissertation.

Typically, the usefulness in feature selection is based on the attributes ability to pre-

dict another column, e.g., a categorical class attribute. For the categorical case, this

ability is also called discriminativeness. Respective measures are frequently used

internally in decision-tree-induction algorithms, as they have to decide which at-

tribute is best suited to build the next split on, in order to perform a well classification

[BK98, Qui93]. Another source of such discriminativeness measures are techniques

from statistics that measure the correlation between attributes. In the following, we

introduce the information gain (InfoGain) and information-gain ratio (GainRatio)
discriminativeness measures [Qui93] as two representatives of feature-selection al-

gorithms with a high relevance in practice:

Definition 2.7 (Information Gain and Information-Gain Ratio (see [Qui93]))

Let D be a data table. C is one column in D that associates each row (tuple) to a
class. DC is the domain of C, and DC=i denotes the set of rows that belong to the
i-th class (i ∈ DC). Let A denote any other column different from C, consisting of
numerical values. The information gain (InfoGain) is a measure based on entropy

(Info), and the information-gain ratio (GainRatio) in turn is based on InfoGain.
Both measures measure the discriminativeness of an attribute A when values v ∈ A
partition the dataset D. The partitioning is done in a way that the InfoGain of A
is maximised. This requires a discretisation of A’s values into n intervals (see, e.g.,
[ER97] for more information on the discretisation), where DA is the domain of the
discrete intervals of A (n = ∣DA∣). DA∈j denotes the partition consisting of the set of
rows of D that belong to the j-th interval of A (j ∈ DA). The GainRatio normalises
the InfoGain value by SplitInfo, which is the entropy (Info) of the discretisation of
the attribute into intervals:
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Info(D) ∶= − ∑
i∈DC

∣DC=i∣
∣D∣ ⋅ log2(∣DC=i∣

∣D∣ )

InfoGain(A,D) ∶= Info(D) − ∑
j∈DA

∣DA∈j ∣
∣D∣ ⋅ Info(DA∈j)

SplitInfo(A,D) ∶= − ∑
j∈DA

∣DA∈j ∣
∣D∣ ⋅ log2(∣DA∈j ∣

∣D∣ )

GainRatio(A,D) ∶= InfoGain(A,D)
SplitInfo(A,D)

Possible values of InfoGain and GainRatio are in the interval [0,1]. Value 1
means that an attribute discriminates perfectly between classes; at 0, an attribute has

no influence on class discrimination. Opposed to GainRatio, the maximum value

of InfoGain can only be 1 if the distribution of classes in C is equal. In skewed

class distributions, the maximum value of InfoGain is lower, even if the attribute

discriminates perfectly.

2.3.3 Frequent-Pattern-Mining Techniques
Opposed to tabular-data-mining techniques as introduced in Section 2.3.2, frequent-
pattern-mining techniques [HCXY07] discover frequent or interesting patterns in

databases of, e.g., itemsets, sequences, trees and graphs. These techniques can be

seen as a hierarchy of mining techniques, as sequences generalise itemsets, trees gen-

eralise sequences, and graphs generalise trees. In the following, we introduce these

techniques and some of its variations, as well as the foundations of constraint-based
mining.

Itemset Mining

Itemsets and Association Rules. Itemset mining has been introduced in the

context of association-rule mining [AMS+96] – the probably most prominent ex-

ample for this task is market-basked analysis. In itemset mining, one analyses a

database of transactions, and a transaction consists of one or more binary items.
As an example, a supermarket transaction consists of a number of products bought.

These products are called items. The idea of itemset mining is to identify items

that were frequently bought together, where the notion of frequency is given by a

user-defined minimum-support value (suppmin, the support might be either measured

absolutely or as a ratio or percentage): Find all sets of items that are subsets of at

least suppmin transactions in a given database. A famous example [SA96a] for the

itemset-mining problem is the discovery of a frequent itemset consisting of beer and

diapers: {beer ,diapers}.
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In association-rule mining, one first generates frequent itemsets before these item-

sets are split into association rules. As an example, the aforementioned itemset could

be split as follows: {diapers} → {beer}, saying that people who buy diapers also buy
beer. Besides the support value, association rules have a confidence value. This is the
probability that an association rule holds, i.e., the number of transactions including

all items from both sides of the rule divided by the number of transactions including

all items from the left side. The legend says [SA96a] that the confidence of the afore-

mentioned rule could be remarkably high, while the overall support of the rule (the

support from the union of both sides) would be relatively low.

Itemset-Mining Algorithms. The first and probably easiest algorithm for item-

set mining is the a-priori algorithm [AMS+96]. It builds on the idea that the support

from a subset from some itemset cannot be smaller than the support from its superset.

The algorithm uses this idea in a level-wise approach: It first generates all frequent

itemsets that consist of a single item (1-itemset). Then, it uses these 1-itemsets to

combinatorially generate all 2-itemsets. These 2-itemset candidates are then searched

in the database in order to determine their actual support. The remaining 2-itemsets

that are actually frequent are then saved and used to generate all potential 3-itemsets

etc. Due to the repeated candidate generation and test for frequency, it is also said

that the algorithm follows the generate-and-test paradigm.

Despite its relatively simple approach for generating all frequent itemsets, the a-
priori algorithm [AMS+96] has been criticised as it does not scale well. This is

due to the potential high number of costly database scans for determining the actual

support of the itemsets. A number of further algorithms try to overcome this chal-

lenge, by different data representations and algorithm designs: The Eclat algorithm
[Zak00] organises the transaction database into a subset lattice and performs a depth-

first search in this data structure. The FP-growth algorithm [HPY00] makes use of a

prefix-tree structure (frequent-pattern tree, FP-tree) for the transaction database. The
algorithm then follows a divide-and-conquer approach to derive all frequent itemsets.

One of the advantages of the FP-growth algorithm is that it relies on the so-called

pattern-growth method, which replaces the costly generate-and-test approach: Only

itemsets that occur at least once in the database are tested if they fulfil the suppmin

criterion. This is done efficiently in a subtree of the FP-tree storing the transaction

database.

Quantitative Association Rules. Itemset mining and association-rule mining

deal by default with binary data. This is, a certain item is part of an itemset or it is

not. In market-basked analysis, as an example, it is not considered whether a certain

product is contained in a transaction once or hundred times. Quantitative association
rules [SA96a] introduce numerical weights to items and discretise this information

in order to deal with it in an extended association-rule-mining algorithm.
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Sequence Mining

Sequence mining is a generalisation of itemset mining: Instead of analysing transac-

tions consisting of sets of items, it analyses sequences of such transactions. In more

detail, the task is to find all sequences that are subsequences of at least suppmin se-

quences in a database of sequences [DP07]. One of the first applications was again

market-basket analysis: When one is able to track customer purchases over time,

the idea is to find frequent sequences of (sets of) items. For instance, it could be

a frequent pattern that some customers first buy a digital camera and a camera bag,

sometime later a new lens and later on some filters for the new lens. Other appli-

cations include DNA-sequence analysis in biology and log-file analysis from web

servers.

The first algorithm for sequence mining, AprioriAll [AS95], is a generalisation

of the a-priori algorithm and has been proposed by the same authors. The GSP
algorithm [SA96b] is an improvement and a generalisation for hierarchies of items,

proposed by the same authors as well.

As GSP [SA96b] still follows the generate-and-test paradigm, it bears the same

efficiency problems. Therefore, a number of different sequence-mining algorithms

has been developed that aim at overcoming this challenge and/or propose further

enhancements. One of the well-known variations discovers frequent episodes (i.e.,

partially ordered collections of events occurring together) instead of frequent sub-

sequences [MTV97]. The SPADE algorithm [Zak01] relies on a vertical database

format which allows for an optimised lattice-based search space. A sequence-mining

algorithm that follows the pattern-growth approach is PrefixSpan [PHMA+04]. The

authors have shown that their algorithm performs better than all aforementioned al-

gorithms for sequence mining.

Frequent Subtree Mining

Frequent subtree mining is the next generalisation of sequence mining – or a special

case of frequent subgraph mining (as introduced in the following). The idea is to

discover frequent subtrees in a database of trees. As there are different kinds of trees

(see Section 2.1.2), there are different techniques for mining them:

• Rooted ordered trees can be mined with the FREQT algorithm [AAK+02].

• Rooted unordered trees can be mined with the HybridTreeMiner [CYM04],

with the algorithm Unot [AAUN03] and with uFREQT [NK03] (the two last-

mentioned algorithms are based on FREQT).

• Unrooted unordered trees can be mined with the FreeTreeMiner [CYM03]

and with the the HybridTreeMiner [CYM04] as well. Furthermore, such trees

can also be mined with arbitrary graph miners, as trees are special cases of
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graphs. In particular, Gaston [NK04] is suited for the analysis of trees, as this

graph miner internally mines for trees before it extends them to general graphs.

In general, dedicated tree mining algorithms can (but do not necessarily do) de-

crease the runtime of mining algorithms compared to the usage of general graph-

mining algorithms. Algorithms for rooted ordered trees benefit in general most from

the specifics of the respective trees. Algorithms for rooted unordered trees benefit less

than those for rooted ordered trees and those for unrooted unordered trees less than

those for rooted unordered trees. Besides the tree-mining algorithmsmentioned, there

are more algorithms dedicated for deviating definitions of subgraph relationships and

other special cases. Chi et al. present a comprehensive survey of tree-mining algo-

rithms [CMNK05].

Frequent Subgraph Mining

Problem Definition and Algorithms. Frequent subgraph mining is the gener-

alisation of all aforementioned frequent-pattern-mining techniques: Roughly speak-

ing, itemsets are graphs without any edges (E = ∅), sequences are graphs consisting
of paths only, and trees are graphs without cycles. Therefore, graph mining can be

used for many applications, but suffers from the NP-complete subgraph-isomorphism

problem (see Definition 2.4). As we rely on graph-mining techniques in this disser-

tation, we define the task more formally than the other pattern-mining techniques

mentioned before:

Definition 2.8 (Frequent subgraph mining)

Let D ∶= {g1, ..., g∣D∣} be a graph database. Frequent subgraph mining is the task
of finding all subgraph patterns f ∈ F with a support of at least suppmin in D. The
support of a graph f is support(f,D) ∶= ∣{g∣g ∈ D ∧ f ⊆ g}∣. In short, f ∈ F ⇐⇒
support(f,D) ≥ suppmin.

Frequent subgraph mining (and other frequent-pattern-mining algorithms as well)

is often used as a building block of some higher-level analysis task such as cluster
analysis [AW10a] or graph classification [CYH10a]. With the latter, frequent sub-

graph patterns are mined from a set of classified graphs. A standard classifier is then

learned on the subgraph features discovered.

Many algorithms have been proposed for frequent subgraph mining. The first al-
gorithms, AGM [IWM00] and FSG [KK01], rely on the generate-and-test paradigm

known from the a-priori algorithm. They therefore follow implicitly a breadth-first-

search strategy. All more recent algorithms rely on a depth-first search. These algo-

rithms include FFSM [HWP03], gSpan [YH02] (see also the following paragraph

about pattern-growth algorithms) and its extension CloseGraph [YH03] (see also the

section on closed mining), Gaston [NK04], MoFa [BB02] and its extension MoSS
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[BMB05]. Four of the more recent algorithms mentioned have been compared exper-

imentally by independent scientists using a number of different datasets [WMFP05].

The result is that Gaston and gSpan are mostly the algorithms with the best run-

time behaviour, depending on both, the nature of the graph databases analysed and

the memory architecture of the machine used for the execution. We focus on gSpan
and its variations in the following, as it performs well and is more widely used in the

scientific community than Gaston.
The comparison in [WMFP05] and the survey in [YH06] contain more information

about the frequent-subgraph-mining algorithms mentioned. We also look at some

more recent algorithms in the related-work chapter (Section 3.2.2).

Pattern-Growth Algorithms. Algorithm 2.1 depicts the basic steps of a generic

pattern-growth-based frequent-subgraph-mining algorithm [YH06]. The idea is that

starting from an empty graph-patten p, the current pattern is in each step extended in

several ways by exactly one edge, leading to new frequent subgraphs. They are then

processed recursively, corresponding to a depth-first search. Concretely, Lines 1–2

check if the current graph pattern is already contained in the result set, Line 4 adds

patterns to the result set, and Line 5 extends the current pattern, leading to a set of

frequent patterns P . The algorithm then processes them recursively in Lines 6–7 and

stops in Line 9 when P is empty.

Algorithm 2.1 pattern-growth(p,D, suppmin, F )
Input: current pattern p, database D, suppmin

Output: result set F
1: if p ∈ F then
2: return
3: end if
4: F = F ∪ {p}
5: P = extend-by-one-edge(p,D, suppmin)
6: for all p′ ∈ P do
7: pattern-growth(p′,D, suppmin, F )
8: end for
9: return

Algorithm 2.1 performs a depth-first search, which search space is visualised in

Figure 2.4. In this search space, the root is the empty graph (V = ∅,E = ∅). Each
other node corresponds to a non-empty graph, and Algorithm 2.1 is called once for

each node, while it generates the children of a node and calls itself recursively. The

leaves are not extended further due to the suppmin criterion. In the generic Algo-

rithm 2.1, the same graph might be generated several times at different places within

the search space. We call such graphs duplicates.
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Figure 2.4: A pattern-growth search space.

Example 2.4: Imagine that node s in Figure 2.4 stands for the graph a → b → c and
was generated from the graph a→ b (its parent node) by extending it with edge b→ c.
Node s′ stands for graph a → b → c as well, but was generated from graph b → c.
Node s′ is therefore a duplicate. Lines 1–2 in Algorithm 2.1 check for duplicates and

prune the search space. Thus, the child from node s′ is actually not generated.

Although Lines 1–2 in Algorithm 2.1 identify duplicates which avoids to process

the same graphs repeatingly, this check for duplicates is computationally expensive

and should be avoided in order to construct a fast algorithm. The extension of graphs

should be therefore as conservative as possible, while it still has to guarantee to gen-

erate all graphs. Different algorithms use different strategies for this expansion of

graphs, and we focus on the strategy from the gSpan algorithm [YH02] in the fol-

lowing, as we use this algorithm in this dissertation.

gSpan [YH02] uses a strategy for generating (extending) graphs that is based on

depth-first search (DFS) in graphs. In general, one can perform different depth-first

searches in the same graph, resulting in different depth-first-search trees (DFS trees).
Such a DFS tree can unambiguously be represented as an ordered list of edges (or-

dered by the discovery time during search). gSpan uses a set of rules for generating

(extending) graphs, which relies on the order in a depth-first search and on extending

the graph only along the rightmost path in a DFS tree: the DFS-lexicographic order.
This ensures that one graph is always traversed the same way. When graphs are con-

structed in this way, it is guaranteed that the frequent-pattern-mining procedure does

not extend graphs already discovered.

Closed Mining

Closed mining is an important concept in frequent-pattern mining, as it bears the

potential of generating result sets with less redundancy in a faster runtime than non-
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closed algorithms. In the following, we define closed mining with graphs, but the

concept exists for all frequent-pattern-mining techniques. As two examples, the

CloSpan algorithm [YHA03] performs closed sequence mining, and the CMTree-
Miner algorithm [XY05] performs closed mining for rooted unordered trees.

Definition 2.9 (Closed Graph Mining)

Closed-frequent-subgraph-mining algorithms discover only subgraph patterns which
are closed. A graph f is closed if and only if no other graph pattern f ′ is part of
the result set F which has exactly the same support and is a proper supergraph of f
(f ⊂ f ′).

Closed mining algorithms produce result sets that might be more concise (smaller),

for the following reason: The result sets are free of redundancy in the sense that the

complete set of frequent subgraphs can be derived from the set of closed subgraphs.

In concrete terms, the complete set can be obtained by systematically removing edges

(along with the incident nodes when they become unconnected) from all graphs in the

closed result set and adding these new graphs to the non-closed result.

The CloseGraph algorithm [YH03] is an extension of gSpan [YH02] that makes

use of pruning opportunities and speeds up mining in many situations. However,

there are cases where the result set from closed mining is not (or not much) different

from the set of all frequent subgraphs. In such cases, the additional effort for check-

ing for closedness and no (or only few) pruning opportunities might slow down the

algorithm. In general, the probability for such situations increases with increasing

size of the underlying graph database. This is as the probability that two subgraphs

have the same support decreases when graph databases increase in size. In this dis-

sertation, we use CloseGraph for mining databases of call graphs. We do so as our

graph databases are relatively small, and we therefore do not expect to suffer from the

effect described before. Furthermore, in preliminary experiments, CloseGraph has

produced defect-localisation results that are not worse than those when employing

gSpan, in a runtime that has indeed been faster.

Constraint-Based Mining

Constraint-based mining is another important concept in frequent-pattern mining, as

it allows for faster runtimes and result sets focused on the user’s needs. However,

constraint-based mining requires the user to specify a constraint, and not all con-

straints can be easily integrated into mining algorithms. Constraint-based mining

has originally been introduced for itemset mining [NLHP98], and has been carried

forward to sequences (e.g., [GRS99, PHW02]) and graphs (see Section 3.2.3).

Definition 2.10 (Constraint-Based Mining)

A constraint c in constraint-based mining is a Boolean predicate which any f ∈ F
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must fulfil, where F is the result set. Formally, in constraint-based mining, f ∈
F ⇐⇒ (support(f,D) ≥ suppmin ∧ c(f) = true), where D is the database.

Constraint predicates can be categorised into several classes. We now introduce the

most important one, anti-monotonicity, and briefly mention some further constraint

classes:

Definition 2.11 (Anti-Monotone Constraints (see [NLHP98]))

A constraint c is anti-monotone ⇐⇒ (∀f ′ ⊆ f ∶ c(f) = true ⇒ c(f ′) = true), where
F is the result set.

Example 2.5: A prominent example of anti-monotone constraints is the frequency

criterion: If a graph has a support of at least suppmin, all its subgraphs have the same

or a larger support. Therefore, anti-monotone constraints are the basis for all a-priori

and pattern-growth mining algorithms: They stop extending patterns when the current

one does not satisfy the constraint, without missing any patterns.

The class of monotone constraints [NLHP98] as a complement to anti-monotone

constraints exists as well (but there are constraints that are neither anti-monotone nor

monotone). However, monotone constraints are less useful for pruning.

Another class are succinct constraints [NLHP98], which are orthogonal to the

aforementioned constraint classes. Respective patterns that fulfil such constraints

can be enumerated before the support is counted in a graph database.

Example 2.6: In constraint-based itemset mining, a succinct constraint could be

c(f) ∶= x ∈ f , where f ∈ F . This is, only graphs that include item x are supposed

to be in the result set. In a-priori-style algorithms, this can be tested before support

counting, which speeds up mining significantly.

Another class of constraints are convertible constraints [PHL04]. They have been

introduced for itemsets, and focus on aggregate constraints that build on functions

such as average, median and sum, referring to numeric annotations of the items.

These annotations are fixed for every item, no matter in which transaction they occur;

an example would be the price of a certain item. Although convertible constraints are

less suited to prune the search space, they can be used to speed up the FP-growth
algorithm [HPY00] for itemset mining [PHL04].
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3 Related Work

This dissertation is about domain-specific data mining, in particular about software
defect localisation. Therefore, we describe related work in the application domain,

i.e., various defect-localisation techniques (Section 3.1), as well as related data-

mining techniques – in particular different approaches for subgraph mining (Sec-

tion 3.2). We furthermore discuss related work that is closely related to ours in Chap-

ters 4 and 5, i.e., other call-graph-based defect localisation techniques.

3.1 Defect Localisation

Defect-localisation techniques are either static or dynamic [Bin07]. Dynamic tech-

niques rely on the analysis of programme runs while static techniques do not re-

quire any execution. An example for a static technique is source-code analysis. It

can be based on code metrics or different graphs representing the source code, e.g.,

static call graphs, control-flow graphs or programme-dependence graphs (see Sec-

tion 2.2.1). Dynamic techniques usually trace some information during a programme

execution which is then analysed. This can be information on the values of variables,

branches taken during execution or code segments executed. A further distinction

of defect-localisation techniques is the level of granularity: While some techniques

identify classes or methods with an increased likelihood to be defective, other tech-

niques identify defects at a finer level of granularity, e.g., statements, lines of code or

blocks of statements.

It is worth being mentioned that no defect-localisation technique is perfect in the

sense that is is able to localise any kind of defect. A study on comparing different

static approaches by Rutar et al. [RAF04] came to the conclusion that none of the

tools they have investigated strictly subsumes one of the others. The same applies

to dynamic techniques: Santelices et al. [SJYH09] have compared several dynamic

approaches and came similarly to the conclusion that no single approach performs

best for all kinds of defects. The different defect-localisation techniques described

in this section – as well as the ones proposed in this dissertation – can therefore be

considered to be orthogonal to each other. A combination of different techniques will

probably be the most effective way to do defect localisation in practice.

In the remainder of this section we discuss a selection of different static and dy-

namic defect-localisation techniques (Sections 3.1.1 and 3.1.2, respectively). We
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then briefly introduce some related work on localising defects in multithreaded pro-

grammes (Section 3.1.3).

3.1.1 Static Approaches

Mining Software Metrics and Software Repositories

Software-complexity metrics are measures derived from the source code, describ-

ing, e.g., the complexity, quality or maintainability of a programme or its methods.

The software-engineering community has been very active in defining such metrics

[HS95, Jon08], but they are typically not intended to facilitate a defect localisa-

tion. However, in many cases, complexity metrics correlate with defects in software

[NBZ06, ZNZ08].

A standard technique in the field of mining software repositories is to map post-

release failures from a bug database to defects in static source code from a version-

management system. Such a mapping has been done, for instance, by Nagappan

et al. [NBZ06]. The authors derive standard complexity metrics from source code

and build principal-component models based on them and on the information if the

software entities considered contain defects. The principal-component models can

then predict post-release failures for new pieces of software. However, the authors

discover that every project has its specific set of complexity metrics well suited for

defect localisation. These sets of metrics can only be used within newer versions of

the same project or within very similar projects. In particular, there is no universal set

of metrics or even a single metric that is suited for defect predictions for any software

project.

Studies related to the one of Nagappan et al. [NBZ06] are, for instance, the ones by

Knab et al. and Schröter et al. Knab et al. [KPB06] use decision trees to predict failure

probabilities. The approach by Schröter et al. [SZZ06] uses regression techniques to

predict the likelihood of defects based on static usage relationships between software

components.

All these approaches rather give hints on code quality issues than pinpointing ac-

tual defects. Furthermore, they require a large collection of defects and version his-

tory. Concerning the level of granularity, different software-repository-mining ap-

proaches focus on different levels of abstraction. However, many complexity metrics

are defined at the method level, thus deriving defect localisations at this level of gran-

ularity.

Syntactic Defect-Pattern Detection

As a number of typical defect-prone programming patterns are known, there is a num-

ber of tools that heuristically search for syntactic defect patterns [RAF04]. FindBugs
[AHM+08] from Ayewah et al., for instance, is a well-known representative. It anal-
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yses static Java source code and generates a number of warnings presented to the

user. The tool can seamlessly be deployed within integrated development environ-

ments (IDEs) such as eclipse. However, FindBugs typically does not find more

sophisticated logical defects and it frequently produces a sheer number of warnings,

leading to a high rate of false positives [RAF04]. Nevertheless, FindBugs can help

to discipline programmers writing less defect-prone code, and the tool has been suc-

cessfully used in a large-scale industrial setting [AP10]. FindBugs delivers defect

localisations at a very fine granularity, identifying statements or lines which might be

defective.

Mining of Programme-Dependence Graphs (PDGs)

The work of Chang et al. [CPY08] focuses on discovering neglected conditions. They
are a class of defects which are in many cases non-crashing occasional bugs. An ex-
ample of a neglected condition is a forgotten case in a switch statement. Chang

et al. work with static programme-dependence graphs (PDGs, see Section 2.2.1) and
utilise graph-mining techniques. PDGs are graphs describing both control and data

dependencies (edges) between elements (nodes) of a method or of an entire pro-

gramme.

The idea behind [CPY08] is to first determine conditional rules in a software

project. These are rules (derived from PDGs, as we will see) occurring frequently

within a project, representing fault-free patterns. Then, rule violations are searched,

which are considered to be neglected conditions. This is based on the assumption

that the more a certain pattern is used, the more likely it is to be a valid rule. To put

these ideas into practice, the authors develop a heuristic frequent subgraph-mining
algorithm and apply it to a database of PDGs. In their approach, an expert has to

confirm and possibly edit the rules found by the algorithm. Finally, a heuristic graph-
matching algorithm, which is developed by the authors as well, searches the PDGs to

find the rule violations in question. This leads to fine-grained defect localisations at

the statement-level.

From a technical point of view, it is notable that there are no guarantees for the two

heuristic algorithms: It remains unclear in which cases graphs are not found by the

algorithms. Furthermore, the approach requires an expert to examine the rules, typi-

cally hundreds, by hand. However, the algorithms do work well in the evaluation of

the authors, but are not compared to related work. Though graph-mining techniques

similar to dynamic-call-graph mining as investigated in this dissertation are used in

[CPY08], the approaches are not related. The work of Chang et al. relies on static

PDGs. They do not require any programme execution, as dynamic call graphs do.
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3.1.2 Dynamic Approaches

Many dynamic defect-localisation approaches have been evaluated with a set of small

C programmes, ranging from 200 to 700 lines of code (LOC), which were originally

introduced by Siemens Corporate Research [HFGO94]. These so-called Siemens
Programmes provide a number of artificially introduced defects along with a number

of test cases. They can be seen as a standard benchmark, although the programmes

are rather small and the defects are realistic but artificial.

Delta Debugging

Delta debugging is a general strategy invented by Zeller [Zel99] for systematically

searching for causes of failures, following the trial-and-error principle. It does so

by determining the relevant difference between two configurations with respect to

a given test. A configuration in this context can be, e.g., a programme input, user

interactions, a thread schedule, code changes or programme states.

Looking at delta debugging with programme inputs as an example [ZH02], one

searches for the minimal difference between an input that leads to a failure and an

input that leads to a correct execution. To this end, one has to provide a test oracle

(see Section 2.2.3) that decides whether a programme execution is correct or failing,

as well as a failing and a passing programme input. Delta debugging then finds two

programme inputs leading to correct and failing results with a minimal difference.

This information can be used to ease manual debugging. As an example, when the

programme investigated is a compiler and the input data is some source code, the

difference in the input source code is probably related to some statement. The defect

is then likely to be located in the parts of the compiler handling this kind of statement.

Multithreaded software introduces indeterminism to a programme execution (see

Section 3.1.3). This is, there are a huge number of possible thread interleavings,

and failures might only occur when internally a certain interleaving is executed. In

[CZ02], the authors present a delta-debugging approach which is able to identify

failure-inducing thread interleavings. In concrete terms, they use the DEJAVU cap-

ture/replay tool [CS98] in order to record the thread interleaving and to replay it

deterministically. By systematically varying these replays, delta debugging localises

infections, i.e., locations where a thread switch causes the programme to fail. This

gives hints where the actual defect might be located within the source code, without

directly pinpointing this location. However, Tzoref et al. [TUYT07] have shown that

approaches building on varying thread interleavings and delta debugging do not scale

for large software projects.

Similarly to programme inputs and thread interleavings, delta debugging has been

applied to programme changes [Zel99]: When one version of a programme is avail-

able that executes correctly and a version that fails, e.g., from a version-control sys-
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tem, delta debugging can reveal the actual change that causes the failing behaviour.

This requires the availability of different versions from the same programme.

The delta-debugging technique which setting is probably closest to the defect-

localisation approaches developed in this dissertation, is [CZ05]. It does not rely

on programme inputs, different thread interleavings or programme versions, but re-

quires a programme with an occasional bug along with respective test cases only.

The technique extends earlier work of the authors [Zel02]: It applies delta debug-

ging to programme states, represented by the current variable values. To this end,

it represents the variable values by means of so-called memory graphs. Then, the

approach systematically modifies the memory graphs, i.e., the programme states of

running programmes, using a debugger. To do so, it employs the delta-debugging

strategy to compute minimal differences of memory graphs of correct and failing ex-
ecutions, i.e., variables. In [CZ05], the authors then investigate cause transitions.
They provide a means to localise the defect in the source code which later leads to

the infected variable identified by delta debugging on memory graphs. This leads to
defect localisations at the fine-grained granularity level of statements.

The authors evaluate the approach based on cause transitions and delta debugging

[CZ05] with the Siemens Programmes. It outperforms another more basic defect-

localisation approach. However, as we will see in the following, different comple-

mental dynamic approaches outperform delta debugging on the same benchmark pro-

grammes.

From Coverage Analysis to Sequence Analysis

Statement-Coverage Analysis. Coverage analysis can be seen as the basis for

many dynamic approaches, including the call-graph-based ones discussed in this dis-

sertation. Tarantula from Jones et al. [JHS02] is such a technique, using tracing

and visualisation. To localise defects, it utilises a ranking of programme components

which are executed more often in failing executions. This is then used to visualise

the source code for the programmer, using different colours and intensities. In more

detail, a programme component is a basic block in a control-flow graph (see Sec-

tion 2.2.1), i.e., a sequence of statements always executed conjunctively. Tarantula
calculates the defect-likelihood for a basic block e as follows:

PTarantula(e) ∶=
failed(e)
totalfailed

passed(e)
totalpassed + failed(e)

totalfailed

where passed(e) is the number of correct executions that have executed basic block e
at least once, and failed(e) similarly refers to failing executions. totalpassed and

totalfailed are the total numbers of programme executions that are correct and failing,

respectively.
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For the source-code visualisation, Tarantula uses different colours depending on

the suspiciousness value PTarantula. For instance, source code with value 1 is visualised

in red. For a further differentiation of the visualisation, Tarantula uses an additional

brightness score. However, in the experiments by the authors, they only use the

suspiciousness value PTarantula [JH05, JHS02] to rank the statements. The brightness
score is calculated as follows:

brightness(e) ∶=max( passed(e)
totalpassed

,
failed(e)
totalfailed

)
While the Tarantula technique is relatively simple, it produces good defect-lo-

calisation results. In an evaluation conducted by the authors [JH05] based on the

Siemens Programmes, it has outperformed five competitive approaches, including a

delta-debugging approach [CZ05]. However, it does not take into account how often

a statement is executed within one programme run. This might miss certain defects

such as frequency-affecting bugs. In general, Tarantula derives defect-localisations

at a basic-block level, but the authors also describe how to map these results to the

method level [JH05].

Abreu et al. [AZGvG09] aim at improving Tarantula [JHS02] by evaluating differ-

ent scoring functions besides PTarantula within the same framework. Most importantly,

they have investigated the Jaccard coefficient known from statistics and the Ochiai
coefficient which is typically used in molecular biology:

PJaccard(e) ∶= failed(e)
totalfailed + passed(e)

POchiai(e) ∶= failed(e)√
totalfailed ⋅ (failed(e) + passed(e))

Based on experiments with the Siemens Programmes, Abreu et al. [AZGvG09]

have found that the Jaccard coefficient performs better than Tarantula and the Ochiai
coefficient performs even better than the Jaccard coefficient.

Sequence-Analysis Approaches. Dallmeier et al. present AMPLE [DLZ05].

The technique refines coverage analysis and analyses sequences of method calls. The

authors demonstrate that the temporal order of calls is more promising to analyse

than statement coverage only. More concretely, AMPLE compares object-specific

sequences of incoming and outgoing object calls, using a sliding-window approach.

Then, it derives a ranking at the granularity level of classes, which is much coarser

than methods, basic blocks or statements. This ranking is based on the information

which objects (i.e., instances of classes) differ the most between passing and failing

runs regarding their statement sequences.
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A fairly recent approach is RAPID from Hsu et al. [HJO08]. It directly extends

the Tarantula approach [JHS02]. RAPID first calculates PTarantula values for all state-

ments and then filters all statements having a value of less than 0.6. Based on the

remaining statements having an increased likelihood to be defective, it derives maxi-

mum common subsequences in the programme execution traces. To this end, RAPID
utilises the BIDE sequence-mining algorithm [WH04]. Finally, RAPID presents the

sequences to the user, starting with those containing the highest ranked statements

according to PTarantula. This aims at providing contextual information referring to ex-

ecution sequences for the developer, making defect localisation easier than only pro-

viding possibly defective statements or lines. However, even though the technique

seems to be promising, to our knowledge, it has never been evaluated comprehen-

sively.

Lo et al. [LCH+09] also deal with sequences, but present a failure-detection ap-
proach. This is, it does not localise defects, but decides whether an execution is

correct or not.

Dataflow-Path Analysis. Masri [Mas09] proposes a dataflow-focused approach

which has some similarities to sequence analysis. He performs a dynamic analy-

sis of dataflows between statements to detect defects in source code. To this end,

he works with dataflow paths, which are similar to sequences. They comprise fre-

quency, source and target types (e.g., branch, statement) and the length of the exe-

cuted dataflow path. Specifically, Masri compares sub-paths of dataflows of correct

and failing executions to rank defect positions at the granularity level of statements,

with a mechanism similar to the one in [JHS02]. However, Santelices et al. [SJYH09]

describe that the monitoring of dataflows as done by Masri [Mas09] is much more

expensive than more lightweight approaches such as Tarantula [JHS02]. Dataflow-

enabled call graphs as proposed in Chapter 7 cover dataflow information besides the

control-flow-related call-graph structure. However, this is done differently than in

[Mas09]. the approach by Masri [Mas09] is therefore complementary to the work

presented in this dissertation.

Subsumption. Both approaches, statement-coverage analysis and sequence anal-
ysis, can be seen as a basis for the more sophisticated call-graph-based techniques we

focus on in this dissertation: The usage of sequences instead of statement cover-

age is a generalisation which takes more structural information into account. This

structural information, also referred to as a context, eases the manual debugging pro-

cess [HJO08]. Call-graph-based techniques in turn cover more complex structural

information (encoded in the graphs) than sequences. Likewise, a subgraph context
provided besides a more fine-grained defect localisation, likely eases the manual de-

bugging activities.
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Statistical Defect Localisation

Statistical defect localisation is a family of dynamic techniques which make use of

more detailed information than coverage-analysis techniques. Such techniques are

based on instrumentation of the source code, which allows capturing the values of

predicates or other execution-specific information, so that patterns can be detected

among the variable values. Daikon from Ernst et al. [ECGN01] uses such an ap-

proach to discover programme invariants. This problem is somewhat different from

defect localisation and can therefore hardly be compared to such techniques. How-

ever, the authors claim that defects can be detected when unexpected invariants ap-

pear in failing executions or when expected invariants do not appear.

The Approach from Liblit et al. Liblit et al. [LNZ+05] rely on the statisti-

cal analysis of programme predicates, building on earlier work from the authors

[LAZJ03], which uses predicates and regression techniques. The more recent ap-

proach considers a large number of Boolean programme predicates, most importantly

predicates that are evaluated within condition statements (e.g., if, for, while) and
predicates referring to return values of functions. Concretely, return-value predicates

indicate whether the returned value is < 0, ≤ 0, > 0, ≥ 0, = 0 or ≠ 0. For each predicate
in a programme, the authors calculate the likelihood that its evaluation to true corre-

lates with failing executions. This is used to rank predicates. Predicates are typically

used to perform decisions relevant for control-flow branches within a programme.

Therefore, predicates can be mapped to basic blocks [SJYH09], and predicate-based

analysis is a fine-grained defect-localisation technique.

Liu et al. [LFY+06] have shown with experiments using the Siemens Programmes
that [LNZ+05] performs constantly better than delta debugging [CZ05], and that it

performs similarly as Tarantula [JHS02]. Despite these good results, the approach

from Liblit et al. [LNZ+05] inherently bears the risk to miss certain defects: As the

likelihood calculation only considers whether a predicate has at least once been eval-

uated as true in a programme execution, it might not localise frequency-affecting
bugs. In particular, if a predicate is evaluated to true at least once in every execu-

tion, the method considers the predicate to be completely unsuspicious.

The SOBER Method. Liu et al. propose a similar approach, called SOBER
[LFY+06], that overcomes some problems of [LNZ+05]. It makes use of a subset

of the predicates analysed in [LNZ+05], which includes the condition-statement and

return-value predicates discussed before. It then uses a more sophisticated statistical

method to calculate defect likelihoods: It models the predicate evaluations to true
and false in both correct and failing programme executions and uses the model

difference as the defect likelihood of predicate p as follows:

PSOBER(p) ∶= − log(L(p))
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where L is a function which calculates the similarity of the predicate evaluation

models. See [LFY+06] for all details on how the similarity functions are chosen and

PSOBER is calculated exactly.

The authors show that the SOBER method is able to detect the infections identi-

fied by suspicious invariants mentioned before [ECGN01] as well. As SOBER uses

predicate analysis, the granularity is as in [LNZ+05] the level of predicates or basic

blocks. The evaluation conducted by the authors [LFY+06] based on the Siemens
Programmes has shown that SOBER performs almost constantly better than Taran-
tula [JHS02] and the approach from Liblit et al. [LNZ+05] and as well constantly

better than delta debugging [CZ05].

Subsumption. Opposed to the call-graph-based techniques discussed in this dis-

sertation, the statistical-defect-localisation approaches do not take structural proper-

ties of call graphs into account. Hence, detecting structure-affecting bugs is more

difficult.

Another known issue is that statistical defect localisation might possibly miss some

defects. This is caused by the usual practice (e.g., as done in [LAZJ03, LNZ+05]) not

to observe every value during an execution, but to consider sampled values. [LAZJ03]

partly overcomes this issue by collecting information from productive code on large

numbers of machines via the Internet. However, this does not facilitate the discovery

of defects before the software is released.

Compared to the dataflow-analysis approach in call graphs proposed in Chapter 7,

Liblit et al. [LNZ+05] and SOBER by Liu et al. [LFY+06] consider only three inter-

vals for return values of methods, i.e., (−∞,0), [0,0] and (0,∞). A variable number

of dynamically identified intervals might be better suited to capture defects that do not

manifest themself in the fixed intervals given. Furthermore, [LNZ+05, LFY+06] do

not consider dataflows in the method-call parameters, which might contain important

defect-related information, too.

Defect Localisation with Graphical Models

A fairly recent technique is the application of graphical models to defect localisation.
Graphical models are a machine-learning technique relying on statistics, bringing

together concepts from graph theory and probability theory [Jor99]. Well-known

representatives of graphical models are Bayesian networks, also known as directed
acyclic graphical model or belief network [Jen09].

Dietz et al. [DDZS09] make use of graphical models and apply them for defect lo-

calisation. They train so-called Bernoulli graph models, with data obtained from pro-

gramme executions. More concretely, the authors generate models for every method

of a programme execution, where nodes refer to statements within the methods. Once

the models are generated, the authors use them for Bayesian inference to calculate
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probabilities of transitions between the nodes in a new programme execution. Based

on these probabilities, they derive defect localisations at the statement level.

The authors evaluate their technique with real defects from large software pro-

grammes, originating from an early version of the iBUGS project [DZ09]. In the

experiments, they outperform Tarantula [JHS02] almost consistently. However, the

evaluation covers only situations where a software developer has to investigate up

to 1% of the source code in order to find the defect. – The study does not cover the

localisation of defects that are harder to detect, i.e., where one has to investigate more

than 1% of the code.

Dynamic Programme Slicing

Dynamic programme slicing [KL88] can be very useful for debugging although it is

not exactly a defect-localisation technique. It helps searching for the exact cause of

a failure, i.e., the defect, if the programmer already has some clue which parts of the

programme state are infected or knows where the failure appears, e.g., if a stack trace

is available. Programme slicing gives hints which parts of a programme might have

contributed to a faulty execution. This is done by exploring data dependencies and

revealing which statements might have affected the data used at the location where

the failure appeared.

3.1.3 Defect Localisation in Multithreaded Programmes

Multicore computers with several cores on a single chip have become ubiquitous.

They provide developers with new opportunities to increase performance, but ap-

plications need to be multithreaded to exploit the hardware potential [Pan10]. One

drawback of multithreaded software development, compared to the sequential case,

is that programmers are additionally confronted with non-determinism and parallel-

programming errors. Non-determinism arises as the operating system might assign

different thread schedules to different executions of the same programme [CS98].

Parallel-programming errors such as atomicity violations, race conditions (i.e., un-

controlled concurrent access of memory objects from different threads) and dead-

locks [FNU03, LPSZ08] are frequently triggered by this effect.

In this dissertation, our focus is on the localisation of defects in sequential pro-

grammes. However, as described above, multithreaded programming leads to new

kinds of defects, and multithreaded programmes seem to be more defect-prone than

sequential software. Therefore, we briefly summarise the most important research

directions in the field of defect localisation in multithreaded programmes in the fol-

lowing. Concretely, we comment on a selection of static and dynamic approaches

and conclude this section with a brief subsumption.
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Static Approaches

Tools employing static analysis, such as ESC/Java by Flanagan et al. [FLL+02] or

RacerX by Engler and Ashcraft [EA03] investigate the source code without execu-

tion, but – similarly to the single-threaded case – might produce large numbers of

false-positive warnings. Furthermore, some tools such as ESC/Java require pro-

grammer annotations to reduce the number of warnings, which are tedious to create.

The intuition behind many static approaches is to discover situations in which vari-

ables or objects are accessed concurrently without explicit monitoring. This possi-

bly leads to race conditions. ESC/Java, for instance, lets the user specify which

data objects should always be accessed in a controlled way. The tool then gener-

ates predicates from the annotations, and a theorem proofer derives whether these

predicates hold for the entire source code. This information then is used to derive

warnings. RacerX does not rely on annotations, but employs a set of heuristics to

decide whether a memory access might be accidentally unmonitored. While such

an approach is more convenient to use, it also tends to produce more false positive

warnings.

Dynamic Approaches

Dynamic race detectors such as Eraser by Savage at al. [SBN+97] instrument pro-

grammes and analyse the runtime behaviour of the memory access of each thread.

Eraser, for instance, monitors the locks each thread currently holds. Based on ob-

served sets of locks per variable, it identifies situations that possibly lead to race con-

ditions. Other dynamic approaches rely on the analysis of happens-before relations:
When no synchronisation constructs protect a read and a write access or two write

accesses from two threads, a race condition is likely. To derive such happens-before

relations, logical Lamport clocks [Lam78] and vector clocks [Mat89] have been used.

Hybrid race detectors such as the one by O’Callahan and Choi [OC03] combine dif-

ferent dynamic techniques to improve race detection. The IBM MulticoreSDK by Qi

et al. [QDLT09] is an implementation of this approach. It also makes use of some

static analysis: It analyses the source code to improve the runtime of dynamic anal-

ysis by identifying variables that can safely be excluded from further consideration.

However, deriving the information needed for the dynamic approaches at runtime

implies a possibly huge overhead. Further, dynamic approaches can influence a pro-

gramme under test and change its timing, which can make a race condition disappear.

This effect is known as the probe effect [Gai86].
Another general problem of dynamic race detectors is that a race might manifest

itself only when certain thread schedules occur. As scheduling is done by the oper-

ating system, developers have limited influence on reproducing a race. Addressing

this problem, ConTest by Farchi et al. [FNU03] executes a multithreaded Java pro-

gramme several times and influences thread schedules by inserting certain statements
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(e.g., sleep()) into a programme. Chess, developed byMusuvathi et al. [MQB07]

for C#, has an additional refinement: a modified thread scheduler exhaustively tries

out every possible thread interleaving. On top of that, a delta-debugging strategy

[Zel99] as described in Section 3.1.2 can be used to automatically localise a defect.

Such an approach has been followed, e.g., in [CZ02]. However, as mentioned before,

Tzoref et al. [TUYT07] have shown that such approaches do not scale well.

Subsumption

All of the tools mentioned in this section on defect-localisation in multithreaded pro-

grammes focus on identifying atomicity violations, race conditions or deadlocks.

These tools are specialised on a particular class of parallel programming errors that

are due to wrong or missing usage of synchronization constructs in parallel program-

ming languages. However, failures of multithreaded programmes might have other

causes, too. For instance, they might originate from non-parallel constructs that trig-
ger wrong parallel programme behaviour.

Example 3.1: Suppose that a programmer forgets or incorrectly specifies a condition

when she or he writes the code creating threads in a thread pool. This slip affects

parallel behaviour and might lead to an unbounded creation of threads, wrong control

flow and incorrect programme outputs.

Such situations might be better tackled by analysing anomalies of executions such

as differences between call graphs from correct and failing executions of a pro-

gramme. In this dissertation, we discuss some ideas concerning call-graph repre-

sentations for multithreaded programmes in Section 4.3, and we present the results

from a first study on defect localisation with such graphs in Appendix A. We further-

more come to the conclusion that the field of defect localisation with multithreaded

programmes bears much potential for future investigations. We present some ideas

in Section 4.3 and Chapter 9.

3.2 Data Mining

In this section, we discuss related data-mining techniques. In particular, we con-

sider weighted subgraph mining (Section 3.2.1), mining significant subgraphs (Sec-
tion 3.2.2) and constraint-based subgraph mining (Section 3.2.3).

3.2.1 Weighted Subgraph Mining

Weighted graphs are ubiquitous in the real world. For instance, think of transportation

networks, where numerical weights attached to edges might stand for the load, the

average speed, the time, the distance etc. As well software call graphs as investigated
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in this dissertation for defect localisation can be attached with weights: Edge weights

might represent call frequencies or abstractions of the dataflow. However, we are only

aware of a few studies analysing weighted graphs with frequent subgraph mining.

Most studies focus on the specific analysis problem, rather than proposing general

weighted-subgraph-mining techniques. In the following, we review some work based

on discretisation, and we discuss approaches building on the concept of weighted
support.

Discretisation-Based Approaches

Logistic Networks. Jiang et al. [JVB+05] investigate frequent subgraph mining

in logistic networks where edges represent single transports and are annotated with

several weights such as distance between two nodes and the weight of the load. With

each weight, a different weighted graph can be constructed. In order to derive labels

which are suited for graph mining from the edge weights, the authors use a binning

strategy. Each weight is partitioned into ranges of the same size, giving a few (7 to

10) distinct labels. The binning strategy for discretisation may curb result accuracy,

for two reasons: (1) The particular scheme does not take the distribution of values

into account. Thus, close values may be assigned to different bins. (2) The discreti-

sation leads to a number of ordered (ordinal) intervals, but the authors treat them as

unordered categorical values. For example, the information that ‘medium’ is between

‘low’ and ‘high’ is lost.

Image Analysis. Nowozin et al. [NTU+07] do discretisation as well before it

comes to frequent subgraph mining. They study image-analysis problems, and im-

ages are represented as weighted graphs. The authors represent each point of interest

by one vertex and connect all vertices. They assign each edge a vector consisting

of image-analysis-specific measures. Then they discretise the weights, but with a

method more sophisticated than binning. The weight vectors are clustered, resulting

in categorical labels of edges with similar weight vectors. However, the risk of los-

ing potentially important information by discretisation is not eliminated: (1) It might

still happen that close points in an n-dimensional space fall into different clusters.

(2) Even when value distributions are considered, the authors do so in the context of

the original graphs. When frequent subgraph mining is applied afterwards, the distri-

butions within the different subgraphs can be very different, and other discretisations

could be more appropriate.

Subsumption. In this dissertation, we deal with software call graphs that are

weighted. For the analysis of these graphs, we propose two kinds of approaches that

are different from discretisation: In Chapters 5–7 we investigate a postprocessing ap-

proach, in Chapter 8 a constraint-based mining approach. Both proposals avoid the
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shortcomings of discretisation mentioned. They analyse numerical weights instead

of discrete intervals.

Weighted-Frequent Subgraph Mining

The Approaches by Jiang et al. Jiang et al. [JCSZ10] deal with a text-classi-

fication task, formulated as a weighted-frequent-subgraph-mining problem. This is

based on the concept of weighted support formulated by the authors. This concept

builds on the assumption that certain edges within a graph are considered to be more

significant than others, and that the significance is reflected in the edge-weight values

(i.e., a significant edge displays a high value)1. Concretely, the authors calculate the

weighted support wsup of a subgraph g as follows:

wsup(g) ∶= sup(g) ⋅ ∑
e∈E(g)

w(e)
This is, the weighted support of a certain subgraph is high when it has a high

support and contains edges having high weight values. Correspondingly, weighted-
frequent-subgraph mining as defined by the authors discovers subgraphs satisfying

a certain user-defined minimum-weighted-support threshold. However, the mini-
mum weighted support criterion is not anti-monotone and can therefore not be used

to prune the search space in pattern-growth-based frequent-subgraph-mining algo-

rithms. The authors therefore make use of an alternative but weaker concept to prune

the search space and implement their technique as an extension of gSpan [YH02]

(see Section 2.3.3). In [JCZ10], the authors present variations of the approach, in-

cluding two further weight-based criteria that are anti-monotone.
Using their approaches, the authors achieve well results not only in the text-classifi-

cation application [JCSZ10], but also applied to (medical) image-analysis problems

[ECJ+10, JCSZ08] and certain problems from logistics [JCZ10].

The Approaches from Shinoda et al. Shinoda et al. [SOO09] present an ap-

proach similar to the ones from Jiang et al. [JCSZ10, JCZ10]. They consider graphs

with weighted nodes and edges (referred to as internal weights), and their graphs

themself are assigned with a weight as well (referred to as external weights). They
define the internal weighted support wsup int similar to Jiang et al., but they consider

the total internal weight of the graph database D (in the denominator):

wsup int(g) ∶= sum of all internal weights of g in all graphs d ∈D where g ⊆ d

sum of all internal weights of all graphs in D

If there are several embeddings of g ∈ d, the one with the maximum weight is chosen.

1Jiang et al. consider only weighted edges, but claim that their concepts can be easily transferred to

weighted nodes.
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The authors define the external weighted support wsupext similarly as follows:

wsupext(g) ∶= sum of the external weights of all graphs d ∈D where g ⊆ d

sum of all external weights of all graphs in D

Finally, they define a general weighted support wsupgen, based on a user-defined

parameter λ (0 ≤ λ ≤ 1):

wsupgen(g) ∶= λ ⋅wsupext(g) + (1 − λ) ⋅wsup int(g)
Based on a user-defined minimum general-weighted-support value and parame-

ter λ, the authors define the general-weighted-subgraph-mining problem. Their so-

lution to this problem is similar to the one of Jiang et al. [JCSZ10]: As the minimum
general-weighted-support criterion is not anti-monotone, they rely on a weaker prun-

ing criterion for mining with a pattern-growth-based subgraph-mining algorithm. The

authors also propose a related problem, mining external weighted subgraphs under
internal weight constraints, which is solved similarly within the same framework. In

their experiments, Shinoda et al. [SOO09] achieve well results with synthetic data,

communication graphs and chemical compound graphs.

Subsumption. While mining for weighted frequent subgraphs (or mining using

the variations from Shinoda et al.) is adequate for certain applications, it relies on

the assumption that high weight values identify significant components. This does

not hold in every domain. For instance, in software-defect localisation, high (or

low) edge-weight values are in general not related to defects. Therefore, weighted-
frequent-subgraph mining cannot be used for every problem and offers less flexibility

than constraints on arbitrary measures as investigated in Chapter 8 of this dissertation.

Furthermore, to our knowledge, the weighted-frequent-subgraph-mining techniques
presented in this section have never been evaluated systematically nor compared to

alternative approaches.

3.2.2 Mining Significant Subgraphs

In many settings, frequent subgraph mining is followed by a feature-selection step.

This is to ease subsequent processes such as graph classification [CYH10a] and to

identify the most significant features. The different proposals use various objective

functions for feature selection. Besides others, Cheng et al. [CYH10b] have identi-

fied this two-step approach of mining and selecting to be the computational bottle-

neck in many graph-mining applications: On the one side, generating large numbers

of frequent subgraphs to choose from is expensive and in certain applications even

infeasible. On the other side, the selection process can be expensive as well.
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A number of studies investigate scalable subgraph-mining algorithms [CHS+08,

RS09, SKT08, SNK+09, TCG+10, YCHY08]. They deal with the direct mining

of subgraphs satisfying an objective function, instead of following the two-step ap-

proach. In other words, the subgraph sets mined might be incomplete with regard to

the frequency criterion, but contain all (or most) graphs with regard to some other

objective function. One can consider these functions to be constraints, as they nar-

row down the mining results. However, they do not necessarily fall into any of

the constraint classes introduced in Section 2.3.3. Objective functions are either

based on their ability to discriminate between classes or numerical values associated

with the graphs [SKT08, SNK+09, TCG+10], on some other measure of significance

[CHS+08, RS09] or leave this choice to the user by allowing for interchangeable mea-

sures [YCHY08]. In the following, we look at the approaches mentioned in a little

more detail.

Boosting-Based Approaches

The approach from Saigo et al. [SNK+09], gBoost, builds on a boosting technique

with decision-stump classifiers. In each iteration, they search for the most promising

classifier, consisting of a single discriminative subgraph. These promising subgraphs

are found by repeatedly calculating structural objective functions measuring the dis-

criminativeness. They do so in a pattern-growth search space similar to the one from

gSpan [YH02] (see Section 2.3.3). The authors use their discriminativeness measure

to refine pruning bounds in the search space in each iteration.

Saigo et al. [SKT08] refine their approach in the gPLS algorithm. It makes use

of the same boosting technique and pattern search space, but relies on partial least-

squares regression (PLS) to prune the search space and to select the most promising

subgraphs.

A Leap-Search-Based Approach

Yan et al. [YCHY08] present the LEAP algorithm. It allows for the integration of

different kinds of objective functions that are not anti-monotone. The idea of the al-

gorithm is not to prune the search space, but to leap in this space. This is in contrast

to performing a (pruned) stringent depth-first search as done by algorithms such as

gSpan [YH02] (see Section 2.3.3). Thereby it makes use of the observation that

structurally similar subgraphs tend to have similar support values and statistical sig-

nificance scores. Therefore, the authors rely on a strategy that mines with an expo-

nentially decreasing minimum support threshold. This leads to a fast discovery of

(near-)optimal subgraphs. In the evaluation, the authors use the G-test as well as

information gain as objective functions. The G-test is a measure of statistical signif-

icance, and the information gain measures the discriminativeness of a subgraph (see

Definition 2.7). They successfully apply their technique to several datasets from the
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chemical domain. Furthermore, Cheng et al. [CLZ+09] employ the LEAP algorithm

for call-graph-based defect localisation (see Chapter 5).

Mining with Optimality Guarantees

Both boosting-based approaches [SNK+09, SKT08] as well as the LEAP algorithm

[YCHY08] have proven to work well in the respective settings and evaluations. How-

ever, they do not provide optimality guarantees. Thoma et al. [TCG+10] present an

approach, CORK, which integrates an objective function into the pattern-growth-

based frequent subgraph miner gSpan [YH02] (see Section 2.3.3). They use this

function to greedily prune the search space. The distinctiveness of their approach

is that the objective function has the submodularity property, and the authors show

that such functions used for pruning ensure near-optimal results. This is, CORK
provides the optimality guarantee that almost all discriminative subgraphs useful for

classification are found.

A Partitioning-Based Approach

Ranu and Singh [RS09] investigate a setting that relies on significance (with respect

to the statistical p-value measure) rather than on the ability to discriminate between

classes. They observe that significant subgraphs might have any support value. In

particular, significant subgraphs might have a support that is too low to be mined effi-

ciently. This is as frequent-subgraph-mining algorithms roughly scale exponentially

with decreasing minimum support values. Based on this observation, they develop

the GraphSig technique which builds on two main steps: In the first step, they par-

tition all graphs into sets such that all graphs in a set are likely to contain a common

significant subgraph with a high support. They do so by using a technique similar to

a sliding-window approach on the graphs, based on random walks. This generates a

set of feature vectors for each graph. The authors then mine closed subfeature vectors

which are significant and use them to group all graphs containing a subfeature vector

into a group. In the second step, the authors make use of these groups of graphs. As

these groups are relatively small, they apply a frequent-subgraph-mining technique

on every set of graphs with a very small minimum support value. This procedure

allows for finding significant subgraphs with a low support which cannot be discov-

ered by traditional techniques due to scalability issues. In the evaluation, the authors

demonstrate that their significant subgraphs are well-suited for graph-classification

applications.

Mining Representative Subgraphs

Chaoji et al. [CHS+08] do not measure the significance of subgraphs nor their dis-

criminativeness. They are concerned about finding subgraphs that are representative
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for the complete set of frequent subgraphs (i.e., not similar to the graphs in the result

set) with regard to the graph structure. To this end, the authors introduce parame-

ter α ∈ [0,1]: Frequent subgraphs have to have a similarity to graphs in the result set

below value α. Furthermore, they introduce parameter β ∈ [0,1]: For every frequent

subgraph that is not part of the result set, there has to be at lest one subgraph in the

result set having a similarity of at least value β. In the ORIGAMI algorithm, the

authors measure the similarity between two graphs by calculating the relative size

of their maximum common subgraph. For mining frequent subgraphs which comply

with the restrictions defined by the two parameters α,β, the authors mine a set of

subgraphs in a first step. Instead of enumerating the complete set of such graphs,

they adopt a random-walk approach which enumerates a subset of diverse subgraphs.

In a second step, they extract the result set complying with the parameters. They do

so by mapping the problem to a maximum-clique problem which they again solve

with a randomised algorithm.

Subsumption

Various researchers have studied scalable mining of subgraph patterns, with much

success. However, they have not taken weights into account. In this dissertation,

in particular in Chapter 8, we use measures building on edge weights as objective

functions, to decide which graphs are significant. The usage of weights allows for

a more detailed analysis as compared to the graph structure only. Like the previous

approaches, ours does not necessarily produce graph sets which are complete with

regard to frequency or some other hard constraint.

3.2.3 Constraint-Based Subgraph Mining

Constraint-based mining allows the user to formulate constraints describing the pat-

terns she or he is interested in. The mining algorithms in turn may make use of these

constraints by narrowing down their internal search space and thus speeding up the al-

gorithm. In Section 2.3.3, we have presented the constraint classes anti-monotonicity,
monotonicity and succinctness, as originally introduced by Ng et al. [NLHP98].
More recently, constraint-based graph mining has been proposed. Wang et al.

[WZW+05] build on the constraint classes introduced in [NLHP98] and categorise

various graph-based constraints into these classes. Then the authors develop a frame-

work to integrate the different constraint classes into a pattern-growth-based graph-

mining algorithm. They use anti-monotone constraints to prune the search space and
monotone constraints to speed up the evaluation of further constraints. Further, they

use the succinctness property to reduce the size of the graph database. Wang et al. also

propose a way to deal with some weight-based constraints. For the average-weight

constraint, they propose to omit nodes and edges with outlier values from the graphs

in the database. They do so to shrink the graph size and to avoid the evaluation of
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such ‘unfavourable’ elements. This can lead to incomplete result sets. Furthermore,

situations where such constraints lead to significant speedups are rare, according to

the evaluation of the authors with one artificial dataset, and they do not make any

statements regarding result quality.

In [ZYHY07], Zhu et al. extend [WZW+05] by refining the classes of constraints,

and they integrate them into mining algorithms. However, they do not consider

weights, too.

Although the techniques proposed work well with monotone, anti-monotone or

succinct constraints and their derivations, most weight-based constraints do not fall

into these categories [WZW+05]. They are not convertible (see Section 2.3.3) as

well, even if such constraints might seem to be similar. The weights considered in

convertible constraints stay the same for every item in all transactions, while weights

in graphs can be different in every graph in D. Therefore, the established constraint-

based-mining schemes cannot use weight-based constraints for pruning while guar-

anteeing completeness.
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4 Call-Graph Representations

Call-graph-based defect localisation naturally relies on call graphs. Such graphs are

representations of programme executions. Raw call graphs typically become much

too large for graph-mining algorithms, as programmes might be executed for a long

period and frequently call other parts of the programme, which adds information to

the graph. Therefore, it is essential to compress the graphs – we call this process also

reduction. It is usually done by a lossy compression technique. This involves the

trade-off between keeping as much information as possible and a strong compres-

sion. The literature has proposed a number of different call-graph representations

[CLZ+09, DFLS06, LYY+05], standing for different degrees of reduction and dif-

ferent types and amounts of information encoded in the graphs. In this dissertation,

we make further proposals for call graph compressions and for encoding additional

information by means of numerical annotations at the edges. To ease presentation,

we discuss the related approaches from the literature (in particular the call-graph rep-

resentations Rtmp
total, R

ord
01m and Rblock

total ; Rtotal and Runord
01m are simplified variants thereof)

along with the new proposals (Rsubtree) or variations (Rw
total, R

mult
total ) in this disserta-

tion. Besides the graph representations discussed in this chapter, we introduce further

graph representations in Chapters 6 and 7. They focus on specific graph representa-

tions for call graphs at different levels of abstraction and on the incorporation of

dataflow-related information, respectively.

In Section 4.1, we discuss call-graph representations at the method level. In Sec-

tion 4.2, we briefly explain call graphs at other levels of granularity than the method

level. In Section 4.3, we present call-graph representations for multithreaded pro-

grammes. In Section 4.4, we explain how we technically derive call graphs from

Java programme executions. Section 4.5 subsumes this chapter.

4.1 Call Graphs at the Method Level

We now discuss call-graph representations at the method level. The basis for all

such representations are unreduced call graphs, sometimes also called call trees, as
obtained from tracing programme executions (in Section 4.4 we give some details on

tracing):
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Notation 4.1 (Unreduced call graphs)
Unreduced call graphs can be obtained by tracing a programme execution. They are
rooted ordered trees. Nodes stand for methods and one edge stands for each method
invocation. The order of the nodes is the temporal order in which the methods were
executed.

Example 4.1: Figure 4.1(a) is an example of such a graph. Even if not depicted in the

figure, the siblings in the graph are ordered by execution time from left to right. When

we want to emphasise the temporal order, we express the order by increasing integers

attached to the nodes. Figure 4.4(a) is the same graph featuring this representation.

In Section 4.1.1, we describe the total reduction scheme. In Section 4.1.2, we

introduce various techniques for the reduction of iteratively executed structures. As

some techniques make use of the temporal order of method calls during reduction,

we describe these aspects in Section 4.1.3. We provide some ideas on the reduction

of recursion in Section 4.1.4 and conclude with a brief comparison in Section 4.1.5.

4.1.1 Total Reduction

The total reduction technique is probably the easiest technique, and it yields good

compression. In the following, we introduce two variants.

Notation 4.2 (Total reduction, Rtotal)

In totally reduced graphs at the method level, every distinct method is represented by
exactly one node. When one method has called another method at least once in an
execution, a directed edge connects the corresponding nodes.

Note that the total reduction may give way to the existence of loops in Rtotal graphs

(i.e., the output is a regular graph), and it limits the size of the graph (in terms of

nodes) to the number of methods of the programme. In defect localisation, Liu et al.

[LYY+05] have introduced this technique, along with a temporal extension (see Sec-

tion 4.1.3).

In this dissertation, we extend the plain total-reduction scheme (Rtotal) to include

call frequencies. We do so as this eases the discovery of frequency-affecting bugs, as

we will see.

Notation 4.3 (Total reduction with edge weights, Rw
total)

Building on Rtotal graphs as defined in Notation 4.2, every edge is annotated with a
numerical weight. It represents the total number of calls of the callee method from
the caller method.

Even though the extension in the Rw
total graphs is quite simple, we are not aware

of any studies using weighted call graphs for defect localisation. Furthermore, these
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Figure 4.1: Total reduction techniques.

weights allow for more detailed analyses, in particular regarding the localisation of

frequency-affecting bugs.

Example 4.2: Figure 4.1 contains examples of the total reduction techniques: (a) is

an unreduced call graph, (b) its total reduction (Rtotal) and (c) its total reduction with

edge weights (Rw
total).

In general, total reduction (Rtotal and Rw
total) reduces the graphs quite significantly.

Therefore, it allows graph-mining-based defect localisation with software projects

larger than other reduction techniques. On the other hand, much information on the

programme execution is lost. This concerns frequencies of the executions of methods

(Rtotal only) as well as information on different structural patterns within the graphs

(Rtotal and Rw
total). In particular, the information is lost in which context (at which

position within a graph) a certain substructure is executed.

4.1.2 Reduction of Iterations

Next to total reduction, reduction based on the compression of iteratively executed

structures (i.e., caused by loops) is promising. This is due to the frequent usage of

iterations in today’s software. Furthermore, as described before, the relatively severe

total-reduction techniques give way to the assumption that they lose much informa-

tion originally available in unreduced call graphs. In the following, we introduce two

variants that encode more structural information than totally reduced graphs.

Notation 4.4 (Unordered zero-one-many reduction, Runord
01m )

Unordered zero-one-many reduced graphs are rooted (unordered) trees where nodes
represent methods and edges method invocations. In contrast to unreduced call
graphs (see Notation 4.1), such graphs ignore the order and omit isomorph sub-
structures which occur more than twice below the same parent node.

The Runord
01m reduction ensures that many equal substructures called within a loop

do not lead to call graphs of an extreme size. In contrast, the information that some
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Figure 4.2: Reduction techniques based on iterations.

substructure is executed several times is still encoded in the graph structure, but with-

out exact numbers. This is indicated by doubled substructures within the call graph

(only substructures occurring more than twice are not included). Compared to total

reduction (Rtotal), more information on a programme execution is kept. The downside

is that Runord
01m call graphs generally are much larger.

TheRunord
01m reduction is a simplified variant of the one from Di Fatta et al. [DFLS06]

(see Rord
01m in Section 4.1.3). The difference is that Runord

01m graphs do not take the

temporal order of the method executions into account. We use this representation

in this dissertation for comparisons with other techniques which do not make use of

temporal information.

Notation 4.5 (Subtree reduction, Rsubtree)

Subtree-reduced graphs are rooted (unordered) trees where nodes represent methods
and edges method invocations. This reduction ignores the order and reduces sub-
trees executed iteratively by deleting all but one isomorph subtree below the same
parent node in an unreduced call tree (see Notation 4.1). The edges are weighted and
numerical weights represent call frequencies. Algorithm 4.1 describes the reduction
procedure in detail.

The Rsubtree reduction is newly proposed in this dissertation. It leads to smaller

graphs than Runord
01m . The edge weights allow for a detailed analysis; they serve as

the basis of our analysis technique described in Chapter 5. We discuss details of the

reduction technique in the remainder of this section.

Example 4.3: Figure 4.2 illustrates the two iteration-based reduction techniques:

(a) is an unreduced call graph, (b) its zero-one-many reduction without temporal

order (Runord
01m ) and (c) its subtree reduction (Rsubtree). Note that the four calls of b from

c are reduced to two calls with Runord
01m and to one edge with weight 4 with Rsubtree.

Further, the graph resulting from Rsubtree has one node more than the one obtained

from Rw
total in Figure 4.1(c), but the same number of edges.
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Figure 4.3: A raw call tree, its first and second transformation step.

Note that with Rtotal, and with Runord
01m in most cases as well, the graphs of a cor-

rect and a failing execution with a frequency-affecting bug are reduced to exactly

the same graph. With Rsubtree (and with Rw
total), the edge weights would be different

when call frequency-affecting bugs occur. Analysis techniques can discover this (see

Chapter 5).

The Subtree-Reduction Procedure

For the subtree reduction (Rsubtree), we organise the call tree into n horizontal levels.

The root node is at level 1. All other nodes are in levels numbered with the distance

to the root. A naïve approach to reduce the example call tree in Figure 4.3(a) would

be to start at level 1 with node a. There, one would find two child subtrees with a

different structure – one could not merge anything. Therefore, we proceed level by

level, starting from level n − 1, as described in Algorithm 4.1.

Algorithm 4.1 Subtree reduction algorithm.

1: Input: a call tree organised in n levels

2: for level = n − 1 to 1 do
3: for each node in level do
4: merge all isomorph child-subtrees of node,

sum up corresponding edge weights

5: end for
6: end for

Example 4.4: Suppose we want to reduce the graph given in Figure 4.3(a). We start

in level 2. The left node b has two different children. Thus, nothing can be merged

there. In the right b, the two children c are merged by adding the edge weights of

the merged edges, yielding the tree in Figure 4.3(b). In the next level, level 1, we
process the root node a. Here, the structure of the two successor subtrees is the same.

Therefore, they are merged, resulting in the tree in Figure 4.3(c).
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4.1.3 Temporal Order in Call Graphs

So far, the call graphs described just represent the occurrence of method calls. Even

though, say, Figure 4.2(c) might suggest that b is called before c in the root node a,
this information is not encoded in the graphs. As this might be relevant for discrim-

inating faulty and correct programme executions, the defect-localisation techniques

proposed in [DFLS06, LYY+05] take the temporal order of method calls within one

call graph into account. In the following, we introduce the corresponding reductions.

Notation 4.6 (Total reduction with temporal edges, Rtmp
total)

In addition to the total reduction (Rtotal, see Notation 4.2), totally reduced graphs
with temporal edges have so-called temporal edges that are directed. Such an edge
connects two methods which are executed consecutively and are invoked from the
same method. Technically, temporal edges are directed edges with another label,
e.g., ‘temp’, compared to other edges which are labelled, say, ‘call’.

The Rtmp
total reduction has been introduced by Liu et al. [LYY+05], and the resulting

graphs are also known as software-behaviour graphs. As the graph-mining algo-

rithms used for further analysis can handle edges labelled differently, the analysis

of Rtmp
total graphs does not give way to any special challenges, except for an increased

number of edges. In consequence, the totally reduced graphs lose their main advan-

tage, their small size. However, taking the temporal order into account might help

discovering certain defects.

Notation 4.7 (Ordered zero-one-many reduction, Rord
01m)

Ordered zero-one-many-reduced graphs are as unreduced call graphs (see Nota-
tion 4.1) rooted ordered trees. To include the temporal order, the reduction technique
differs to the Runord

01m reduction (see Notation 4.4) as follows: While Runord
01m omits any

isomorph substructure which is invoked more than twice from the same node, only
substructures are removed which are executed more than twice in direct sequence.

The Rord
01m reduction has been introduced by Di Fatta et al. [DFLS06]. As the re-

sulting graphs are rooted ordered trees, they can be analysed with an order-aware tree

mining algorithm. The fact that substructures are only removed when they occur in

direct sequence facilitates that all temporal relationships are retained. For instance, in

the reduction of the sequence b, b, b, d, b (see Figure 4.4) only the third b is removed,

and it is still encoded that b is called after d once.

Depending on the actual execution, the Rord
01m technique might lead to extreme sizes

of call trees. For example, if within a loop a method a is called followed by two calls

of b, the reduction leads to the repeated sequence a, b, b, which is not reduced at all.

The rooted ordered tree miner in [DFLS06] partly compensates the additional effort

for mining algorithms caused by such sizes, which are huge compared to Runord
01m .

Rooted ordered tree mining algorithms scale significantly better than usual graph-

mining algorithms [CMNK05], as they make use of the order.

58



4.1. CALL GRAPHS AT THE METHOD LEVEL

�

� �

� � � � �

�

������������	


�����������������������������������
�����������

(a) unreduced

a

b

c

d

(b) Rtmp
total

�

� �

� � � �

�������������

�


�����������������������������������


(c) Rord
01m

Figure 4.4: Temporal information in call-graph reductions.

Example 4.5: Figure 4.4 illustrates the two graph reductions which are aware of the

temporal order. (The integers attached to the nodes represent the invocation order.)

(a) is an unreduced call graph, (b) its total reduction with temporal edges (dashed,

Rtmp
total) and (c) is its ordered zero-one-many reduction (Rord

01m). Note that, compared

to Runord
01m , Rord

01m keeps a third node b called from c, as the direct sequence of nodes

labelled b is interrupted.

4.1.4 Reduction of Recursions
Another challenge with the potential to reduce the size of call graphs is recursion.

The total reductions (Rtotal, Rw
total and Rtmp

total) implicitly handle recursion as they re-

duce both iteration and recursion. For instance, when every method is collapsed to

a single node, (self-)loops implicitly represent recursion. Besides that, recursion has

not been investigated much in the context of call-graph reduction and in particular

not as a starting point for reductions in addition to iterations. The reason for that is,

as we will see in the following, that the reduction of recursion is less obvious than re-

ducing iterations and might finally result in the same graphs as with a total reduction.

Furthermore, in compute-intensive applications, programmers frequently replace re-

cursions with iterations, as this avoids costly method calls. Nevertheless, we have

investigated recursion-based reduction of call graphs to a certain extent and present

some approaches in the following. Two types of recursion can be distinguished:

• Direct recursion. When a method calls itself directly, such a method call is

called a direct recursion. An example is given in Figure 4.5(a) where method b
calls itself. Figure 4.5(b) presents a possible reduction represented with a self-

loop at node b. In Figure 4.5(b), edge weights as in Rsubtree represent both

frequencies of iterations and the depth of direct recursion.

• Indirect recursion. It may happen that some method calls another method

which in turn calls the first one again. This leads to a chain of method calls as

in the example in Figure 4.5(c) where b calls c which again calls b etc. Such
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Figure 4.5: Examples for reduction based on recursion.

chains can be of arbitrary length. Obviously, such indirect recursions can be

reduced as shown in Figures 4.5(c) and 4.5(d). This leads to the existence of

loops.

Both types of recursion are challenging when it comes to reduction. Figures 4.5(e)

and 4.5(f) illustrate one way of reducing direct recursions. While the subsequent

reflexive calls of a are merged into a single node with a weighted self-loop, b, c
and d become siblings. As with total reductions, this leads to new structures which

do not occur in the original graph. In defect localisation, one might want to avoid

such artefacts. For instance, d called from exactly the same method as b could be a

structure-affecting bug which is not found when such artefacts occur. The problem

with indirect recursion is that it can be hard to detect and becomes expensive to detect

all occurrences of long-chained recursion. To conclude, when reducing recursions,

one has to be aware that, as with total reduction, some artefacts may occur.

In this dissertation, we focus on the reduction of iterations (Rsubtree) or fall back

to total reduction with weights (Rw
total). This fall back has the advantage that we

deal with smaller graphs making graph mining easier and that recursions are treated

without any extra effort.

4.1.5 Comparison
To compare reduction techniques, we must look at the level of compression they

achieve on call graphs. Table 4.1 contains the sizes of the resulting graphs (increas-

ing in the number of edges) when different reduction techniques are applied to the

same call graph. The call graph used here is obtained from an execution of the Java
diff tool taken from [Dar04] used in the evaluation in Chapter 5. Clearly, the effect

of the reduction techniques varies extremely depending on the kind of programme

and the data processed. However, the small programme used illustrates the effect of

the various techniques. Furthermore it can be expected that the differences in call-

graph compressions become more significant with increasing call-graph sizes. This

is because larger graphs tend to offer more possibilities for reductions.
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reduction nodes edges

Rtotal, Rw
total 22 30

Rsubtree 36 35

Rtmp
total 22 47

Runord
01m 62 61

Rord
01m 117 116

unreduced 2,199 2,198

Table 4.1: Examples for the effect of call-graph-reduction techniques.

Obviously, the total reduction (Rtotal and Rw
total) achieves the strongest compres-

sion and yields a reduction by two orders of magnitude. As 22 nodes remain, the

programme has executed exactly this number of different methods. The subtree re-

duction (Rsubtree) has significantly more nodes but only five more edges. As – roughly

speaking – graph-mining algorithms scale with the number of edges, this seems to be

tolerable. We expect the small increase in the number of edges to be compensated

by the increase in structural information encoded. The unordered zero-one-many

reduction technique (Runord
01m ) again yields somewhat larger graphs. This is because

repetitions are represented as doubled substructures instead of edge weights. With

the total reduction with temporal edges (Rtmp
total), the number of edges increases by

roughly 50% due to the temporal information, while the ordered zero-one-many re-

duction (Rord
01m) almost doubles this number. Chapter 5 assesses the effectiveness of

defect localisation with the different reduction techniques along with the localisation

methods.

Clearly, some call-graph-reduction techniques also are expensive in terms of run-

time. However, we do not compare the runtimes, as the subsequent graph mining step

usually is significantly more expensive.

To summarise, different authors have proposed different reduction techniques, each

one together with a localisation technique (see Chapter 5): the total reduction (Rtmp
total)

in [LYY+05], the zero-one-many reduction (Rord
01m) in [DFLS06] and the subtree re-

duction (Rsubtree) proposed in this dissertation. Some of the reductions can be used or

at least be varied in order to work together with a defect-localisation technique differ-

ent from the original one. In Chapter 5, we present original and varied combinations.

4.2 Call Graphs at Different Levels of Granularity

So far, we have considered call graphs at the method level. However, call graphs can

be more fine grained or more coarse grained. Finer levels of granularity allow for

more detailed defect localisations, but the graphs are typically much larger. Coarser

granularities are less detailed, but lead to smaller graphs. In the following, we look a

finer levels of granularity, in particular at basic-block-level call graphs as defined by
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Cheng et al. [CLZ+09]. In Chapter 6, we look at coarser call-graph representations,

i.e., at the class level and at the package level.

Cheng et al. [CLZ+09] rely on the method-level call graphs with total reduction and

temporal edges as introduced by Liu et al. [LYY+05] (Rtmp
total, see Notation 4.6). Be-

sides these graphs, they also introduce basic-block-level call graphs (Rblock
total ), aiming

at more fine-grained defect localisations:

Notation 4.8 (Basic-block-level call graphs, Rblock
total )

Each basic block as known from static control-flow graphs (see Section 2.2.1) forms
a node in the dynamic Rblock

total call graph. Three kinds of differently labelled directed
edges connect these nodes. Edges of the type ‘call’ correspond to method calls,
edges of the type ‘trans’ to transitions between two basic blocks and edges of the type
‘return’ to method returns.

Example 4.6: Listing 4.1 is an example Java source code of a programme contain-

ing a simple integer-multiplication method (known from Examples 2.1 and 2.2) and

a main method that calls the multiplication method once. Figure 4.6 is the corre-

sponding basic-block-level call graph (Rblock
total ), representing a single execution of the

programme.

Note that Cheng et al. [CLZ+09] do not make use of any weights in their Rblock
total

graphs. However, introducing weights corresponding to call/transition/return fre-

quencies would be easy.

4.3 Call Graphs of Multithreaded Programmes

So far, we have considered call graphs from single-threaded programmes. How-

ever, as motivated in Section 3.1.3, defect localisation in multithreaded programmes

is a challenging field. Although multithreaded programmes are not in the focus of

this dissertation, we discuss some specialities of such programmes and possible call-

graph representations in this section. We limit these discussions to the method-level

case, although respective graphs can be defined similarly for other levels of granu-

larity. In Appendix A, we evaluate the usefulness of the graphs developed here for

defect localisation in multithreaded programmes.

Unreduced and Totally-Reduced Multithreaded Call Graphs. In the mul-

tithreaded case, every method can be executed several times in more than one thread.

Therefore, in unreduced call graphs, nodes are initially labelled with a prefix consist-

ing of the respective thread ID and method name. Figure 4.7(a) illustrates an example

of such a call graph. This example represents the method calls of one programme ex-

ecution, without any reductions. To achieve a strong reduction of call graphs from po-

tentially large multithreaded programmes, we consider a total reduction of the graphs
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1 public static void main(String[] args) {
2 System.out.println(mult(3, 4));
3 }
4

5 public static int mult(int a, int b) {
6 int res = 0;
7 int i = 1;
8 while (i <= a) {
9 res += b;

10 i++;
11 }
12 return res;
13 }

Listing 4.1: Example Java programme performing an integer multiplication.

println

res = 0
i = 1

while
i <= a

false

res += b
i++

true

Figure 4.6: A basic-block-level call graph (Rblock
total ) [CLZ

+09], representing the exe-

cution of the programme from Listing 4.1. Dashed lines stand for ‘call’

edges, solid lines for ‘trans’ edges and dotted lines for ‘return’ edges.
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Figure 4.7: Example graphs illustrating alternative choices for call-graph representa-

tions for multithreaded applications.

in the following (see Section 4.1.1). As in all total reduction variants, each method is

uniquely represented by exactly one node, for the moment identified by the method

name prefixed with the thread ID. Two nodes are connected by an edge if the corre-

sponding methods call each other at least once. Furthermore, we use edge weights

as in the Rw
total graph representations to represent call frequencies. Figure 4.7(c) is

an example for such a totally reduced graph representation, it is the reduced version

from the call graph in Figure 4.7(a).

Temporal Relationships. For the localisation of defects in multithreaded soft-

ware, it seems to be natural to encode temporal information in call graphs, e.g., to

tackle race conditions caused by varying thread schedules. The call graphs such as the

one in Figure 4.7(a) do not encode any order of execution of the different threads and

methods. One straight-forward approach to include such information uses temporal

edges (see Section 4.1.3). The problem with this idea, however, is that the overhead to

obtain such information might be large and requires sophisticated tracing techniques.

Furthermore, it may significantly influence programme behaviour – possibly making

a failure disappear. In addition, increasing the amount of information in the call graph

makes the mining process more difficult and time-consuming. We therefore propose

a more lightweight approach without temporal information encoded in the graphs.
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Non-Deterministic Thread Names. Figure 4.7(c) illustrates our totally reduced

call-graph representation that contains the thread IDs in the node labels. This is awk-

ward, as threads are allocated dynamically by the runtime environment or the operat-

ing system. Therefore, various correct executions could lead to threads with different

IDs for the same method call, even for a programme using the same parameters and

input data. We therefore would not be able to compare several programme executions

based on the node labels. Omitting this information would result in the graph shown

in Figure 4.7(e), which is directly derived from the one in Figure 4.7(c).

Replicated Tasks and Varying Thread Interleavings. Graphs such as the

ones in Figures 4.7(c), (d) and (e) suffer from two problems: (1) They might contain

a high degree of redundancy that does not help finding defects. For example, a pro-

gramme using thread pools could have a large number of threads with similar calls

due to the execution of replicated tasks (and therefore similar method calls). This

typically produces a call graph with several identical and large subtrees, which con-

tain no meaningful information for defect localisation. (2) The call frequencies (i.e.,

the edge weights) might not be useful for defect localisation, either. Different execu-

tion schedules of the same programme can lead to graphs with widely differing edge

weights. Example 4.7 illustrates how this effect can disturb data-mining analyses, as

such differences are not related to infections.

Example 4.7: Think of method a in Figure 4.7(c) as the run() method, calling the

worker task method b, which takes work from a task pool. Sometimes, thread 1 and

thread 2 would both call method b twice, as in Figure 4.7(c). In other cases as in

Figure 4.7(d), depending on the scheduling, thread 1 could call method b three times,

while thread 2 would only call it once or vice versa.

Proposed Graph Representation. Based on the observations discussed so far,

we propose a graph representation that avoids repeated substructures as follows:

Notation 4.9 (Total reduction for multithreaded programmes, Rmult
total )

Similar to Rtotal graphs as described in Notation 4.2 for single-threaded programmes,
Rmult

total graphs do not consider the thread names or IDs either. This is, all nodes re-
ferring to the same method are merged into a single node, even if it is called within
different threads.

Example 4.8: Figure 4.7(b) is an example for Rmult
total graphs. It is the reduced version

of the multithreaded call graph in Figure 4.7(a).

The representation proposed is robust in the sense that different schedules do not

influence the graph structure. The reason is that methods executed in different threads

are mapped to the same nodes. The downside of this representation is that graph

structures from different executions rarely differ. Consequently, a structural analysis
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of the call graphs as in other approaches (e.g., [LYY+05, DFLS06]) is less promising.

However, the edge weights introduced aim to compensate for this effect and allow for

detailed analyses.

Possible Extensions. As mentioned, our proposal for reduced call graphs of

multithreaded programmes as described in the previous paragraph does not lead to

many differences in the graph structure. We therefore present some ideas for possible

extensions in the following. Clearly, they should deal with issues such as those re-

lated to non-deterministic thread names, varying thread interleavings and replicated

tasks as discussed before. As one example, graph representations can have distinct

substructures for the different types of threads. A possible solution for the problem of

indeterministic thread IDs is the introduction of thread classes. Each of these classes
stands for a source-code context, i.e., a position in the source code where new threads

are created. As an example, one class could stand for GUI-related threads and one for

database-access-related threads. Further information to enhance the expressiveness

of call graphs could be information on locks on certain objects. This information

could be included as an annotation of nodes or edges.

4.4 Derivation of Call Graphs

In order to derive call graphs from programme executions, we have to trace the execu-

tions and to store the relevant information. As we rely on Java in this dissertation, we

employAspectJ [KHH+01] to weave tracing functionality into the Java programmes

considered. AspectJ is an aspect-oriented programming (AOP) language [KLM+97]

which provides cross-cutting concern functionality for Java. The basic functionality
of AspectJ is to define so-called pointcuts which allow for the addition of extra func-

tionality at certain points of a programme execution. Listing 4.2 contains the essence

of the aspects we use to generate call graphs.

1 public aspect tracing {
2 pointcut getMethod() : execution(* *(..)) && !execution(*

AspectJ..*(..));
3 before(): getMethod() {
4 //derive callingMethod and calleeMethod
5 edgeName = callingMethod + " -> " + calleeMethod;
6 callGraph.add(edgeName);
7 }
8 }

Listing 4.2: AspectJ code.
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As usual in AspectJ, we first declare an aspect, tracing in our case, in Line 1

of Listing 4.2. We then define a pointcut which catches all method invocations

(execution(* *(..))) in Line 2. The second part of this line (the part be-

hind &&) avoids that AspectJ-specific methods will be traced and become part of

our call graphs. What follows is the definition of an advice, starting in Line 3. An

advice describes what has to be done within a pointcut and at which exact point

of the execution. In this case, Lines 4 to 6 are executed before a method matched

by the pointcut is actually invoked (this is controlled by the keyword before()
in Line 3). In the body of the advice, we first derive the names of the methods

involved (Line 4). We derive the callee method by accessing the special variable

thisJoinPointStaticPart in AspectJ (which involves reflection) and the

calling method with a stack we maintain by ourself. We then assemble an edge name

based on the two method names (Line 5) and store it in an internal data structure

(Line 6). This data structure counts the occurrences of all edges in an edge list and

it can easily be used to derive call graphs in arbitrary representations. We use a ded-

icated pointcut at the end of a programme execution to write the call graph into a

file.

4.5 Subsumption
In this chapter, we have introduced various call-graph representations that are the

basis for the defect-localisation techniques we introduce in the following Chapter 5.

We have focused on method-level call graphs with its different variants, and we have

compared these graphs from a descriptive point of view. In Chapter 5, we will shed

light on their usefulness for defect localisation. Besides method-level graphs, we

have discussed some graph representations at different levels of granularity (and will

do so more extensively in Chapter 6) as well as representations for multithreaded

programmes. Further, we have explained how we actually derive call graphs from

programme executions.
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5 Call-Graph-Based Defect
Localisation

This chapter focuses on the actual defect-localisation process. The related work

[CLZ+09, DFLS06, LYY+05] and as well this dissertation suggest a number of dif-

ferent approaches for this process, relying on various call-graph representations (see

Chapter 4). In this dissertation, we distinguish between various structural approaches

[CLZ+09, DFLS06, LYY+05] and novel frequency-based and combined approaches.

In this chapter, we first present an overview in Section 5.1. To ease presentation, we

then discuss existing related approaches in Section 5.2, directly followed by the novel

approaches in Section 5.3. We then present an experimental evaluation in Section 5.4

and a subsumption in Section 5.5.

The approach presented in this chapter (in particular in Section 5.3) serves as a ba-

sis for the more sophisticated approaches in Chapters 6 and 7 focusing on scalability

issues and defects that affect the dataflow, respectively. In Chapter 8, we present an

approach for constraint-based subgraph mining which is a further development of the

approach presented in Section 5.3.

5.1 Overview

We now give an overview of the procedure of call-graph-based defect localisation.

This is a generic procedure which applies to the techniques that are new in this dis-

sertation (Section 5.3) as well as to most related studies (Section 5.2). Algorithm 5.1

first assigns a class (correct , failing) to every programme trace (Line 3), using a

test oracle (see Section 2.2.3). The approaches discussed in this dissertation require

such an oracle, and they are typically available in the software development process

[JH05]. Then every trace is reduced (Line 4), which leads to smaller call graphs (see

Chapter 4). Now frequent subgraphs are mined (Line 6). For this step, several algo-

rithms, e.g., tree mining or graph mining in different variants, can be used. The last

step calculates a likelihood of containing a defect. This can be at different levels of

granularity, typically at the method level (as shown in Line 7). The calculation of the

likelihood is based on the frequent subgraphs mined and facilitates a ranking of the

methods, which can then be given to the software developer.

69



CHAPTER 5. CALL-GRAPH-BASED DEFECT LOCALISATION

Algorithm 5.1 Generic graph-mining-based defect-localisation procedure.

Input: a collection of programme traces t ∈ T
1: G = ∅ // initialise a collection of reduced graphs

2: for all traces t ∈ T do
3: assign a class ∈ {correct , failing} to t
4: G = G ∪ {reduce(t)}
5: end for
6: SG = frequent_subgraph_mining(G)
7: calculate P (m) for all methodsm, based on SG

5.2 Existing Structural Approaches
Structural approaches for defect localisation can localise structure-affecting bugs in
particular. In some cases, a likelihood P (m) that method m contains a defect is

calculated, for every method. This likelihood is then used to rank the methods. In the

following, we refer to it as a score. In Sections 5.2.1–5.2.3 we introduce and discuss

the different structural scoring approaches.

5.2.1 The Approach from Di Fatta et al.
Di Fatta et al. [DFLS06] use the Rord

01m call-graph reduction (see Chapter 4) and the

rooted ordered tree miner FREQT [AAK+02] to find frequent subtrees (Line 6 in

Algorithm 5.1). The call trees analysed are large and lead to scalability problems.

Hence, the authors limit the size of the subtrees searched to a maximum of four

nodes. Based on the results of frequent subtree mining, they define the specific neigh-
bourhood (SN ). It is the set of all subgraphs contained in all call graphs of failing

executions which are not frequent in call graphs of correct executions:

SN ∶= {sg ∣ (support(sg ,Dfail) = 100%) ∧ ¬(support(sg ,Dcorr) ≥ suppmin)}
where support(g,D) denotes the support of a graph g, i.e., the fraction of graphs in a
graph databaseD containing g. Dfail and Dcorr denote the sets of call graphs of failing

and correct executions. [DFLS06] uses a minimum support suppmin of 85%.

Based on the specific neighbourhood, Di Fatta et al. define a structural score PSN

which can be used to guide the following manual debugging process:

PSN(m) ∶= support(gm,SN )
support(gm,SN ) + support(gm,Dcorr)

where gm denotes all graphs containing method m. Note that PSN assigns value 0 to

methods which do not occur within SN and value 1 to methods which occur in SN
but not in correct programme executions Dcorr.
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5.2.2 The Approach from Liu et al.

Although [LYY+05] is the first study which applies graph-mining techniques to dy-

namic call graphs to localise non-crashing bugs, this work from Liu et al. is not

directly compatible to the approach from Di Fatta et al. [DFLS06]. In [LYY+05],

defect localisation is achieved by a rather complex classification process, and it does

not generate a ranking of methods suspected to contain a defect, but a set of such

methods.

The work is based on the Rtmp
total reduction technique and works with total reduced

graphs with temporal edges (see Chapter 4). The call graphs are mined with a vari-

ant of the CloseGraph algorithm [YH03] (see Section 2.3.3). This step results in

frequent subgraphs which are turned into binary features characterising a programme

execution: A binary feature vector represents every execution. In this vector, every

element indicates if a certain subgraph is included in the corresponding call graph.

Using those feature vectors, a support-vector machine (SVM) classifier [Vap95] is

learned which decides if a programme execution is correct or failing . More precisely,

for every method, two classifiers are learned: one based on call graphs including the

respective method and one based on graphs without this method. If the precision rises

significantly when adding graphs containing a certain method, this method is deemed

more likely to contain a defect. Such methods are added to the so-called bug-relevant
function set. Its functions usually line up in a form similar to a stack trace which is

presented to a user when a programme crashes. Therefore, the bug-relevant function

set serves as the output of the whole approach. This set is given to a software devel-

oper who can use it to localise defects more easily. However, the approach does not

provide any ranking, which makes it hard to compare the results to other works.

5.2.3 The Approach from Cheng et al.

The study from Cheng et al. [CLZ+09] builds on the same graphs as used by Liu

et al. [LYY+05]: totally reduced graphs with temporal edges (Rtmp
total). However, it

relies on discriminative subgraph mining with the LEAP algorithm [YCHY08] (see

Section 3.2.2). Cheng et al. first apply a heuristic graph filtering procedure to clas-

sified Rtmp
total call graphs. This aims at shrinking the graph sizes by removing edges

with a lower likelihood to be related to a defect. However, the authors do not provide

any guarantees that this does not lose parts of the graphs that are actually relevant

for defect localisation. Then, the authors apply the LEAP algorithm to the filtered

graphs, resulting in the top-k discriminative subgraphs (discriminative with respect

to correct , failing), i.e., subgraphs having an increased likelihood to be related to

defects. The authors then report these subgraphs to the user to ease the manual de-

bugging process. As with the approach from Liu et al. [LYY+05], the results cannot

directly be compared to other approaches, as no method ranking is generated. Be-
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sides the Rtmp
total graph representation, Cheng et al. also apply their approach to more

fine-grained basic-block-level call graphs (Rblock
total , see Section 4.2).

5.3 Frequency-Based and Combined Approaches

As mentioned before, the structural approaches for defect localisation have their

strengths in localising structure-affecting bugs (see Section 5.2). In particular the

totally reduced graphs used in [CLZ+09, LYY+05] lose all information about the fre-

quency of method calls (except the information whether a certain method is called or

not). This makes it hard to impossible to localise frequency-affecting bugs. However,

these techniques might find such defects when the infection leads so side effects that

change the structure of the call graphs.

We now develop a novel technique that specialises on the localisation of frequency-
affecting bugs in Section 5.3.1. In order to be able to localise a possibly broad range

of defects, we then present novel approaches for the combination of structural and

frequency-based techniques in Section 5.3.2.

5.3.1 Frequency-Based Approach

We now develop a technique that is able to localise frequency-affecting bugs. To do

so, it is natural to analyse the call frequencies that are included as edge weights in

some of the call-graph representations proposed in Chapter 4. As discussed before

(see Section 3.2.1), there are no weighted subgraph-mining approaches that can be

used directly for defect localisation. We therefore present a postprocessing approach

in the following. It builds on frequent subgraph mining and feature selection to anal-

yse the edge weights. Similarly to the structural approaches (see Section 5.2), the

aim is to calculate a score, i.e., a likelihood to contain a defect, for every method. In

the following we describe the individual steps.

Graph Mining

After having reduced the call graphs gained from correct and failing programme exe-

cutions using theRsubtree technique (see Chapter 4), we search for frequent closed sub-

graphs SG in the graph dataset G using the CloseGraph algorithm [YH03] (Line 6

in Algorithm 5.1; see Section 2.3.3). For this step, we employ the ParSeMiS graph

mining suite [PWDW09]. Closed mining reduces the number of graphs in the result

set significantly and increases the performance of the mining algorithm. Furthermore,

the usage of a general subgraph-mining algorithm instead of a tree miner allows for

comparative experiments with other graph-reduction techniques such as Rw
total (see

Section 5.4). We use the subgraphs obtained from this frequent-subgraph-mining

step as different contexts and perform all further analyses for every subgraph context
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separately. This aims at a higher precision than an analysis without such contexts and

allows to localise defects that only occur in a certain context.

Example 5.1: A failure might occur when method a is called from method b, only
when method c is called as well. Then, the defect might be localised only in the

context of call graphs containing all methods mentioned, but not in graphs without

method c.

Analysis of Weights

We now consider the edge weights. As an example, a frequency-affecting bug in-

creases the frequency of a certain method invocation and therefore the weight of the

corresponding edge. To find the defect, one has to search for edge weights which are

increased in failing executions. To do so, we focus on frequent subgraphs which oc-

cur in both correct and failing executions. The goal is to develop an approach which

automatically discovers which edge weights of call graphs from a programme are

most significant to discriminate between correct and failing .

To identify discriminative edges, one possibility is to consider different edge types,
e.g., edges having the same calling methodms (start) and the same callee methodme

(end). However, edges of one type can appear more than once within one subgraph

and, of course, in several different subgraphs. Therefore, we analyse every edge in

every such location, which we refer to as a context. This aims at a high probability

to reveal a defect. As doing so, we typically investigate every edge weight in many

different contexts. To specify the exact location of an edge in its context within a

certain subgraph, we do not use the method names, as they may occur more than

once. Instead, we use a unique id for the calling node (ids) and another one for the

callee method (ide). All ids are valid within their subgraph. To sum up, we reference

edges in its context in a certain subgraph sg with the following tuple: (sg , ids, ide).
A certain defect does not affect all method calls (edges) of the same type, but

method calls of the same type in the same context. To allow for a more detailed

analysis, we take this information into account, and we assemble a comprehensive

feature table as follows:

Notation 5.1 (Feature tables for defect localisation with Rsubtree graphs)

The feature tables have the following structure: The rows stand for all programme
executions, represented by their call graphs. For every edge in every frequent sub-
graph, there is one column. The table cells contain the edge weights, except for the
very last column, which contains the class ∈ {correct , failing}. Graphs (rows) can
contain a certain subgraph not just once, but several times at different locations. In
this case, averages are used in the corresponding cells of the table. If a subgraph is
not contained in a call graph, the corresponding cells have value 0.
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exec.
a→ b a→ b a→ b a→ c ⋯ class

(sg1 ,id1 ,id2 ) (sg1 ,id1 ,id3 ) (sg2 ,id1 ,id2 ) (sg2 ,id1 ,id3 )

g1 0 0 13 6513 ⋯ correct
g2 512 41 8 12479 ⋯ failing
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Table 5.1: Example table used as input for feature-selection algorithms.

Example 5.2: Table 5.1 serves as an example. The first column contains a refer-

ence to the programme execution or, more precisely, to its reduced call graph gi ∈ G.

The second column corresponds to the first subgraph (sg1 ) and the edge from id1
(method a) to id2 (method b). The third column corresponds to the same subgraph

(sg1 ) but to the edge from id1 to id3 . Note that both id2 and id3 represent method b.
The fourth column represents an edge from id1 to id2 in the second subgraph (sg2 ).
The fifth column represents another edge in sg2 . Note that ids have different mean-

ings in different subgraphs. The last column contains the class correct or failing .
g1 does not contain sg1 , and the respective cells have value 0.

The table structure described allows for a detailed analysis of edge weights in dif-

ferent contexts within a subgraph. Algorithm 5.2 describes all subsequent steps in

this section. After putting together the table, we deploy a standard feature-selection

algorithm, information gain (InfoGain, see Definition 2.7), to calculate the discrimi-

nativeness of the columns in the table and thus the different edges. We use the imple-

mentation from the Weka data-mining suite [HFH+09] to calculate the InfoGain
with respect to the class of the executions (correct or failing) for every column

(Line 1 in Algorithm 5.2). We interpret the values as a likelihood of being responsi-

ble for defects. Columns with an InfoGain of 0, i.e., the edges always have the same

weights in both classes, are discarded immediately (Line 2 in Algorithm 5.2).

Algorithm 5.2 Procedure to calculate Pfreq(ms,me) and Pfreq(m).
Input: a set of edges e ∈ E, e = (sg , ids, ide)
1: assign every e ∈ E its information gain InfoGain
2: E = E / {e ∣ e.InfoGain = 0}
3: // remove follow-up infections:

E = E / {e ∣ ∃p ∶ p ∈ E,p.sg = e.sg , p.ide = e.ids, p.InfoGain = e.InfoGain}
4: E(ms,me) = {e ∣ e ∈ E ∧ e.ids.label =ms ∧ e.ide.label =me}
5: Pfreq(ms,me) = max

e∈E(ms,me)

(e.InfoGain)
6: Em = {e ∣ e ∈ E ∧ e.ids.label =m}
7: Pfreq(m) =max

e∈Em

(e.InfoGain)
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Besides the information gain (InfoGain, see Definition 2.7), we could have chosen
various different algorithms originally designed for feature selection. In preliminary

experiments, we have evaluated a number of such techniques with the result that those

based on entropy are best suited for defect localisation, and that information gain pro-

duces the best results for our particular dataset we use in Section 5.4. Concretely, we

have run experiments with the following feature-selection algorithms besides infor-

mation gain (1–3 are based on entropy, too):

1. Information-gain ratio (GainRatio, see Definition 2.7)
2. Symmetrical uncertainty [WF05]

3. The OneR decision-stump classifier [WF05]

4. The chi-squared statistic (see, e.g., [WF05])

5. Relief [Kon94]
6. An support vector machine (SVM) based algorithm [GWBV02]

Follow-Up Infections

Call graphs of failing executions frequently contain infection-like patterns which are

caused by a preceding infection. We call such patterns follow-up infections and re-

move them from our ranked list of features. Figure 5.1 illustrates a follow-up infec-

tion: (a) represents a defect-free version, (b) contains a defect in method a where it

calls method d. Here, this method is called 20 times instead of twice. Following our

reduction technique, this leads to the same (or a proportional) increase in the number

of calls in method d. In our entropy-based ranking, the edges d→ e and d→ f inherit

the score from a → d if the scaling of the weights is proportional. Thus, we interpret

these two edges as follow-up infections and remove them from our ranking. More

formally, we remove edges if the edge leading to its direct parent within the same sub-

graph has the same entropy score (Line 3 in Algorithm 5.2). In case of more than one

defect in a programme, this way of follow-up infection detection might not find all

such infections, but preliminary experiments have shown that it does detect common

cases efficiently. We leave aside the pathological case that this technique classifies

a real infection as follow-up infection. This is acceptable, since the probability of a

certain entropy value is the same for every defect. Therefore, it is very unlikely that

two unrelated defects lead to exactly the same entropy value, which would lead to a

false positive classification.

From the Invocation-Level to the Method-Level

Until now, we calculate likelihoods of method invocations to be defective for every

invocation (described by a calling method ms and a method called me). We call this

score Pfreq(ms,me), as it is based on the call frequencies. To do the calculation, we

first determine sets E(ms,me) of edges e ∈ E for every method invocation in Line 4
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Figure 5.1: Follow-up infections.

of Algorithm 5.2. In Line 5, we use the max function to calculate Pfreq(ms,me), the
maximum InfoGain of all edges (method invocations) in E. In general, there are

many edges in E with the same method invocation, as an invocation can occur in

different contexts. With themax function, we assign every invocation the score from

the context ranked highest. Other invocations with lower values might not be related

to the defect.

Example 5.3: An edge from a to b is contained in two subgraphs. In one subgraph,

this edge a→ b has a low InfoGain value of 0.1. In the other subgraph, and therefore

in another context, the same edge has a high InfoGain value of 0.8, i.e., a defect

is relatively likely. As one is interested in these cases, lower scores for the same

invocation are less important, and only the maximum is considered.

At the moment, the ranking does not only provide the score for a method invo-

cation, Pfreq(ms,me), but also the subgraphs where it occurs and the exact embed-

dings. This information might be important for a software developer. We report this

information additionally. To ease comparison with other approaches not providing

this information, we also calculate Pfreq(m) for every calling method m in Lines 6

and 7 of Algorithm 5.2. The explanation is analogous to the one of the calculation of

Pfreq(ms,me) in Lines 4 and 5.

5.3.2 Combined Approaches

As discussed before, structural approaches are well suited for the localisation of

structure-affecting bugs, while frequency-based approaches focus on call frequency-
affecting bugs. To be able to localise a broader range of defects, it seems to be

promising to combine both approaches. In the following we first introduce a new

structural score for combinations before we discuss combination strategies.
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A Structural Score for Combination

The notion of the specific neighbourhood (SN ) as introduced by Di Fatta et al.

[DFLS06] (see Section 5.2.1) has the problem that no support can be calculated when

the SN is empty.1 Furthermore, preliminary experiments of ours have revealed that

the PSN-scoring only works well if a significant number of graphs is contained in SN .

This depends on the graph reduction and mining techniques and has not always been

the case in the experiments. Thus, to complement the frequency-based scoring (see

Section 5.3.1), we define another structural score. It is based on the set of frequent

subgraphs which occur in failing executions only, SGfail. We calculate the structural

score Pfail as the support ofm in SGfail:

Pfail(m) ∶= support(gm,SGfail)
This is the support of all graphs containing methodm in SGfail.

Combination Strategies

As a first combination strategy, we combine the frequency-based approach with the

PSN score (see Section 5.2.1). In order to calculate the resulting score, we use the

approach from Di Fatta et al. [DFLS06] without temporal order: We use the Runord
01m

reduction with a general graph miner, gSpan [YH02] (see Section 2.3.3), in order

to calculate the structural PSN score. We derive the frequency-based Pfreq score as

described before after mining the same call graphs but with the Rsubtree reduction

and the CloseGraph algorithm [YH03] (as described before). In order to combine

the two scores derived from the results of two graph-mining runs, we calculate the

arithmetic mean of the normalised scores:

PSN
comb(m) ∶= Pfreq(m)

2 max
n∈V (sg),sg⊆g∈D

(Pfreq(n)) +
PSN(m)

2 max
n∈V (sg),sg⊆g∈D

(PSN(n))
where n is a method in a subgraph sg of the database of all call graphs D.

As this combined approach requires two costly graph-mining executions, we have

introduced the structural score Pfail as a basis for a simpler combined defect-loca-

lisation approach. It requires only one graph-mining execution: We combine the

frequency-based score with the Pfail score, both based on the results from one Close-
Graph execution. Concretely, we combine the results with the arithmetic mean, as

before:

P subtree
comb (m) ∶= Pfreq(m)

2 max
n∈V (sg),sg⊆g∈D

(Pfreq(n)) +
Pfail(m)

2 max
n∈V (sg),sg⊆g∈D

(Pfail(n))
1[DFLS06] uses a simplistic fall-back approach to deal with this effect.
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5.4 Experimental Evaluation

We now evaluate the different proposals for call-graph reductions (see Chapter 4)

and localisation techniques introduced in this section. In Section 5.4.1, we describe

the experimental setup, and in Section 5.4.2 we present the experimental comparison

of call-graph-based techniques. In Section 5.4.3, we compare these techniques to

related work from software engineering.

5.4.1 Experimental Setup

Methodology

Many of the defect-localisation techniques as described in this chapter produce or-

dered lists of methods. Someone doing a code review would start with the first

method in such a list. The maximum number of methods to be checked to find the

defect therefore is the position of the faulty method in the list. This position is our

measure of result accuracy. Under the assumption that all methods have the same

size and that the same effort is needed to localise a defect within a method, this mea-

sure linearly quantifies the intellectual effort to find a defect. Sometimes two or more

subsequent positions have the same score. As the intuition is to count the maximum

number of methods to be checked, all positions with the same score have the number

of the last position with this score. This is in-line with the methodology of related

studies (e.g., [JH05]). If the first defect is, say, reported at the third position, this is a

fairly good result, depending on the total number of methods. A software developer

only has to do a code review of maximally three methods of the target programme.

Programme under Test and Defects

As we rely on Java and AspectJ instrumentations in this dissertation, our experi-

ments feature a Java programme. Concretely, we use a well-known diff tool taken

from [Dar04], consisting of 25 methods and 706 lines of code (LOC). We instru-

mented this programme with 14 different defects which are artificial, but mimic de-

fects which occur in reality and are similar to the defects used in related work. In

particular, we have examined the Siemens Programmes [HFGO94] which are used

in many related publications on dynamic defect localisation (see Section 3.1.2) and

have identified five types of defects which are most frequent within them:

1. Wrong variable used

2. Off-by-one (e.g., i+1 instead of i or vice versa)

3. Wrong comparison operator (e.g., >= instead of >)
4. Additional conditions

5. Missing conditions
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Our programme versions contain these five types of defects. The Siemens Pro-
grammes mostly contain defects in single lines and just a few programmes with more

than one defect. To mimic the Siemens Programmes as close as possible, we have in-
strumented only two out of 14 versions (defects 7 and 8) with more than one defect.

We give an overview of the kinds of defects used in Table 5.2.

We have executed each version of the programme 100 times with different input

data. Then we have classified the executions as correct or failing with a test oracle

based on a defect-free reference programme.

Design of the Experiments

The experiments are designed to answer the following questions:

1. How do frequency-based approaches perform compared to structural ones?
How can combined approaches improve the results?

2. In Section 4.1.5, we have compared reduction techniques based on the com-

pression ratio achieved. How do the different reduction techniques perform in

terms of defect-localisation precision?

3. Some approaches make use of the temporal order of method calls. The call-

graph representations tend to be much larger than without. Do such graph

representations improve precision?

version description

defect 1, defect 10 wrong variable used

defect 2, defect 11 additional or-condition

defect 3 >= instead of !=
defect 4, defect 12 i+1 instead of i in array access

defect 5, defect 13 >= instead of >
defect 6 > instead of <
defect 7 a combination of defect 2 and defect 4 (in the same line)

defect 8 i+1 instead of i in array access + additional or condition

defect 9, defect 14 missing condition

Table 5.2: Defects used in the evaluation.
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In concrete terms, we compare the following five alternatives:

E01m The structural PSN-scoring approach [DFLS06] (see Section 5.2), based on the

unordered Runord
01m reduction.

Esubtree Our frequency-based Pfreq-scoring approach (see Section 5.3.1) based on the

Rsubtree reduction.

E SN
comb Our combined approach with the P SN

comb scoring (see Section 5.3.2), based on

the Runord
01m and Rsubtree reductions.

E subtree
comb Our combined approach with the P subtree

comb scoring (see Section 5.3.2), solely

based on the Rsubtree reduction.

Etotal The combined approach as before, but with the Rw
total reduction [LYY

+05] (with

weights but without temporal edges, see Section 5.2).

For all experiments relying on the CloseGraph algorithm we use a minimum sup-

port suppmin of 3. This allows for relatively large result sets, even when the graph

database is relatively small. Large result sets prevent the approaches relying on the

Pfail score (experiments E subtree
comb and Etotal) to have the same score for many methods,

which would lower the quality of the ranking.

5.4.2 Experimental Results
We present the results (the number of the first position in which a defect is found) of

the five experiments for all 14 defects in Table 5.3. We represent a defect which is not

discovered with the respective approach with ‘-’. Note that with the frequency-based

and the combined method rankings, there usually is additional information available

where a defect is located within a method, and in the context of which subgraph it

appears. The following comparisons leave aside this additional information.

Structural, Frequency-Based and Combined Approaches

When comparing the results from E01m and Esubtree, the frequency-based approach

(Esubtree) performs almost always as good or better than the structural one (E01m).

This demonstrates that analysing numerical call frequencies is adequate to localise

defects. Defects 1, 9 and 13 illustrate that both approaches alone cannot find certain

defects. Defect 9 cannot be found by comparing call frequencies (Esubtree). This is

because defect 9 is a modified condition which always leads to the invocation of

a certain method. In consequence, the call frequency is always the same. Defects 1

and 13 are not found with the purely structural approach (E01m). Both are typical call-

frequency-affecting defects: Defect 1 is in an if-condition inside a loop and leads

to more invocations of a certain method. In defect 13, a modified for-condition
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exp. / defect 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E01m - 3 1 3 2 4 3 1 1 6 4 4 - 4

Esubtree 3 3 1 1 1 3 3 1 - 2 3 3 3 3

E SN
comb 1 3 1 2 2 1 2 1 3 1 2 4 8 5

E subtree
comb 3 2 1 1 1 2 2 1 18 2 2 3 3 3

Etotal 1 5 1 4 3 5 5 2 - 2 5 4 6 3

Table 5.3: Experimental results.

slightly changes the call frequency of a method inside the loop. With the Runord
01m

reduction technique used in E01m, defect 2 and 13 have the same graph structure both

with correct and with failing executions. Thus, it is difficult to impossible to identify

structural differences.

The combined approaches in E SN
comb and E subtree

comb are intended to take structural in-

formation into account as well to improve the results from Esubtree. We do achieve this

goal: When comparing Esubtree and E subtree
comb , we retain the already good results from

Esubtree in nine cases and improve them in five.

When looking at the two combination strategies, it is hard to say which one is bet-

ter. E SN
comb turns out to be better in four cases while E

subtree
comb is better in six ones. Thus,

the technique in E subtree
comb is slightly better, but not with every defect. Furthermore, the

technique in E SN
comb is less efficient as it requires two graph-mining runs.

Reduction Techniques

Looking at the call-graph-reduction techniques, the results from the experiments dis-

cussed so far reveal that the subtree-reduction technique with edge weights (Rsubtree)

used in Esubtree as well as in both combined approaches is superior to the zero-one-

many reduction (Runord
01m ). Besides the increased precision of the localisation tech-

niques based on the reduction,Rsubtree also produces smaller graphs thanRunord
01m , which

is good for scalability and runtime (see Section 4.1.5).

Etotal evaluates the total reduction technique. We use Rw
total as an instance of the

total reduction family. The rationale is that this one can be used in the same setup

as E subtree
comb . In most cases, the total reduction (Etotal) performs worse than the subtree

reduction (E subtree
comb ). This confirms that the subtree-reduction technique is reason-

able, and that it is worth to keep more structural information than the total reduction

does. However, in cases where the subtree reduction produces graphs which are too

large for efficient mining, and the total reduction produces sufficiently small graphs,

Rw
total can be an alternative to Rsubtree.

81



CHAPTER 5. CALL-GRAPH-BASED DEFECT LOCALISATION

Temporal Order

The experimental results listed in Table 5.3 do not shed any light on the influence of

the temporal order. When applied to the defective programmes used in our compar-

isons, the total reduction with temporal edges (Rtmp
total) produces graphs of a size which

cannot be mined in a reasonable time. This already shows that the representation of

the temporal order with additional edges might lead to graphs whose size is not man-

ageable any more. In preliminary experiments of ours, we have repeated E01m with

the Rord
01m reduction and the FREQT [AAK+02] rooted ordered tree miner in order to

evaluate the usefulness of the temporal order. Although we systematically varied the

different mining parameters, the results of these experiments in general are not better

than those in E01m. Only in two of the 14 defects the temporal-aware approach has

performed better than E01m, in the other cases it has performed worse. In a compari-

son with the Rsubtree reduction and the gSpan algorithm [YH02] (see Section 2.3.3),

the Rord
01m reduction with the ordered tree miner displayed a significantly increased

runtime by a factor of 4.8 on average.2 Therefore, our preliminary result based on the

defects used in this section is that the incorporation of the temporal order does not

increase the precision of defect localisations.

5.4.3 Comparison to Related Work

So far, the existing call-graph-based techniques [CLZ+09, DFLS06, LYY+05] have

not been compared to the well-known techniques from software engineering dis-

cussed in Chapter 3.3 We now compare our best-performing approach, E subtree
comb , to

the Tarantula technique [JHS02], to two of its improvements [AZGvG09] and to the

SOBER method [LFY+06] (see Section 3.1.2 for details). These techniques can be

seen as established defect-localisation techniques as they have outperformed a num-

ber of competitive approaches (see Section 3.1.2).

For the experiments in this section, we have implemented Tarantula, its improve-

ments and SOBER for our programme used in the evaluations in this chapter. We

have done so as no complete implementations are publically available. For SOBER,

there is MATLAB source code available from the authors that performs the statistical

calculations. However, there is no tool for the instrumentation of predicates avail-

able. For SOBER we have therefore implemented an automatic instrumentation, and

we have reimplemented the statistical calculations in Java. For Tarantula and its

improvements, we have implemented both steps, automated instrumentation and the

calculations.

2In this comparison, FREQT was restricted as in [DFLS06] to find subtrees of a maximum size of

four nodes. Such a restriction was not set in gSpan. Furthermore, we expect a further significant

speedup when CloseGraph is used instead of gSpan.
3Only [CLZ+09] has been compared to the sequence-mining-based approach RAPID [HJO08] which

party builds on the well-known Tarantula technique [JHS02].
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Both techniques, Tarantula and SOBER, work on granularities that are finer than

the method level used by our approach (see Section 3.1.2). However, the Taran-
tula authors describe a means of mapping the results to the method level [JH05].

Concretely, the authors assign the score from its highest ranked basic block to the

method. For our comparisons we rely on this mapping, and we do the same for

SOBER, which originally works on the predicate level.

In our experiments with Tarantula, we have noticed that it happens frequently

that methods have the same likelihood score, which worsens the results from the ap-

proach. Although the authors have not applied this technique in the original evalua-

tions [JH05, JHS02], we use the brightness score from Tarantula (see Section 3.1.2)

as a secondary ranking criterion. This is, we let this criterion decide the ranking po-

sition in case the original score is the same for some methods. This approach seems

to be natural, as the brightness would be a secondary source of information for a

developer who uses the original visualisation from Tarantula.
When looking at Tarantula and our approach from a theoretical perspective, our

approach considers more data than code coverage as utilised by Tarantula, but at the
coarser method level. The information analysed by our approach additionally to the

information analysed by Tarantula includes (1) call frequencies, (2) subgraph con-

texts and (3) the information which method has called another one. This data is poten-

tially relevant for defect localisation, e.g., to localise frequency-affecting bugs (1) and
structure-affecting bugs (2, 3). We therefore expect well results from our approach in

comparison to Tarantula.
As discussed before (see Section 3.1.2), SOBER overcomes some of the short-

comings of previous approaches mentioned. It analyses the frequencies of predi-

cate evaluations and is therefore better suited than Tarantula to localise frequency-
affecting bugs. However, it does not analyse subgraph contexts as our approach does,
but its predicate analysis takes information into account that we do not consider (e.g.,

return-value predicates). It is therefore hard to formulate theoretical expectations

whether SOBER or our approach will perform better.

In the following, we compare our E subtree
comb approach (values taken from Table 5.4)

to Tarantula in experiments ETarantula and E b
Tarantula (with and without the brightness

score), to the Jaccard coefficient variations in experiments EJaccard and E b
Jaccard, to

the Ochiai coefficient variations in experiments EOchiai and E b
Ochiai and to SOBER in

experiment ESOBER.

Table 5.4 contains the results from the comparison. The table clearly shows that

our approach (E subtree
comb ) performs best in 12 out of the 14 defects and as well best on

average. Only for defect 1 some of the other approaches perform a little better, and

for defect 9 all other approaches perform better than E subtree
comb . The explanation for the

latter is as before: Defect 9 does not affect the call frequencies at all which are the

most important evidence for our approach. The other comparisons are as expected:

E b
Tarantula leads to better results than ETarantula, and EJaccard and EOchiai perform better

than ETarantula (as in [AZGvG09]). In our case, the brightness extension does not
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exp. / defect 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ∅
E subtree
comb 3 2 1 1 1 2 2 1 18 2 2 3 3 3 3.1

ETarantula 6 8 5 6 7 9 8 6 5 6 9 9 11 9 7.6

E b
Tarantula 1 6 1 3 7 7 6 3 5 6 7 7 11 7 5.5

EJaccard 1 6 1 3 6 7 6 4 4 5 7 7 11 7 5.4

E b
Jaccard 1 6 1 3 6 7 6 4 4 5 7 7 11 7 5.4

EOchiai 1 6 1 3 6 7 6 4 4 5 7 7 11 7 5.4

E b
Ochiai 1 6 1 3 6 7 6 4 4 5 7 7 11 7 5.4

ESOBER 3 3 6 3 3 4 3 3 4 5 4 4 9 4 4.1

Table 5.4: Comparison to related work (bold face indicates the best experiments).

improve the results of EJaccard and EOchiai. This can be explained by the fact that

EJaccard and EOchiai are initially a lot better than ETarantula, which has more potential for

improvements. In our experiments, the results of EJaccard and EOchiai do not differ. This

is as well not unexpected, as in [AZGvG09] the Ochiai coefficient is only in very few
cases better than the Jaccard coefficient. ESOBER in turn performs on average better

than all Tarantula variations, although there are few defects where ESOBER performs

worse. This is consistent to the results in [LFY+06].

Looking at the average values, a developer has to consider 3.1 methods when using

our approach (E subtree
comb ). In contrast, when using the best performing approach from

the related work considered in this comparison, SOBER (ESOBER), the developer

would have to consider 4.1 methods. Based on the benchmark defects used in these

experiments, our approach therefore reduces the effort for defect localisation by 24%

compared to SOBER.

Besides Tarantula and SOBER, we have also experimented with the static Find-
Bugs [AHM+08] defect-localisation tool (see Section 3.1.1). However, FindBugs
was not able lo localise any defect in our 14 defective programme versions. This is

not surprising, as the defects of our benchmark (listed in Table 5.2) mostly represent

defects affecting the programme logic rather than defect-prone programming patterns

that can be identified by FindBugs.

5.5 Subsumption

The experiments in this chapter have shown that our approach performs well (regard-

ing localisation precision) compared to both related approaches based on call-graph

mining and established approaches from software engineering. However, as in the

related work [CLZ+09, DFLS06, LYY+05], our evaluation is based on a relatively

small number of defects and it is hard to draw conclusions for arbitrary defects in

arbitrary programmes. Nonetheless, the defects in our evaluation serve as a bench-
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mark. According to Zeller [Zel09], it is likely that a technique that performs better

than another one on a benchmark will perform better on other programmes, too.

More concretely, our experiments presented in this chapter as well as the ones in

the closely related work [CLZ+09, DFLS06, LYY+05] suffer from two issues related

to the question if the results can be generalised:

• The experiments are based on artificially seeded defects. Although these de-

fects mimic typical defects as they occur in reality, a study with real defects

from an existing software project would emphasise the validity of the tech-

niques. (This also applies to most of the techniques described in Section 3.1.2,

as the evaluations rely on the Siemens Programmes [HFGO94] featuring artifi-
cial defects.)

• All experiments feature rather small programmes containing the defects (i.e.,

roughly ranging from 200 to 700 LOC). The programmes rarely consist of

more than one class and represent situations where defects could be found rel-

atively easy by a manual investigation as well. (This also applies to most of the

techniques described in Section 3.1.2.) The approaches considered here will

probably not scale without any further effort for programmes that are much

larger than the programmes considered currently.

In the remainder of this dissertation we tackle these two issues. In Chapter 6, we

investigate a scalable solution that builds on the techniques proposed in this chapter.

We evaluate the approach with real defects from an open-source software project that

is two orders of magnitude larger than the programmes in the evaluations considered

so far. Furthermore, we present a constraint-based approach in Chapter 8, which

leads to better scalability of the underlying graph-mining algorithms.

So far, we have not considered multithreaded programmes in our evaluations. In

Appendix A, we present and evaluate a variation of the technique presented in this

chapter for the localisation of defects in such programmes.
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6 Hierarchical Defect Localisation

In the previous chapter, we have presented our approach for defect localisation (Sec-

tion 5.3). Despite good results, we have identified two issues of this approach, namely

poor scalability with the size of the software project and a desired evaluation with
real defects (see Section 5.5). Both issues as well apply to the closely related work

[CLZ+09, DFLS06, LYY+05]. In this chapter, we aim at generalising our approach

for defect localisation to scale for larger software projects. To this end, we propose

a hierarchical procedure that works with call graphs at different levels of granular-

ity. We furthermore evaluate our new approach with real defects from a real-world

software project.

We first present an introductory overview in Section 6.1. Sections 6.2 and 6.3

explain the call-graph representations we use in this chapter and defect localisation

based on them, respectively. Section 6.4 contains the evaluation, and Section 6.5 is a

subsumption of this chapter.

6.1 Overview

In this chapter, we aim at a scalable method for call-graph-mining-based defect local-

isation and at an evaluation with real defects. Solving the scalability issues is chal-

lenging, as seemingly possible solutions have issues: (1) Using increased computing

capabilities or distributed algorithms is not feasible due to exploding computational

costs. We have experienced this effect in preliminary experiments as well. Further,

spending a lot of computing time for graph mining might be inappropriate for defect

localisation. (2) Solving the scalability issue with approximate graph-mining algo-

rithms might be a solution, but might miss patterns which are important for defect

localisation. For instance, [CLZ+09] (see Section 5.2.3) does not report any prob-

lems caused by the better scaling LEAP algorithm [YCHY08] (see Section 3.2.2),

but does not analyse large programmes either.

A different starting point to deal with the scalability problem in call-graph-based

defect localisation is the graph representation. In this chapter, we investigate graph

representations at coarser abstractions than the method level (see Section 4.1), i.e.,

the package level and the class level, and we start at such a coarse abstraction before

zooming-in into a suspicious region of the call graphs. These graphs are a lot smaller

than conventional method-level call graphs, and they cause scalability problems in

much fewer cases. However, this idea leads to new challenges:
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1. Call-graph representations have not yet been studied for levels of abstraction

higher than the method level. How do representations well-suited for defect

localisation look like?

2. When zooming-in into defect-free regions by accident, the following question

arises: How to design hierarchical defect localisation in a way that minimises

the amount of source code to be inspected by humans?

3. It is unclear which defects can indeed be localised in coarse graph representa-

tions.

Our approach for hierarchical defect localisation builds on the zoom-in idea and

solves these challenges. It relies on weighted call graphs, making the localisation of

certain defects a lot easier. In more detail, this chapter makes the following contribu-

tions:

Granularities of Call Graphs. We define call graphs at different levels of granu-
larity, featuring edge-weight tuples that provide further information besides the graph

structure (challenge 1). We do so by taking the specifics of defect localisation into

account: We explicitly consider API calls as well as inter-/intra-package and inter-

/intra-class method calls.

Hierarchical Defect Localisation. We describe the zoom-in operation for call

graphs, present a methodology for defect localisation for the graphs at each level and

describe hierarchical procedures for defect localisation (challenge 2). In concrete

terms, we present different variants of a depth-first search strategy to hierarchically

mine a software project.

Evaluation with a Large Software Project. An essential part of this chapter

is the evaluation featuring real programming defects in Mozilla Rhino (challenge 3).

To this end we use the iBUGS repository [DZ09] and the original test suite. Rhino
consists of ≈ 49k LOC, and the defects in the repository were obtained by joining

information from a bug-tracking system with data and source code from a revision-

control system.

Ideas related to zooming-in into call graphs, namely Graph OLAP, have been de-

scribed in [CYZ+09]. The authors propose data-warehousing operations to analyse

graphs, e.g., drill-down and roll-up operations, similar to our zoom-in proposal. How-

ever, [CYZ+09] does not help in defect localisation, as it aims at interactive analyses,

and it does not consider specific requirements (e.g., API calls).
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6.2 Dynamic Call Graphs at Different Levels

In this section, we propose and define totally-reduced call-graph representations for

the method, class and package level (Sections 6.2.1–6.2.3). These representations

build on the totally-reduced weighted call graphs (Rw
total) we have introduced in Sec-

tion 4.1.1. Then we introduce the zoom-in operation for call graphs (Section 6.2.4).

The call graphs introduced in this section can easily be extended in either direction:

More coarse-grained meta-package-level call graphs could rely on the hierarchical

organisation of packages and would allow to analyse even larger projects. Graphs

more detailed than the method level, e.g., at the level of basic blocks (see Section 4.2),

would allow for a finer defect localisation.

As in Chapter 4, we rely on AspectJ [KHH+01] to weave tracing functionality

into Java programmes and to derive call graphs from programme executions. This

yields an unreduced call-graph representation at the method level. (Figure 6.1(a)

is an example.) This is the basis for all reduced representations we discuss in the

following. In concrete terms, our tracing functionality internally stores unreduced

call graphs in a pre-aggregated space-efficient manner. This lets us derive call-graph

representations at any levels of granularity.

6.2.1 Call Graphs at the Method Level

We now propose total graph reductions that are weighted, where exactly one node

represents a method. Furthermore, we do not make use of any temporal information.

All this leads to a compact graph representation (see Section 4.1).

As an innovation, we consider calls of methods belonging to the Java class li-

brary (API ) in all graphs. We do so as we believe that some defects might affect

the calls of such methods. To our knowledge, no previous study has considered such

method calls. However, to keep the instrumentation overhead to a minimum, we do

not considerAPI -internal method calls. In the graph representation, we use one node

(API ) to represent all methods belonging to the class library.

Notation 6.1 (Method-level call graphs, Rmethod
total )

In method-level call graphs, every method is represented by exactly one node, di-
rected edges represent method invocations, and edge weights stand for the frequen-
cies of the calls represented by the edges. The API node represents all methods of
the class library and does not have any outgoing edges.

Example 6.1: Figure 6.1(b) is a method-level call graph. It is the reduced version

of the graph in Figure 6.1(a). The API nodes in Figure 6.1(a) represent two API
methods, a and b, represented by one node in Figure 6.1(b). Both graphs do not

have any self-loops, as the corresponding programme execution does not involve any

recursive method calls.
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A.a

B.a B.a C.a B.c A.c

B.b B.b C.b C.b C.c API.a

API.a API.a API.b API.b

(a) unreduced

A.a

B.a

2

C.a

1

B.c

 1

A.c

1

B.b

1 1

C.b

1  1

C.c

 1

API

 1

 2  2

(b) method level, Rmethod
total

A  1,1,1

B

3,2,1

C

 2,2,2

API

 1,1,1

 1,1,1

 1,1,1  1,1,1

 1,1,1

 4,2,2

(c) class level, Rclass
total

P1  1,1,1,1,1

P2

 5,2,4,1,2

API

 1,1,1,1,1 4,2,2,2,3

 4,1,2,1,2

(d) package level, Rpackage
total

Figure 6.1: An unreduced call graph and its total reduced representations at the

method level, class level and package level. Notation: class .method ;
class A forms package P1 , classes B and C form package P2 .
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6.2.2 Call Graphs at the Class Level

We now propose class-level call graphs with tuples of weights. The rationale is to

include some more information, which would otherwise be lost by the more rigorous

compression.

Notation 6.2 (Class-level call graphs, Rclass
total )

In class-level call graphs, every class is represented by exactly one node, and edges
represent inter-class method calls (or intra-class calls in case of self-loops). The
API node is as in Rmethod

total graphs. An edge is annotated with a tuple of weights:
(t, u, v). t refers to the total number of method calls represented by the edge (as in
Rmethod

total graphs), u is the number of different methods invoked, and v is the number of
different methods that invoke methods.

Example 6.2: Figure 6.1(c) is a class-level call graph, it is the compression of the

graphs in Figures 6.1(a) and (b). Class-level call graphs may include self-loops (ex-

cept for the API node), even if there is no recursion.

6.2.3 Call Graphs at the Package Level

The reduction for this level is analogous to the previous ones, but to capture more

information, we extend the edge-weight tuples by two elements:

Notation 6.3 (Package-level call graphs, Rpackage
total )

In package-level call graphs, there is one node for each package, and there is an
additional API node. The edge-weight tuples are as follows:

(tm, uc, um, vc, vm)
where uc is the number of different classes called, vc the number of different classes
calling, and tm, um, vm are as t, u, v in Notation 6.2. (‘m’ stands for method, ‘c’ for
class.)

Example 6.3: We assume that classA in Figure 6.1 forms package P1 , that classesB
and C are in package P2 , and that methods API .a and API .b belong to the same

class. Figure 6.1(d) then is a package-level call graph, representing the call graphs

from Figures 6.1(a)–(c).

6.2.4 The Zoom-In Operation for Call Graphs

Before we discuss the zoom-in operation for call graphs, we first define an auxiliary

function:
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Definition 6.1 (The generate function)
The generate function is of the following type:

generatelevel ∶ (Gunreduced,V) → Glevel

where Gunreduced stands for unreduced call graphs, Glevel for call graphs of the level
specified by level ∈ {method , class ,package} and V for sets of vertices. A ∈ V speci-
fies the area to be included in the graph to be generated, by means of a set of vertices
of the package level (package names) in case ‘level = class’ or of the class level
(class names) in case ‘level = method ’. In case ‘level = package’, A = ☆ selects all
packages.

From a given unreduced graph, the function generates a subgraph at the level spec-
ified, containing all nodes contained in A (all nodes if A = ☆) and edges connecting
these nodes. If A ≠ ☆, the function introduces a new node labelled ‘Dummy’ in the
subgraph generated that stands for all nodes not selected by A.

In the generate function, we treat theAPI nodes separately from other nodes. They

do not have to be explicitly contained in A, but are contained in the resulting graphs

by default, as described in Notations 6.2 and 6.3. As the generate function selects

certain areas of the graph, it obviously omits other areas. This is a conscious decision,

as small graphs tend to make graph mining scalable. As calls of methods in the

omitted areas might indicate defects nevertheless, the generate function introduces

the Dummy nodes to keep some information about these methods.

To zoom-in to a finer level of granularity, say into a certain package p ∈ V (Gp) of
a package-level call graph Gp to obtain a class-level call graph Gc, one calls the gen-
erate function as follows: Gc ∶= generateclass(Gu,{p}), where Gu is the unreduced

call graph of Gp. Zooming from a class-level call graph to a method-level call graph

is analogous.

6.3 Hierarchical Defect Localisation

We now describe our hierarchical approach for defect localisation. At first, we in-

troduce defect localisation without considering the hierarchical procedure, i.e., we

describe how defect localisation works for call graphs at any selected level of granu-

larity (Section 6.3.1). Note that this is a generalisation of the procedure described in

Section 5.3.1. We then present different approaches for turning this technique into a

hierarchical procedure (Section 6.3.2), which are further generalisations.

6.3.1 Defect Localisation in General

We now discuss defect localisation with call graphs at arbitrary levels of granularity.

This is in principle a synopsis of our approach in Section 5.3.1 with generalisations
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for arbitrary levels of abstraction and with adjustments for the graphs introduced in

Section 6.2. After a short overview of the approach, we describe subgraph mining and

defect localisation based on edge-weight tuples. Finally, we discuss the incorporation

of information from static source-code analysis.

Overview

Algorithm 6.1 works with unreduced call graphs U (traces), representing programme

executions. More specifically, it deals with graphs at a user-defined level , describing
a certain subgraph of the graphs (parameter A). For the time being, we consider the

package level (A = ☆), i.e., without restricting the area. The algorithm first assigns

a class ∈ {correct , failing} to every graph u ∈ U (Line 3), using a test oracle. Such

oracles are typically available [JH05]. Then the procedure generates reduced call

graphs, from every graph u (Line 4). Next, the procedure derives frequent subgraphs

of these graphs, which provide different contexts (Line 6). The last step calculates

a likelihood of containing a defect, for every software entity e at the level specified
(i.e., a package, class or method; Line 7). We do so by deriving a discriminativeness

measure for the edge-weight-tuple values, in each context separately. The P values

for all entities of a certain level form a ranking of the entities, which can be given to

software developers. They would then review the suspicious entities manually, start-

ing with the one which is most likely to be defective. Alternatively, this result can be

the basis for a zoom-in into a finer level of granularity, as described in Section 6.3.2.

Algorithm 6.1 Procedure of defect localisation.
Input: a set of unreduced call graphs U , a level ∈ {package, class ,method},

an area A
Output: a ranking based on each software entity’s likelihood to be defective P (e)
1: G = ∅ // initialise a set of call graphs

2: for all graphs u ∈ U do
3: check if u refers to a correct execution,

and assign a class ∈ {correct , failing} to u
4: G = G ∪ {generatelevel(u,A)}
5: end for
6: SG = frequent_subgraph_mining(G)
7: calculate P (e) for all software entities e at the level specified, based on SG

In this chapter focussing on hierarchical mining, we do not rely on any structural

score nor combinations as we have done in Section 5.3.2. We do so as preliminary

experiments have revealed that structural scores do not work so well with totally

reduced graphs from the particular software project used in the evaluation of this

chapter. This is as the call graphs from several executions of the same programme

tend to frequently have the same topology. Compared to the graphs we have used
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before (e.g., in the Rsubtree representation), the graphs we use now are less interesting

from a structural point of view, but encode relevant information in the edge weight

tuples.

Subgraph Mining

As in our approach in Section 5.3.1, the frequent-subgraph-mining step (Line 6 in

Algorithm 6.1) mines the pure graph structure and ignores the edge-weight tuples for

the moment. Later steps will make use of them. As before, we use the subgraphs

obtained as different contexts and perform all further analyses for every subgraph

context separately.

For subgraph mining, we rely on theParSeMiS implementation [PWDW09] of the

CloseGraph algorithm [YH03], which we have already used in Section 5.3.1. We

now use a minimum support value of min(∣Gcorr∣, ∣Gfail∣)/2, where Gcorr and Gfail are

the sets of call graphs of correct and failing executions, respectively (G = Gcorr∪Gfail).

This ensures that no structure occurring in at least half of all executions belonging to

the smaller class is missed. Preliminary experiments have shown that this minimum

support allows for both short runtimes and good results.

The API and Dummy nodes as well as self-loops (⤾) require a special treatment

during subgraph mining:

• API nodes: As almost all methods call API methods, almost every node in a

call graph has a connection to the API node. This increases the number of

edges in a call graph significantly, compared to a graph without API nodes,

possibly leading to scalability issues. At the same time, as almost every node

has an edge to an API node, these edges usually are not interesting for defect

localisation. We therefore omit these edges during graph mining, but keep the

edge-weight tuples for the subsequent analysis step. This is, only nodes and

edges drawn with solid lines in Figure 6.1 are considered.

• Dummy nodes: We treat Dummy nodes in the same way as we treat API
nodes, as their structural analysis with subgraph mining does not seem to be

promising. Dummy nodes tend to be connected to many other nodes as well,

leading to unnecessarily large graphs.

• Self-loops (⤾): Such edges result from recursion at the method level. How-

ever, at the package and class level, a self-loop represents calls within the same

entity, which happens frequently. Therefore, self-loops enlarge the graph sig-

nificantly while not bearing much information. We therefore treat self-loops at

the package and class level as API and Dummy nodes: We omit them during

graph mining and keep the edge-weight tuples for subsequent analysis.
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ex
ec
. sg1 sg2

⋯ classA�B A�C A⤾ B⤾ C⤾ A�API C�API B�C ⋯
(⤾,API )t u v t u v t u v t u v t u v t u v t u v t u v

g1 3 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 1 1 1 ⋯ ⋯ correct
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
gn 9 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 - - - ⋯ ⋯ failing

Table 6.1: Example feature table for class-level call graphs.

Edge-Weight-Based Defect Localisation

When graph mining is completed, we calculate the likelihood that a method contains

a defect (Line 7 in Algorithm 6.1). This is analogous to our approach in Section 5.3.1.

Note that the description of an edge is now easier (i.e., without node ids), as we deal
with totally reduced graphs where node names are unique. This also leads to the

effect that each subgraph has maximally one embedding in a graph. We therefore

do not have to use any average values. Concretely, we assemble a feature table as

follows:

Notation 6.4 (Feature tables for defect localisation at arbitrary levels of abstraction)
Our feature tables have the following structure: The rows stand for all programme ex-
ecutions, represented by their call graphs. For every edge in every frequent subgraph,
there is one column for every edge-weight-tuple element (i.e., a single call frequency t
or tuples of values, depending on the granularity level of the call graph considered,
see Section 6.2). For all edges leading to API and Dummy nodes as well as for
all self-loops (⤾), there are further columns for the edge-weight-tuple elements;
again, for each subgraph separately. The table cells contain the edge-weight-tuple
values, except for the very last column, which contains the class ∈ {correct , failing}.
If a subgraph is not contained in a call graph, the corresponding cells have a null
value (‘-’).

We do not include Dummy nodes in the tables when considering the method level,

as preliminary experiments have shown that this does not lead to any benefit. How-

ever, we include API nodes and self-loops at all levels.

Example 6.4: Table 6.1 is a feature table corresponding to class-level call graphs,

such as the one in Figure 6.1(c). (This graph is execution g1 in the table.) Suppose

that the preceding graph-mining step has found two subgraphs, sg1 (B ← A → C)

and sg2 (B → C). The very first column lists the call graphs g ∈ G. The next column

corresponds to sg1 and edge A → B with the total call frequency t. The following

two columns correspond to the remaining two edge-weight tuple elements u and v
(see Notation 6.2). Then follows the second edge in the same subgraph (A → C)

with its edge-weight tuple (t, u, v). Next, all self-loops (A⤾, B⤾, C⤾) and API
calls (A → API , C → API ) in sg1 are listed. (Dummy nodes would be listed here
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as well, but do not exist in this example.) The same columns for subgraph sg2 and

finally the class of the execution follow. Graph gn does not contain sg2 , which is

indicated by ‘-’.

After assembling the feature table, we employ the information-gain feature-selec-

tion algorithm (InfoGain, see Definition 2.7) in its Weka implementation [HFH+09]

to calculate the discriminativeness of the columns and thus of the different edge-

weight-tuple values. This is again analogous to our approach in Section 5.3.1.

So far, we have derived defect likelihoods for every column in the table. However,

we are interested in likelihoods for software entities (i.e., packages, classes or meth-

ods), and every software entity corresponds to more than one column in general. To

obtain the defect likelihood P (e) of software entity e, we assign every column to the

calling software entity. We then calculate P (e) as the maximum of the InfoGain
values of the columns assigned to e. By doing so, we identify the defect likelihood

of a software entity by its most suspicious invocation. The call context of a likely de-

fective software entity and suspicious columns are supplementary information which

we report to software developers to ease debugging.

Example 6.5: The graphs g1 (see Figure 6.1) and gn in Table 6.1 display similar

values, but refer to a correct and a failing execution. Suppose that method A.a con-

tains a defect with the implications that (1) method B.c will not be called at all, and

(2) that method B.a will be called nine times instead of twice. This is reflected in

columns 2–4, referring to (t, u, v) of A → B in sg1 . t increases from three (1 × B.c,
2 ×B.a) to nine (9 ×B.a), u decreases from two (B.c, B.a) to one (B.a), and v stays
the same – in class A, only method a invokes other methods. The InfoGain measure

will recognise fluctuating values of t and u, leading to a high ranking of class A.

Incorporation of Static Information

The edge-weight and InfoGain-based ranking procedure sometimes has the minor

drawback that two or more entities (i.e., packages, classes or methods) have the same

ranking position. In such cases, we fall back to a second ranking criterion: We sort

such entities decreasingly by their size in (normalised) lines of code (LOC) derived

with LOCC [Joh00]. The rationale is that the size frequently correlates with the

defectiveness likelihood [NBZ06] (see Section 3.1.1). This is, large methods tend to

be more defective.

6.3.2 Hierarchical Procedures

The defect-localisation procedure described in Section 6.3.1 can already guide a man-

ual debugging process: A developer can first do defect localisation at the package

level. She or he can then decide to zoom-in into certain suspicious packages. The

developer would continue with our defect-localisation technique at the class level,
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proceeding with the method level etc. However, it might happen that the developer

zooms-in into an area where no defect is located. In this case, the developer would

backtrack and zoom-in elsewhere etc. This manual process, guided by our technique,

bears the potential that important background knowledge known to the developer can

be easily included.

In this section, we say how to turn the manually-guided debugging process into

semi-automatic procedures for defect localisation. We present a depth-first-search-

based (DFS-based) procedure, a so-called merge-based variant and a parameter-free

variant. We also propose a technique that partitions large packages and classes.

DFS-Based Defect Localisation

Our DFS-based procedure follows the idea to manually investigate the most suspi-

cious method in the most suspicious class in the most suspicious package first. If

this first method turns out to not be defective, we go to the second most suspicious

method in the same class. If all methods in this class are investigated, we backtrack

to the next class etc. We further propose the parameters k, l,m. They limit the num-

ber of software entities to be investigated at each stage, to k packages, l classes and
m methods. Algorithm 6.2 formalises this approach. The parameters k, l,m can be

set to infinity in order to obtain a parameter-free algorithm; at the end of this section

we also present a means to set these parameters.

Algorithm 6.2 iterates through three loops, one for packages, one for classes and

one for methods (Lines 3, 6 and 9). In each loop, the algorithm calculates a defective-

ness likelihood P for the respective software entities. This is, Lines 1–2, 4–5 and 7–8

comprise the graph-mining step (Line 6 in Algorithm 6.1) and the step that calcu-

lates P (Line 7 in Algorithm 6.1), as described in Section 6.3.1. These lines make

use of the generate function (see Definition 6.1), each with the area selection based

on the currently selected software entity at the respective coarser level. Ultimately,

the algorithm presents suspected methods to the user and terminates in case the user

has identified a defect (Lines 10–12).

The DFS-based procedure described works interactively. This is, the potentially

expensive graph-mining step as well as the calculation of P are done only when

needed – the algorithm might terminate before all packages and classes have been

analysed. The suspected methods are presented to the user in an on-line manner.

This avoids long runtimes before a developer actually can start debugging. However,

it is of course possible to skip Lines 10–12 in Algorithm 6.2 and to save the current

method to an ordered list of suspected methods. This leads to a ranking as described

in Section 6.3.1. To ease experiments, we follow this approach in our evaluation.

The proposed approach obviously has the drawback that the user has to set the

parameters k, l,m. When the values are too low, the technique might miss a defect.

Based on our experience, it is not hard to set appropriate parameters based on empir-

ical values derived from debugging other defects in the same project. Furthermore,
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Algorithm 6.2 DFS-Based Defect Localisation.
Input: a set of classified (correct , failing) unreduced call graphs U ,

parameters k, l,m
Output: a defective method
1: SG = frequent_subgraph_mining({generatepackage(u,☆) ∣ u ∈ U})
2: calculate P (package), based on SG
3: for all package ∈ topk(P (package)), ordered decreasingly by P (package) do
4: SG = frequent_subgraph_mining({generateclass(u,{package}) ∣ u ∈ U})
5: calculate P (class), based on SG
6: for all class ∈ topl(P (class)), ordered decreasingly by P (class) do
7: SG = frequent_subgraph_mining({generatemethod(u,{class}) ∣ u ∈ U})
8: calculate P (method), based on SG
9: for all method ∈ topm(P (method)),

ordered decreasingly by P (method ) do
10: present method to the user

11: if method is defective then
12: return method
13: end if
14: end for
15: end for
16: end for
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we will present an automated choice of optimal parameter values in the following

paragraphs.

Merge-Based Variant of DFS-Based Defect Localisation

This technique is an alternative to the DFS-based one. Instead of presenting the

results to the user in an on-line manner, it replaces Lines 10–12 in Algorithm 6.2

with code that saves all methods processed (along with their likelihood P ) in a result

set. Then, right after Line 12 in Algorithm 6.2, it sorts all methods decreasingly by

their defect likelihood.

The drawback of this procedure is that the algorithm has to terminate before one

can actually start debugging. On the other side, we hypothesise that the defect local-

isations obtained by this merge-based variant are better than the ones with the first

approach. We evaluate this hypothesis in Section 6.4.

Concerning the parameters k, l,m, the merge-based variant is more robust. As the

merged result set is sorted at the very end, large parameter values usually do not lead

to worse localisation results. They only affect the runtime.

Parameter-Free Variant of Merge-Based Defect Localisation

As yet another variant, we propose parameter-free defect localisation. Here we set

the parameters k, l,m in the merge-based variant to infinity. This promises to not

miss any defective method. In addition, if one uses this variant several times with a

certain software project, one can use it to empirically set the parameter values. This

allows for an efficient usage of the interactive (on-line) DFS-based procedure without

parameters that are too high or to speed up the regular merge-based variant.

Partitioning Approach

The hierarchical procedures investigated in this dissertation analyse small zoomed-in
call graphs at several granularities. However, a number of software projects – espe-

cially large ones and those with a long history – have imbalanced sizes of packages

and classes. This might lead to large graphs that cause scalability issues, even if we

are considering a zoomed-in subgraph only. It is an open research question how to

overcome such situations. For now, we present a sampling-based partitioning ap-

proach for such cases.

Whenever a certain call graph at the package or class level is too large to be han-

dled, we partition the graph into two (or, if needed more) partitions. We do so by

randomly sampling nodes from the graph. We keep the edges connecting two nodes

within the same partition. As not all edges connect nodes belonging to the same

partition, we would lose a lot of information. To compensate for this effect, we in-

troduce a dummy node Dummypart in each partition, representing all nodes in other
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partitions. We treatDummypart nodes in exactly the same way asDummy nodes, i.e.,

we omit them during graph mining and include the edge-weight-tuple values in the

feature tables.

When graph partitions are generated and Dummypart nodes are inserted, we do de-

fect localisation as described before with each partition separately. Then, similarly to

the merge-based variant, we merge the rankings obtained from the different partitions

and obtain a defectiveness ranking ordered by the P values of the software entities.

This lets us proceed with any manual or automated hierarchical defect localisation

procedure, as described before.

This partitioning approach for large packages and classes has worked well in pre-

liminary experiments. However, there might be cases where a loss of relevant infor-

mation exists, and defect localisation might not work. For instance, think of a defect

which occurs in a certain subgraph context that is distributed over several partitions.

In such situations, the defect-localisation procedure can be repeated with a different

partitioning, either based on the expertise of a software developer or by using another

seed for random partitioning.

6.4 Evaluation with Real Software Defects

We now evaluate our defect-localisation techniques in order to demonstrate their ef-

fectiveness and usefulness for large software projects. After a description of the

target programme and the defects (Section 6.4.1) we explain the evaluation measures

used (Section 6.4.2). Then we focus on defect localisation at the different levels

in isolation (Section 6.4.3). Finally, we evaluate the hierarchical defect-localisation

approaches (Section 6.4.4).

6.4.1 Target Programme and Defects: Mozilla Rhino

For our evaluation we rely on Mozilla Rhino, as published in the iBUGS project

[DZ09]. Rhino is an open-source JavaScript interpreter, consisting of nine pack-

ages, 146 classes and 1,561 methods or ≈ 49k LOC (normalised 37k LOC). iBUGS
provides a number of original defects that were obtained by joining information from

the bug-tracking system of the project with data and source code from its revision-

control system. Furthermore, it contains the original test cases along with the test

oracles. See [DZ07] for details on how the data was obtained. All in all, Rhino from

the iBUGS repository provides a realistic test scenario for defect localisation in a

large software project. At least compared to programmes used in related evaluations

[CLZ+09, DFLS06, LYY+05] and in Section 5.4 of this dissertation that are two or-

ders of magnitude smaller, Rhino can be considered to be a relatively large software

project.
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class 1 8 8 16 20 1 2 15 5 1 1 2 3 3 6.1

method 1 2 2 - 1 1 1 10 3 3 9 10 1 2 3.5

Table 6.2: Defect-ranking positions for the three levels separately.

Concretely, we make use of 14 defects (Table 6.2 lists the defect numbers) from the

iBUGS Rhino repository which have associated test cases and represent occasional
bugs. These defects represent different real programming errors, and they are hard to

localise: They occur occasionally and have been checked-in into the revision-control

system before a failing behaviour has been discovered. See the iBUGS repository

[DZ09] for more details. In addition, iBUGS provides about 1,200 test cases con-

sisting of some JavaScript code to be executed by Rhino, together with the corre-

sponding oracles. As in many software projects, there are only a few failing test cases

for each defect, besides many passing cases. To obtain a sufficient number of failing

cases, we have generated new ones by varying existing ones. In concrete terms, we

have merged JavaScript code from correct and failing test cases.

6.4.2 Evaluation Measures

In order to assess the precision of our techniques, we consider the ranking positions

of the actual defects. These positions quantify the number of software entities (i.e.,

packages, classes and methods) a software developer has to investigate in order to find

the defect. As the sizes of methods can vary significantly, we deem it more adequate

to assess the hierarchical approaches by considering the normalised LOC rather than

only the number of methods involved. We therefore provide the percentage of LOC

to examine in addition to the ranking position. We calculate the percentage as the

ratio of methods that has to be examined in the software project, i.e., the sum of LOC

of all methods with a ranking position smaller than or equal to the position reported,

divided by the total LOC.

6.4.3 Experimental Results (Different Levels)

We now present the defect-localisation results for the three different levels. This

is, we consider complete package-level call graphs and call graphs at the class and

method level, zoomed-in into the correct package (and class). We do so in order to

assess the defect-localisation abilities for every level in isolation.

Table 6.2 contains the experimental results, the ranking positions for all defects

investigated, separately for the three levels. Figure 6.2 provides a graphical repre-

sentation of the same data. It plots the number of defects localised when a developer
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Figure 6.2: The numbers of defects localised when examining a certain number of

packages/classes/methods.

examines a certain number of the top-ranked entities. For example, the third triangu-

lar point from the left means that 10 out of 14 defects are localised when examining

up to three methods.

At the package level, the defective package is ranked at position one or two in 10

out of 14 cases, i.e., localisation is precise. The explanation for such good results at

the coarsest level is the small number of nine packages in Rhino. At the class level,
the results look a little worse at first sight. However, eight defects can be localised

when examining three classes or less (out of 146). Only three defects are hard to

localise, i.e., a developer has to inspect 15 or more classes. At the method level,

13 of the defects can be localised by examining 10 methods or less (out of 1,561),

10 of them with three methods or less. Only one defect, number 137181, cannot

be localised at all. This defect does not affect the call-graph structure nor the call

frequencies.

All in all, the call-graph representations at the different levels – as well as the

localisation technique – localise most defects with a high precision. However, when

using package-level call graphs to manually zoom-in into a package, packages ranked

at position three or four might be misleading. This is not unexpected, as it is well

known that many defects have effects only in their close neighbourhood [DZ07].

This might not affect a package-level call graph at all. The hierarchical approaches,

in particular the merge-based ones, try to overcome this effect by investigating several

packages systematically.

We use the results from this section to set the parameters k, l,m for the hierarchical

approaches. The maximum localisation precision in Figure 6.2 is reached at four

packages, 20 classes or 10 methods. When using these values as parameters, the

hierarchical approaches do not miss any defects they could actually localise while

avoiding to examine more source code than necessary.
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Figure 6.3: The percentage of defects localised when not examining a certain per-

centage of source code.

6.4.4 Experimental Results (Hierarchical)

We now present the results from three experiments with the different hierarchical

approaches (see Section 6.3.2):

E1 DFS-based defect localisation

E2 Merge-based variant of DFS-based defect localisation

E3 Parameter-free variant of merge-based defect localisation

Table 6.3 contains the numerical results in two variants: the ranking positions at the

method level and the corresponding percentage of source code. As before, Figure 6.3

is a graphical representation of this data. Similarly to related work (e.g., [JH05,

LFY+06]), it represents the percentage of defects localised versus the percentage of

source code that does not need to be examined.

In line with our hypothesis (see Section 6.3.2), the merge-based variant (E2) per-

forms better than the pure DFS-based approach (E1) in all but four data points in

Figure 6.3. The average values in Table 6.3 reflect this as well. With the merge-based

variant (E2), one finds a defect by examining 6.1% of the source code on average.

Not surprisingly, parameter-free defect localisation (E3) always performs worse than

or equal to the parameterised variant (E2). However, it still allows a developer to find

defects by inspecting 7.5% of the source code on average, without having to set any

parameters.

Focusing on the best approach, the merge-based variant (E2), two defects are pin-

pointed directly, and six defects can be localised by investigating less than 10 meth-

ods. Only one defect cannot be localised at all (as before), and for only two defects

100 or more methods need to be inspected. All in all, we deem these results very

helpful: On average, almost 94% of the source code can be excluded from manual

debugging, and to find 86% of all defects, one can skip 89% of the code.

103



CHAPTER 6. HIERARCHICAL DEFECT LOCALISATION

ex
p
.

/

defect

85880

114491

114493

137181

157509

159334

177314

179068

181654

181834

184107

185165

191668

194364

∅
E
1

3
9

5
6

-
1
7
0

3
5

1
2
0

6
4

3
5
4

2
9

5
5

1
5

4
5
.1

E
2

5
2

1
2

3
-

4
6

1
1

6
8

9
3

1
0
0

1
5
4

8
2
5

3
7
.1

E
3

5
4

1
8

3
-

4
9

1
1

7
7

1
4

5
1
5
5

2
1
0

8
3
1

4
8
.2

E
1

1
.2
%

4
.5
%

1
0
.3
%

-
2
0
.6
%

2
.6
%

1
.6
%

9
.8
%

5
.1
%

4
.4
%

7
.5
%

3
.1
%

1
1
.6
%

1
.5
%

6
.4
%

E
2

6
.7
%

2
.6
%

5
.4
%

-
1
0
.3
%

2
.6
%

1
.3
%

7
.5
%

0
.3
%

4
.4
%

1
0
.4
%

1
5
.2
%

5
.9
%

6
.7
%

6
.1
%

E
3

8
.2
%

3
.4
%

5
.4
%

-
1
0
.5
%

2
.6
%

1
.3
%

8
.1
%

1
.9
%

4
.5
%

1
7
.8
%

2
0
.1
%

5
.9
%

8
.3
%

7
.5
%

T
ab
le
6
.3
:
H
ierarch

ical
d
efect-lo

calisatio
n
resu

lts.
E
1
:
D
F
S
-b
ased

d
efect

lo
calisatio

n
;
E
2
:
m
erg

e-b
ased

v
arian

t
th
ereo

f;

E
3
:
p
aram

eter-free
d
efect

lo
calisatio

n
.
T
o
p
:
m
eth

o
d
-ran

k
in
g
p
o
sitio

n
;
b
o
tto

m
:
L
O
C
to

ex
am

in
e.

104



6.5. SUBSUMPTION

6.5 Subsumption

In this chapter, we have brought forward call-graph-mining-based defect-localisation

(see Chapter 5) to a hierarchical and scalable procedure. Our evaluation has shown

that it is able to localise defects from the field in a relatively large software project,

Mozilla Rhino. The result from our experiments is that the amount of source code

a developer has to examine manually can be reduced to about 6% on average. This

shows that our call-graph-based approach is able to detect real defects from the field.

Furthermore, the results show that we are able to reduce the source code to be in-

vestigated significantly. However, 6% in Rhino still refer to ≈ 3,000 LOC. When

applied in the field, we expect that the domain knowledge from a software developer

can further reduce the amount of code to be investigated. For instance, a developer

might be able to exclude certain packages from inspection as she or he knows that

the code is not related to the kind of failure.

In Section 5.4.3, we have compared our basic approach using a small programme to

both related approaches/concepts that rely on call-graph mining [CLZ+09, DFLS06,

LYY+05] and well-known and proven approaches from the software-engineering

community [AZGvG09, JHS02, LFY+06]. The experiments gave way to the con-

clusion that our approach performs well compared to the other approaches. It would

certainly be interesting to compare the performance of our hierarchical approach from

this chapter to alternative approaches, too. This could be done within a more compre-

hensive evaluation of defect-localisation techniques with software repositories from

large projects (see Chapter 9). However, regarding the related work based on call-

graph mining, such a comparison would not be possible due to scalability problems.

This would at least not be possible as long as one does not extend these approaches

with a hierarchical procedure similar to the one proposed in this chapter. Regarding

the defect-localisation techniques from software engineering, a comparison would be

difficult. This is as no complete implementations are available (see Section 5.4.3).

Furthermore, at least for the SOBER method [LFY+06], it is unclear if it would

scale for software projects of the size of Rhino. Predicate-based instrumentation is

expensive in terms of runtime, and we are not aware of any evaluations of SOBER
featuring programmes of this size.

As Rhino was released as a benchmark for defect-localisation tools within the

iBUGS suite [DZ09], we expect that more and more evaluations in the future will be

based on Rhino and can be compared to our evaluation. So far we are only aware

of one study featuring the Rhino dataset: The approach based on graphical models

from Dietz et al. [DDZS09] (see Section 3.1.2) has used the same benchmark, but

in an earlier version. However, this approach is rather unknown compared to defect-

localisation techniques such as Tarantula and SOBER. Furthermore, as mentioned

in Section 3.1.2, the results can hardly be compared to ours: The evaluation by the

authors covers only situations where one considers up to 1% of the source code in
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order to find a defect. Besides that, the published results suggest that their approach

might be better than our approach, in this particular situation.

In the following, we aim at improving the defect-localisation precision further.

In Chapter 7, we develop a technique that is able to localise an additional class of

defects, namely those that affect the dataflow of a programme. This also helps in

improving the defect-localisation precision of defects that can already be localised.
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7 Localisation of
Dataflow-Affecting Bugs

An important characteristic of the call-graph-based defect-localisation techniques

discussed so far (both from the related work and introduced in this dissertation) is

that they merely analyse the call-graph structure and the call frequencies. They can

only localise defects which affect the call graph of a programme execution (sim-

plified, the control flow). While this is an important class of defects, Cheng et al.

[CLZ+09] point out that the current techniques are agnostic regarding defects that

influence the dataflow. In this chapter, we present a technique to localise dataflow-
affecting bugs by extending call graphs with information regarding the dataflow. For

the graph representation and the localisation technique we build on concepts from the

preceding chapters.

We first present an introductory overview in Section 7.1. Sections 7.2 and 7.3 then

introduce dataflow-enabled call graphs (DEC graphs) and explain how we use them

for defect localisation. Section 7.4 contains the experimental evaluation. Section 7.5

is a subsumption of this chapter.

7.1 Overview

In this chapter, we present a call-graph-based technique which localises both data-
flow-affecting and call-graph-affecting bugs. Dataflow-affecting bugs influence the

data exchanged between methods. For example, think of a method which wrongly

calculates some value, and which needs to be localised. A call-graph-based tech-

nique can only recognise such a defect if the infected value affects a control state-

ment. Although this happens frequently, it might occur in methods which are actu-

ally defect-free, leading to erroneous localisations. In such cases, the incorporation

of dataflow-related information into the call graphs and thus the analysis process can

increase the localisation precision. In other cases, where defects affect the dataflow

only, the incorporation of dataflow information is the sole possibility to capture such

defects.

The specification of graphs that incorporate dataflow-related information is not

obvious: On the one hand, a call graph is a compact representation of an execution.

On the other hand, dataflow-related information refers to values of many method

calls within one execution. This information needs to be available at a level of de-
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void main() void a()
67

void b()
2 5

int c(int p1, int p2)
3

(a) Call graph with call frequencies (not dataflow enabled).

void main() void a()
67

void b()
2 5

int c(int p1, int p2)
3, 3, 0, 1, 0, 2, 0, 3

(b) Dataflow-enabled call graph (DEC graph).

Figure 7.1: Example call graphs.

tail which allows to locate defects. To illustrate the difficulties, an edge in a call

graph typically represents thousands to millions of method calls. Annotating each

edge with the method-call parameters and method-return values of all invocations

corresponding to it incurs huge annotations and is not practical. In this chapter, we

propose dataflow-enabled call graphs (DEC graphs) which incorporate concise nu-

meric dataflow information.

DEC graphs are augmentations of call graphs with abstractions of method-call pa-

rameters and of method-return values. To obtain DEC graphs, we treat different data

types differently. In particular, we discretise numerical parameter and return values.

Figure 7.1(b) is a DEC graph corresponding to Figure 7.1(a). The call from method b
to method c is attributed with a tuple of integers, containing the total number of calls

and the numbers of calls with parameter and return values falling into different inter-

vals. When the DEC graphs are assembled, we do frequent subgraph mining with the

graphs, not considering the dataflow abstractions for the moment. We then analyse

the tuples of integers assigned to the edges as before with a feature-selection algo-

rithm in the different subgraphs mined separately. Finally, we derive a likelihood of

defectiveness for every method in the programme considered.

All in all, our technique for defect localisation that allows for the localisation of

dataflow-affecting bugs features contributions at different stages of the analysis pro-

cess and in the application domain:

Dataflow-Enabled Call Graphs. We introduce DEC graphs as sketched before,
featuring dataflow abstractions. We describe an efficient implementation of their

generation for Java programmes.
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A Defect-Localisation Approach for Dataflow-Affecting Bugs. We pre-

sent a defect-localisation technique for DEC graphs. Similar to the previous chapters,

it is an application of weighted graph mining, which ultimately identifies defective

methods.

Results in Software Engineering. We demonstrate the appropriateness and

precision of our DEC-graph-based approach for the localisation of defects. In a case

study we evaluate the approach using defects introduced into the Weka machine-

learning suite [HFH+09].

7.2 Dataflow-Enabled Call Graphs

In this section, we introduce and specify dataflow-enabled call graphs (DEC graphs)
and explain how we obtain them. These graphs and their analysis (described in the

following Section 7.3) are the core of our approach to localise dataflow-affecting

bugs.

The basic idea of DEC graphs is to extend edges in call graphs with tuples which

are abstractions of method parameters and return values. Obtaining these abstractions

is a data-mining problem by itself: Huge amounts of values from method-call moni-

toring need to be condensed to enable a later analysis and ultimately the localisation

of defects. We address this problem by means of discretisation.

In the following, we first explain how we derive programme traces from pro-

gramme executions (Section 7.2.1). We then explain the dataflow abstractions and

explain why they are useful for defect localisation (Section 7.2.2). Finally, we say

how we obtain the graphs from programme traces and give a concrete example (Sec-

tion 7.2.3).

7.2.1 Derivation of Programme Traces

As in the preceding chapters, we employ the aspect-oriented programming language

AspectJ [KHH+01] to weave tracing functionality into Java programmes (see Sec-

tion 4.4). For each method invocation, we log call frequency and data values (param-

eters and return values) that occur at runtime. Finally, we use this data to build call

graphs.

When logging data values, we log primitive data types as they are, capture arrays

and collections by their size and reduce strings to their length. Such an abstraction

from concrete dataflow has before successfully been used in the area of software per-

formance prediction, e.g. [KKR10]. Certainly, these simplifications can be severe,

but logging the full data would result in overly large amounts of data. Our evalua-

tion (Section 7.4) primarily studies primitive data types. A systematic evaluation of
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arrays, collections and strings as well as techniques for complex data types is beyond

the scope of this dissertation, but is an interesting direction of future work.

Based on the experience from the previous chapters, we decide to make use of

a total-reduction variant of call graphs. See Section 4.1.1 for details on the total-

reduction scheme.

7.2.2 Dataflow Abstractions

As mentioned before, we use discretisation in order to find an abstraction of method

parameters and return values based on the values monitored. Discretisation gives us

a number of intervals for every parameter and for the return value (we discuss respec-

tive techniques in the following). We then count the number of method invocations

falling into the intervals determined and attribute these counts to the edges.

Notation 7.1 (Edge-Weight Tuples)

An edge-weight tuple in a dataflow-enabled call graph (DEC graph) consists of the
counts of method calls falling into the respective intervals:

(t, pi1
1 , p

i2
1 , ..., p

in1
1 , pi1

2 , p
i2
2 , ..., p

in2
2 , ..., pi1

m, p
i2
m, ..., p

inm
m , ri1 , ri2 , ..., rinr )

where t is the total number of calls, p1, p2, ..., pm are the method-call parameters,
r is the method-return value and i1, i2, ..., inx (nx denotes the number of intervals of
parameter/return value x) are the intervals of the parameters/return values.

The idea is that values referring to an infection tend to fall into different intervals

than values which are not infected. For example, infected values might always be

lower than correct values. Alternatively, infected values might be outliers which do

not fall into the intervals of correct values as well. In order to be suited for defect

localisation, intervals must respect correct and failing programme executions as well

as distributions of values. Generally, it might be counter-productive to divide a value

range like integer into intervals of equal size. Groups of close-by values of the same

class might fall into different intervals, which would complicate defect localisation.

With the formal notation of edge-weight tuples (Notation 7.1), we are now able to

introduce DEC graphs that are totally reduced graphs at the method level:

Notation 7.2 (Dataflow-Enabled Call Graphs (DEC Graphs))

In DEC graphs, every distinct method is represented by exactly one node. When one
method has called another method at least once in an execution, a directed edge
connects the corresponding nodes. These edges are annotated with numerical edge-
weight tuples as introduced in Notation 7.1.

As we will see in the following, DEC graphs can only be derived for a number

of executions, as meaningful discretisations need to be found that hold for all pro-
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gramme executions considered. Figure 7.1(b) is an example DEC graph, we illustrate

its construction in Example 7.1.

7.2.3 Construction of Dataflow-Enabled Call Graphs

We now explain how we derive the edge-weight tuples and construct dataflow-en-
abled call graphs (DEC graphs). The core task for the construction of DEC graphs

is the discretisation of traced data values from a number of executions. The CAIM
(class-attribute interdependence maximisation) algorithm [KC04] suits our require-

ments for intelligent discretisation: It (1) discretises single numerical attributes of a

dataset, (2) takes classes associated with tuples into account (i.e., correct and failing
executions in our scenario) and (3) automatically determines a (possibly) minimal

number of intervals. Internally, the algorithm maximises the attribute-class interde-

pendence. Comparative experiments by the CAIM inventors have demonstrated a

high accuracy in classification settings.

In concrete terms, we let CAIM find intervals for every method parameter and

return value of every method call corresponding to a certain edge. We do so for all

edges in all call graphs belonging to the programme executions considered. We then

assemble the edge-weight tuples as described in Notation 7.1. Example 7.1 illustrates

the discretisation. As we are faced with millions of method calls from hundreds to

thousands of programme executions, frequently consisting of duplicate values, we

pre-aggregate values during the execution. To avoid scalability problems, we then

utilise a proprietary implementation of CAIM which is able to handle large amounts

of data in pre-aggregated form. Note that the dataflow abstractions in DEC graphs

can only be derived for a set of executions, as discretisation for a single execution is

not meaningful.

Example 7.1: We consider the call of method c from method b in Figure 7.1(a)

(execution 1 in Table 7.1) and three further programme executions (executions 2–

4) invoking the same method with a frequency of one to three. Method c has two

parameters p1, p2 and returns value r. A discretisation of p1, p2 and r based

on the example values given in Table 7.1(a) leads to two intervals of p1 and r
(pi11 , p

i2
1 and ri1 , ri2) and three for p2 (pi12 , p

i2
2 , p

i3
2 ). See Table 7.1(b) for the exact

intervals. The occurrences of elements of edge-weight tuples can then be counted

easily – see Table 7.1(c), the discretised version of Table 7.1(a). The edge-weight

tuple of b → c in execution 1 then is as displayed in Figure 7.1(b), referring to

(t, pi11 , pi21 , pi12 , pi22 , pi32 , ri1 , ri2).
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(a) Example call data.

ex
ec
.

p1 p2 r class

1 2 43 12 correct
1 1 44 11 correct
1 3 4 9 correct
2 12 33 8 failing
3 23 27 6 failing
3 15 28 5 failing
3 16 23 7 failing
4 6 2 10 correct
4 11 47 13 correct

(b) Intervals generated.

value intervals

p1
i1 ∶ [1,11.5]
i2 ∶ (11.5,23]

p2
i1 ∶ [2,13.5]
i2 ∶ (13.5,38]
i3 ∶ (38,47]

r
i1 ∶ [5,8.5]
i2 ∶ (8.5,13]

(c) Discretised data.

ex
ec
.

p1 p2 r

1 i1 i3 i2
1 i1 i3 i2
1 i1 i1 i2
2 i2 i2 i1
3 i2 i2 i1
3 i2 i2 i1
3 i2 i2 i1
4 i1 i1 i2
4 i1 i3 i2

Table 7.1: Example discretisation for the call of int c(int p1, int p2).

7.3 Localising Dataflow-Affecting Bugs

We now explain how to derive defect localisations from DEC graphs. This is in prin-

ciple the approach from Section 5.3.1, with adoptions for the dataflow-abstractions as

introduced in Section 7.2. We first give an overview (Section 7.3.1), then we describe

subgraph mining (Section 7.3.2) and the actual defect localisation (Section 7.3.3). Fi-

nally, we introduce three extensions to our approach (Sections 7.3.4, 7.3.5 and 7.3.6).

7.3.1 Overview

As in the earlier chapters, Algorithm 7.1 works with a set of traces T of programme

executions. At first, it assigns a class (correct , failing) to every trace t ∈ T (Line 3),

using a test oracle. Then the procedure generates DEC graphs from every trace t
(Line 4). Next, the procedure derives frequent subgraphs of these graphs which are

used as contexts where defects are located (Line 6). The last step calculates a likeli-

hood of containing a defect for every method m (Line 7). This facilitates a ranking

of the methods, which can be given to software developers. They would then review

the suspicious methods manually, starting with the one which is most likely to be

defective.

7.3.2 Frequent Subgraph Mining

As shown in Line 6 in Algorithm 7.1 and as in the previous chapters, we use fre-

quent subgraph mining to derive subgraphs which are frequent within the call graphs

considered. We use these subgraphs as contexts for a more detailed analysis.
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Algorithm 7.1 Procedure of defect localisation with DEC graphs.

Input: a set of programme traces t ∈ T
Output: a ranking based on each method’s likelihood to be defective P (m)
1: G = ∅ // initialise a set of DEC graphs

2: for all traces t ∈ T do
3: check if t was a correct execution and assign a class ∈ {correct , failing} to t
4: G = G ∪ {derive_dataflow -enabled_call_graph(t)}
5: end for
6: SG = frequent_subgraph_mining(G)
7: calculate P (m) for all methodsm; based on SG

Again, we rely on the ParSeMiS implementation [PWDW09] of CloseGraph
[YH03] for frequent subgraph mining. For the minimum-support value, we use as in

Section 6.3.1min(∣Gcorr∣, ∣Gfail∣)/2, where Gcorr and Gfail are the sets of call graphs of

correct and failing executions, respectively (G = Gcorr ∪Gfail).

7.3.3 Entropy-Based Defect Localisation

Next, we calculate the likelihood that a method contains a defect (Line 7 in Algo-

rithm 7.1). This is analogous to the previous chapters, with the exception that we

now analyse the dataflow annotations, too. To this end, we assemble a feature table

as follows:

Notation 7.3 (Feature tables for defect localisation with DEC graphs)

Our feature tables have the following structure: The rows stand for all programme
executions, represented by their DEC graphs. For every edge in every frequent sub-
graph, there is one column for every edge-weight-tuple element, i.e., one column for
the total call frequencies t and columns for all interval frequencies. These frequen-
cies are normalised: They are divided by the corresponding t in order to obtain the
ratio of calls falling into each interval. The table cells contain the call-frequency
values and the normalised interval-frequency values. The very last column contains
the class ∈ {correct , failing}. If a subgraph is not contained in a call graph, the
corresponding cells now have value 0.

Example 7.2: Table 7.2 is an example table which assumes that two subgraphs were

found in the previous graph mining step, sg1 (main → b → c) and sg2 (main → a).
The first column lists the call graphs g ∈ G. The second column corresponds to sg1
and edge main → b with the total call frequency t. The following eight columns

correspond to the second edge in this subgraph. Besides the total call frequency t,
these columns represent intervals and are derived from the frequencies of parameter

113



CHAPTER 7. LOCALISATION OF DATAFLOW-AFFECTING BUGS
ex
ec
. sg1 sg2 ⋯ classmain�b b�c main�a

t t
p
i1
1

t

p
i2
1

t

p
i1
2

t

p
i2
2

t

p
i3
2

t
ri1
t

ri2
t t

g1 2 3 1.00 0.00 0.33 0.00 0.67 0.00 1.00 67 ⋯ correct
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
gn 2 9 1.00 0.00 0.33 0.00 0.67 0.67 0.33 0 ⋯ failing

Table 7.2: Example feature table. g1 refers to execution 1 from Example 7.1 (Fig-

ure 7.1(b)).

and return values. The very last column contains the class correct or failing . gn does

not contain sg2 , and the corresponding cells have value 0.

After assembling the table, we employ the information-gain-ratio feature-selection

algorithm (GainRatio, see Definition 2.7) in its Weka implementation [HFH+09]

to calculate the discriminativeness of the columns and thus of the different edge-

weight-tuple values. We have already successfully used the GainRatio technique

in Section 5.3.1. In comparison to InfoGain, GainRatio reaches value 1 always

when a column can perfectly tell classes apart. InfoGain only reaches value 1 when
in addition the class distribution is equal (see Section 2.3.2). This is an advantage

of GainRatio compared to InfoGain, as it makes it easier to interpret the value as

a probability. In Section 7.4.3, we evaluate the usage of different feature-selection

techniques.

So far, we have derived defect likelihoods for every column in the table. However,

we are interested in likelihoods for methods m, and every method corresponds to

more than one column in general. This is due to the fact that a method can call several

other methods and might itself be invoked from various other methods, in the context

of different subgraphs. Furthermore, methods might have several parameters and a re-

turn value, each with possibly several intervals. To obtain method likelihood P (m),
we assign every column containing a total frequency t or a parameter-interval fre-

quency pi to the calling method and every return-value-interval frequency ri to the

callee method. We then calculate P (m) as the maximum of the GainRatio values of

the columns assigned to method m. By doing so, we identify the defect likelihood

of a method by its most suspicious invocation and the most suspicious element of its

tuple. Other invocations are less important, as they might not be related to a defect.

The call context of a likely defective method and suspicious data values are supple-

mentary information which we report to software developers to ease debugging.

Example 7.3: The graphs g1 and gn in Table 7.2 display very similar values, but

refer to a correct and a failing execution. Assume that method c contains a defect

which occasionally leads to a wrongly calculated return value. This is reflected in
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the columns ri1
t and ri2

t of b → c in sg1 . The GainRatio measure will recognise

fluctuating values in these columns, leading to a high ranking of method c.

The preceding example has illustrated how our technique is able to localise data-
flow-affecting bugs based on the ratios of executions falling into the different inter-

vals of the method parameters and return values. Furthermore, it localises frequency-
affecting bugs based on the call frequencies in the edge-weight tuples. In addition, our
technique is able to localise most structure-affecting bugs as well: (1) The call struc-
ture is implicitly contained in the feature tables (e.g., Table 7.2) – value 0 indicates

subgraphs not supported by an execution. (2) Such defects are frequently caused by

control statements (e.g., if, for) evaluating previously wrongly calculated values.

Our analysis based on dataflow can detect such situations more directly.

7.3.4 Follow-Up-Infection Detection

Call graphs of failing executions frequently contain infection-like patterns which are

caused by a preceding infection. As in Section 5.3.1, we employ a simple strategy

to detect certain follow-up infections to enhance the method ranking. This strategy

is an extension for Line 7 in Algorithm 7.1: We remove methods within the same

subgraph belonging to a method call m2 → m3 from the ranking when the following

conditions hold: (1) GainRatio(m1 → m2) = GainRatio(m2 → m3) (we consider

the GainRatio values from columns belonging to total call frequencies and parame-

ters), and (2)m1 →m2 →m3 is not part of a cycle within any g ∈ G. (2) is necessary

as the origin of an infection cannot be determined within a cycle. (Note that cycles

can occur in totally reduced graphs but not in Rsubtree graphs as used in Chapter 5.)

However, as in Section 5.3.1, our detection is a heuristic, but it is helpful in practice

(see Section 7.4).

7.3.5 Improvements for Structure-Affecting Bugs

The subgraphs mined in Line 6 in Algorithm 7.1 can be used for an enhanced lo-

calisation of structure-affecting bugs. There are two kinds of such bugs: (1) those

which lead to additional structures and (2) those leading to missing structures. To

deal with both of them, we use the support supp of every subgraph sg in Gcorr and

Gfail separately to define two intermediate rankings. The rationale is that methods in

subgraphs having a high support in either correct or failing executions are more likely

to be defective. We again use the maximum:

Pcorr(m) ∶= max
m∈V (sg),sg∈SG

(supp(sg ,Gcorr))
Pfail(m) ∶= max

m∈V (sg),sg∈SG
(supp(sg ,Gfail))

115



CHAPTER 7. LOCALISATION OF DATAFLOW-AFFECTING BUGS

With these two values, we define a structural score as follows:

Pstruct(m) ∶= ∣Pcorr(m) − Pfail(m)∣
Preliminary experiments have revealed that this kind of structural scoring leads to

better results with the totally reduced graphs used in this chapter than the structural

scoring function used in Section 5.3.2. To integrate Pstruct into our GainRatio-based
method ranking P (m) (in Line 7 in Algorithm 7.1), we calculate the average:

Pcomb(m) ∶= P (m) + Pstruct(m)
2

7.3.6 Incorporation of Static Information
As in the previous chapter, static information can be used to improve the ranking ac-

curacy. The starting point is the handling of methods with the same defect likelihood.

As in related studies [JH05], we use the worst ranking position for all methods which

have the same defect likelihood by default. As an extension, a second static ranking

criterion helps distinguishing methods with the same defect likelihood: We sort such

methods decreasingly by their size in normalised lines of code (LOC)1. Research has

shown that the size in LOC frequently correlates with the defectiveness likelihood

[NBZ06].

7.4 Experimental Evaluation
To investigate the defect-localisation capabilities of our approach, we use the Weka
machine-learning suite [HFH+09], manually add a number of defects to it, instrument

the code and execute it using test-input data. Finally, we compare the defect ranking

returned by our approach with the de-facto defect locations. Overall, we carry out six

experiments:

E1 Application of the new approach featuring DEC graphs,

E2 ——with follow-up-infection detection,

E3 ——with follow-up-infection detection and structural ranking,

E4 the same approach with call graphs that are not dataflow enabled,

E5 ——with follow-up-infection detection and

E6 ——with follow-up-infection detection and structural ranking.

Experiments E4–6 essentially are a comparison to the technique presented in Sec-

tion 5.3 using Rw
total graphs. We use the same localisation technique as with the DEC

graphs for a fair comparison.

1In this dissertation, we use “method lines of code”, the sum of non-blank and non-comment LOC

inside method bodies, as derived with the Metrics eclipse plugin [Sau05].
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We now describe the experimental setting in detail (Section 7.4.1) before we pre-

sent the experimental results (Section 7.4.2). We further present some supplementary

experiments (Section 7.4.3).

7.4.1 Experimental Setting
Weka is a data-intensive open-source application with a total of 19,938 methods

and 255k lines of code (LOC). We now use Weka as our programme under test, as it

heavily deals with data passed between methods, which is not the case in the previous

evaluations in this dissertation. As we have done in Section 5.4.1, we introduce five

different kinds of defects. They are of the same types as the defects in related eval-

uations, e.g., the Siemens programmes [HFGO94], which are often used to evaluate

defect-localisation techniques for C programmes (see Section 3.1.2).

The defect types introduced to Weka are typical programming mistakes, are non-

crashing, occasional and dataflow-affecting and/or call-graph-affecting. In total, we

evaluate ten separate defects (defect 1–10) as well as six combinations of two of

these defects (defects 11–16). These combinations mimic typical situations where a

programme contains more than one defect.

We have introduced all defects in weka.classifiers.trees.Decision-
Stump. This class is the implementation of a decision-tree algorithm which com-

prises 18 methods or 471 LOC. We emphasise that we instrument all 19,938 methods

of Weka, and all of them are potential subjects to defect locations. A typical exe-

cution of DecisionStump involves a total of 30 methods. This is the reason why

we can can analyse this rather large project without any hierarchical procedure (see

Chapter 6).

We execute each defective version of Weka with 90 sets of sampled data from the

UCI machine-learning repository [FA10] and classify correct and failing executions

of the programme. To this end, we first execute a correct reference version of Weka
with all 90 UCI data sets. After that, we execute the defective versions with the same

data. We then interpret any deviation in the output of the two versions as a failure.

The number of correct executions is in the same range as the number of failing ones.

They differ by a factor of 2.7 on average and by 5.3 in the worst case.

7.4.2 Experimental Results
We present the results – the ranking position which pinpoints the actual defect –

of the six experiments for all sixteen defects in Table 7.3. This position quantifies

the number of methods a software developer has to review in order to find the de-

fect. We compare the experimental results pairwise between DEC graphs (E1–3)

and non-DEC graphs (E4–6), as indicated by the arcs. A grey-coloured cell means

worse results, non-coloured cells mean same or improved results. Bold-face rank-

ings indicate same or improved results compared to the preceding row (separately for
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DEC/non-DEC graphs). In programmes with more than one defect (i.e., defects 11–

16), we present numbers corresponding to the defect ranked best. This reflects that

a developer would first fix one defect, before applying our technique again. Some-

times two or more methods have the same defect likelihood. In this case, we use

the worst ranking position for all methods with the same likelihood. This is in line

with the methodology of related studies [JH05]. (We look at the results featuring the

incorporation of static information as described in Section 7.3.6 at the end of this

experimental evaluation section.)

The experiments clearly show the improved defect-localisation capabilities of the

new approach based on DEC graphs. Even without extensions (E1), a top ranking is

obtained in 15 out of 16 cases. We consider a method ranked top when a developer

has to investigate only 3 methods out of the 30 ones actually executed. With non-

DEG graphs (E4), only 6 defects are ranked top. In only 5 out of 48 measurement

points, compared to 26 out of 48 ones, the DEC-graph-based approach is worse than

the reference. DEC graphs have reached a top ranking in 44 cases, whereas non-DEC

graphs had a top ranking in only 28 cases. When directly comparing DEC graphs (E1)

with non-DEC graphs (E4) without extensions, the defect localisation was better in

13 out of 16 cases. Furthermore, looking at the average values (‘∅’), the number of

methods to be investigated could be reduced by more than half.

Using the follow-up detection (E2/5), the ranking could be improved in all cases or

has generated results of the same quality compared to the respective initial approach.

This is remarkable, as the follow-up-infection detection is a heuristic approach. The

use of both the follow-up and structural extension (E3/6) results in further improve-

ments. For DEC graphs (E3) in comparison to (E2), the extension improves the

ranking in 9 cases and lowers the ranking in 3 cases, i.e., better overall results. For

non-DEC graphs (E6) in comparison to (E5), the picture is similar: 10 improved

cases and 3 worse ones.

Regarding the Weka versions with two defects (defects 11–16), defect localisation

always works better on average than for versions with only one defect (E1–10). Our

explanation is that defect localisation has a higher chance to be correct when two

methods have a defect.

Overall, the experiments show a large improvement of the ranking with the new

approach. In combination with follow-up detections and the structural ranking (E3),

results are best. Using the structural ranking leads to a slightly worse ranking for

some defects. The experiments also show that only 1.6 out of the 19,938 methods of

Weka (of which 30 methods are actually executed) must be investigated on average

in order to find a defect (E3). The results promise a strong reduction of time spent on

defect localisation in software-engineering projects.
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CHAPTER 7. LOCALISATION OF DATAFLOW-AFFECTING BUGS

Improved Experimental Results using Static Analysis

When we apply the secondary static ranking criterion (see Section 7.3.6) to our exper-

iments, we can observe an improvement of the average ranking position as follows:

2.3 to 1.9 (E1), 1.9 to 1.7 (E2), 1.6 to 1.5 (E3), 6.1 to 3.6 (E4), 2.8 to 2.6 (E5) and 2.0

to 1.9 (E6). Although the additional static ranking criterion leads to improvements

in all experiments, the non-DEC graphs (E4–6) benefit from the improved ranking to

a larger extent. As feature selection for non-DEC graphs considers fewer columns,

the defect likelihood of methods has fewer different values than for DEC graphs, and

this more frequently leads to equal rankings. However, even after the combination

with static analysis, defect localisation with DEC graphs is always better on average

than with non-DEC graphs. The same observations as described in the preceding

paragraphs hold.

7.4.3 Supplementary Experiments

We now present supplementary experiments that are not intended to demonstrate the

usefulness of DEC graphs, but evaluate selected aspects from the defect-localisation

technique. Concretely, we evaluate the feature-selection technique employed, and we

evaluate one aspect of the feature tables. This aspect concerns the question whether

null values or value 0 in the feature tables leads to better defect-localisation results.

In the preceding chapters, we have used the information-gain technique for fea-

ture selection (InfoGain), while we have used a related technique in this chapter,

information-gain ratio (GainRatio). In Section 5.3, we have already described that

both techniques lead to very similar results. However, gain ratio has the nice prop-

erty that it reaches value 1 always when a column discriminates perfectly. Informa-

tion gain in turn additionally requires a balanced class distribution to reach value 1
(see Section 2.3.2). This property from gain ratio might make it easier for software

developers to interpret the resulting values as a probability to contain a defect.

In the feature tables used for defect localisation, it happens that certain columns

can not be filled with values when a certain call graph (a row in the table) does not

embed a certain subgraph (corresponding to columns). In these situations we have

used a zero (‘0’) in this chapter and in Chapter 5, while we have used a null value (‘-’)
in Chapter 6. Both alternatives are reasonable, as one can argue that a null value refers

to not existing embeddings, and as one can likewise argue that a zero stands for zero

method calls. We now evaluate these two alternatives.

In our supplementary experiments, we focus on defects 1–10 from the previous

evaluation in this chapter. We do so, as defects 11–14 are combinations thereof, and

as we want to study the pure results from defect localisation in the standard case with

one defect. Table 7.4 contains the results from the supplementary experiments (the

first line is taken from Table 7.3).

120



7.5. SUBSUMPTION

exp. / defect 1 2 3 4 5 6 7 8 9 10 ∅
(E1) with GainRatio (as before) 3 3 1 3 2 2 12 3 1 1 3.1

(E1) with InfoGain 4 1 2 4 2 3 12 1 1 1 3.1

(E1) with GainRatio & null values 4 4 5 9 2 7 8 6 1 1 4.7

Table 7.4: Supplementary experimental results.

Regarding GainRatio and InfoGain, the results deviate a little between the indi-

vidual defects. On average, the defect-localisation precision of both alternatives is

equal. This is in line with our results in Section 5.3. Therefore, we consider both

alternatives to be equally suited for defect localisation. However, the GainRatio re-

sults might be a little more intuitive as they are always in the same interval (between

0 and 1).
Regarding the influence of null values instead of zeros in the feature tables, the

picture is different. Despite of defect 7, where the null values lead to better defect

localisations, the variant presented in this chapter (the first line in Table 7.4, referring

to the usage of zeros in the feature tables) performs equal or better. This is clearly

indicated by the increased average values for the null-value variant. The advantage of

zeros can be explained by the fact that tuples containing null values are ignored when

InfoGain orGainRatio is calculated. Therefore, more information that is potentially

important for defect localisation is considered when using zeros.

7.5 Subsumption

The defect-localisation techniques investigated in the preceding chapters of this dis-

sertation are agnostic regarding the dataflow. This is, they are not able to localise

defects that affect the dataflow only, and they have difficulties localising defects that

affect primarily the dataflow. In this chapter, we have extended our call-graph rep-

resentations (see Chapter 4) with abstractions referring to the dataflow, resulting in

dataflow-enabled call graphs (DEC graphs). Further, we have adopted our defect-

localisation scheme (see Chapter 5) to deal with DEC graphs. With these extensions

and adoptions we are able to localise a broader range of defects. DEC graphs can also

be used within a hierarchical defect-localisation scheme as introduced in Chapter 6

without any special challenges.

Besides well defect-localisation results achieved with DEC graphs, there are a

number of possible improvements for the technique:

• As mentioned before in Section 7.2.1, we have primarily studied dataflows

through primitive data types. This is partly caused by the absence of respec-

tive defective programmes featuring other situations. However, a systematic

evaluation of dataflows related to arrays, collections and strings would sub-
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CHAPTER 7. LOCALISATION OF DATAFLOW-AFFECTING BUGS

stantiate the results from this chapter. Furthermore, as mentioned, we currently

do not deal with complex data types. However, one can define heuristics to

incorporate such dataflows. Then, complex data types can be handled with our

technique in the same way as we handle other data types.

• Besides the question which data types to investigate, not all kinds of dataflows

are directly related to method calls. For instance, a dataflow can also be realised

by interchanging data through global variables. Currently, our approach does

not cover such situations. However, they might be integrated into our approach

as follows: Static code analysis could help to identify relevant variables that

are read within a method. They can then be treated like additional method-call

parameters.

• Another starting point for further investigations is the evaluation of different

discretisation algorithms. As described in Section 7.2.3, we have decided to

employ the CAIM algorithm [KC04], as it suits our requirements and has out-

performed a number of alternative algorithms in the evaluations by the authors.

Furthermore, we have achieved well results with this kind of discretisation in

our evaluation (see Section 7.4). However, other supervised discretisation tech-

niques (i.e., discretisation of numerical data with respect to a class) have been

described in the literature [CWC95, DKS95, FI93, Ker92, LS97,WC87,Wu96]

and are in principle suited for our approach, too. Although we do not expect

significant improvements in result accuracy, these alternatives could be evalu-

ated. Besides the discretisation algorithms mentioned, decision-tree-induction

algorithms [BK98, Qui93] with different parametrisations could be used for

this task as well. When applied to one attribute only, they partition the value-

range into intervals containing homogeneous values referring to the same class

with an increased likelihood.
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8 Constraint-Based Mining of
Weighted Graphs

In the previous chapters, we have focused on software-defect localisation with call

graphs. Concretely, we have discussed various data representations (call graphs) and

data-mining techniques for their analysis. For the latter, we have so far followed

a post-processing approach for mining weighted call graphs: We have analysed the

weights in an analysis step that follows subgraph mining. We now investigate an inte-

grated approach for weighted subgraph mining that brings together subgraph mining

and the analysis of edge weights. We do so by proposing a constraint-based approach

and by investigating its difficulties. We show that this approach can generally be used

for various applications, including our software-defect-localisation setting.

In this chapter, we first present an introductory overview in Section 8.1. In Sec-

tion 8.2, we introduce weight-based constraints, and in Section 8.3 we explain their

integration into mining algorithms. Section 8.4 describes application settings. Sec-

tion 8.5 contains the evaluation. Section 8.6 is a subsumption of this chapter.

8.1 Overview

Two general approaches for subgraph mining with weighted graphs are preprocess-
ing and postprocessing. These strategies refer to the analysis of the weights: Are they
analysed before of after the mining of the graph structure? However, both of these

variants have issues: As discussed in Section 3.2.1, discretising numerical values dur-

ing preprocessing might lose important information. Postprocessing (as investigated

in Chapters 5–7) in turn is not always efficient: The mining algorithm first ignores

the weights and might generate a huge number of subgraphs. The second step how-

ever discards most of them. Cheaper ways to perform frequent subgraph mining

with weights are approximate graph mining (see Section 3.2.2) and constraint-based
mining (see Section 3.2.3). In this chapter, we investigate approximate frequent sub-
graph mining with weight-based constraints. This is, we analyse the weights during
the mining of the graph structure. Such a constraint-based approach is promising,

since various higher-level analysis tasks imply meaningful weight-based constraints.

In a classification scenario, to give an example, a natural constraint would demand

weights in the subgraph patterns with a high discriminativeness. While constraints

lead to smaller result sets, we hypothesise that those application-specific constraints
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Figure 8.1: Example graphs.

do not lower the result quality of the higher-level problem. The same principle ap-

plies to our software-defect-localisation scenario. However, not every constraint is

good for pruning in a straightforward way. Literature has introduced anti-monotone
constraints (see Section 2.3.3 and Section 3.2). When using them for pruning, the al-

gorithm still finds all patterns. However, most weight-based constraints are not anti-

monotone, for the following reason: Graph topology and weights are independent of

each other, at least in theory. Example 8.1 illustrates that weight-based properties of

graphs may behave unpredictably when the support changes. Thus, pruning a pattern

at a certain point bears the risk of missing elements of the result.

Example 8.1: Think of an upper-bound constraint defined as a numerical threshold tu
on the average weight of a certain edge a→ b in all supporting graphs: avg(a→ b) ≤
tu. This would prevent mining from expanding a pattern f where avg(a → b) > tu.
Now consider the graph database D consisting of (a)–(c) as well as pattern f in

Figure 8.1. f is annotated with the average weight of the edges in D. If we now

extend f by one edge, resulting in pattern f ′, the average weight increases from 7

to 10. Graph (c) causes this effect. It does not support f ′, and its weight value is

below average.

Despite this adverse characteristic, we study frequent subgraph mining with non-

anti-monotone weight-based constraints in this chapter. The rationale is that certain

characteristics of real-world graphs give way to the expectation that results are good.

Namely, there frequently is a correlation between the graph topology and the weights

in real-world weighted graphs.

Example 8.2: Consider a road-map graph where every edge is attributed with the

maximum speed allowed. Large cities, having a high node degree (a topological

property), tend to have more highway connections (high edge-weight values) than

smaller towns. This is a positive correlation.

In software engineering, a similar observation holds: Think of a node in a weighted

call graph representing a small method consisting of a loop. This method tends to
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8.1. OVERVIEW

invoke a few different methods only (low degree), but with high frequency (high

weights). This is a negative correlation.

McGlohon et al. [MAF08] have studied a number of weighted graphs from differ-

ent domains such as citation networks, social networks and computer-network-traffic

networks. They have observed similar correlations as in Example 8.2. Concretely,

they have formulated the so-called weight power law (WPL) and the snapshot power
law (SPL). The WPL links the total weight of a graph to the number of edges and to

the number of nodes in the graph, each following a power law with exponents that

are specific for a graph dataset. Even more interestingly, similar to our road-map

example, the SPL describes a proportional relationship between the weights of out-

going edges to the out-degree of a certain node (and accordingly for incoming edges).

This is again a power-law relationship with exponents that are specific for the graph

dataset. However, all these observations in real-world graphs are in contrast to the

property sketched before: In theory, weights might be independent from the graph

structure. Therefore, although there is strong evidence that certain relationships be-

tween weights and graph topology exist, such relationships cannot be guaranteed for

arbitrary graph datasets.

Motivated by the examples given in Example 8.2 and the observations from Mc-

Glohon et al. [MAF08] referring to real-world graphs, we propose the following ap-

proach for weighted subgraph mining:

Approach 8.1 (Approximate weight-constraint-based frequent subgraph mining)

Given a database of weighted graphs, find subgraphs satisfying a minimum frequency
constraint and user-defined constraints referring to weights.

Note that the subgraphs returned are unweighted – weights are considered only in

the constraints. In this chapter, we compose a constraint-based mining technique by

integrating constraints referring to weights (that are not anti-monotone) into frequent-

subgraph-mining algorithms. This leads to approximate results. We then investigate

the following problem:

Problem 8.1
What is the completeness and the usefulness of results obtained from approximate
weight-constraint-based frequent subgraph mining?

In concrete terms, we study the degree of completeness of mining results compared

to non-constrained results. To assess the usefulness of an approximate result, we

consider the result quality of higher-level analysis tasks, based on approximate graph-

mining results as input.

To deal with this problem, this chapter features the following points:

Weight-Constraint-Based Subgraph Mining. We say how to extend stan-

dard pattern-growth algorithms for frequent subgraph mining with pruning based on
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weight-based constraints. We do so for gSpan [YH02] and CloseGraph [YH03]

(see Section 2.3.3).

Application to Real-World Problems. Besides our defect-localisation applica-

tion, we describe further data-analysis problems that build on weighted graphs. We

say how to employ weight-constraint-based subgraph mining to solve these problems.

Evaluation. We report on the outcomes of an evaluation featuring different do-

mains and analysis settings. This includes our software-defect-localisation scenario

as well as data and analysis problems from logistics. A fundamental result is that the

correlation of weights with the graph structure indeed exists, and we can exploit it in

real-world analysis problems.

8.2 Weight-Based Constraints
In this section, we define the weight-based constraints we investigate in this chapter.

We do not deal with anti-monotone constraints, since we are interested in investigat-

ing approximate mining results from non-anti-monotone constraints. However, the

techniques would work with anti-monotone constraints as well.

Definition 8.1 (Weight-based measures)

A weight-based measure is a function E(p) → R which assigns every edge of a graph
pattern p a numerical value. The function takes the weights of the corresponding
edges in all embeddings of p in all graphs in a graph database D into account.

Depending on the actual problem, one can assign some numerical or categorical

value such as a class label to each graph. In our software-defect-localisation scenario,

these labels stand for correct and failing executions. Measures like InfoGain and

PMCC make use of such values, in addition to the weights. – If labels are not

unique, subgraphs can be embedded at several positions within a graph. We consider

every single embedding of a subgraph to calculate a measure for an edge.

Definition 8.2 (Weight-based constraints)

A lower bound predicate cl for a pattern p is a predicate with the following structure:

cl(p) ∶= (∃ e1 ∈ E(p) ∶ measure(e1) > tl) ∨ (∣p∣ < sizemin)
An upper bound predicate cu in turn is as follows:

cu(p) ∶= (∄ e2 ∈ E(p) ∶ measure(e2) > tu) ∨ (∣p∣ < sizemin)
A weight-based constraint, applied to a pattern p, is a set containing cl, cu, or both,
connected conjunctively.
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The lower- and upper-bound predicates let the user specify a minimum and max-

imum interestingness based on the measure chosen. We comment on the two predi-

cates as well as on parameter sizemin in Section 8.3. Note that Definition 8.2 requires

to consider all edges of a pattern p. This is necessary, as illustrated in Example 8.1.

The value of the measure of any edge of p can change when the set of graphs sup-

porting p changes.

Weight-Based Measures

Any function on a set of numbers can be used as a measure. We have chosen to eval-

uate three measures with a high relevance in real data-analysis problems: InfoGain,
PMCC and variance. None of these measures is anti-monotone. Two of them,

InfoGain and PMCC , require the existence of a class associated with each graph.

Such classes are available, e.g., in any graph-classification task, and the goal of the

mining process is to derive subgraph patterns for a good discrimination between the

classes. variance does not depend on any class. It is useful in explorative mining

scenarios where one is interested in subgraphs with varying weights.

Example 8.3: If one wants to search for patterns p with a certain minimum variance
of weights, one would specify the measure ‘variance’, the threshold value tl and set

sizemin to 0. The constraint then is ‘∃e ∶ variance(e) > tl’. This could be useful when
analysing logistics data, where one wants to find subgraphs with unbalanced load or

highly varying transportation times.

Although we have dealt with some of the measures in earlier chapters, we give a

short summary of the three measures chosen in the following. Besides these mea-

sures, many further measures from statistics and data analysis can be used similarly

to build weight-based constraints. This includes, say, different attribute-selection

measures known from decision-tree induction [BK98].

Information Gain. The InfoGain (see Definition 2.7) is a measure in the inter-

val [0,1] and quantifies the ability of an attributeA to discriminate between classes in

a dataset (without a restriction to binary classes). In the context of weighted graphs,

A refers to the weights of a certain edge of a subgraph pattern in all embeddings in

all graphs in the graph database D.

Pearson’s Product-Moment Correlation Coefficient (PMCC ). The corre-
lation coefficient is widely used to quantify the strength of the linear dependence

between two variables (see, e.g., [WF05]). In our graph-mining context, these two

variables are the weight of a certain edge in a subgraph pattern in all embeddings in

graphs in D and their binary classes. For our purposes, positive and negative corre-

127



CHAPTER 8. CONSTRAINT-BASED MINING OFWEIGHTED GRAPHS
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Figure 8.2: A pattern-growth search space with conventional isomorphism-based

pruning (s′) and constraint-based pruning (t, new in this dissertation).

lation have the same importance, and we use the absolute value. Then PMCC is in

the interval [0,1] as well.

Variance. The variance quantifies the variation of the values of a random vari-

able Y . It is in the interval [0,∞). In our scenarios, Y is the set of weights of a

certain edge in all subgraph patterns in all embeddings in D.

8.3 Weight-Based Mining
We now describe how to integrate weight-based constraints into pattern-growth-
based frequent subgraph mining. We first focus on vanilla pattern-growth algorithms

before turning to closed mining. The basic idea is to use weight-based constraints –

even if they are not anti-monotone – to prune the search space.

Example 8.4: Figure 8.2 illustrates pattern-growth mining with and without weight-

based constraints. Without such constraints, s′ and its successors are pruned, as s′ is

isomorphic to s. With weight-based constraints, the search is additionally pruned at

pattern t. The dashed edge extends its parent, and t including the new edge violates

a weight-based constraint. Note that it is not necessarily the newly added edge itself

which violates the constraint, but any edge in t.

In concrete terms, we treat the lower and upper-bound predicates cl and cu (as

defined in Definition 8.2) in weight-constraint-based mining as follows:

Approach 8.2
When a pattern p does not satisfy cl or cu, the search is pruned. If it is cu that is not
satisfied, p is added to the mining result, otherwise not.
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Upper Bounds. The rationale behind an upper bound is to speed up mining by

pruning the search when a sufficiently interesting edge weight is found. Therefore,

we use it to prune the search, but save the current pattern. For example, if the user

wants to use the graph patterns mined for classification, a pattern with one edge with

a very discriminative weight will be fair enough. Clearly, larger graphs can still be

more discriminative. Setting the threshold therefore involves a trade-off between

efficient pruning and finding relevant graphs. Section 8.5.3 will show that small

changes in the upper bound do not change the results significantly. It is therefore

sufficient to rely on few different threshold values to obtain satisfactory results.

Lower Bounds. With a lower bound, the user specifies a minimal interestingness.

This bound stops mining when the value specified is not reached. The rationale is that

one does not expect to find any patterns which are more interesting. However, this

might miss patterns. The parameter sizemin (see Definition 8.2) controls this effect.

Pattern-Growth Algorithms

Algorithm 8.1 describes the integration into pattern-growth-based frequent-subgraph-

mining algorithms (see Section 2.3.3). The algorithm works recursively, and the steps

in the algorithm are executed for every node in Figure 8.2. Lines 1–2, 9–13 and 20

are the generic steps in pattern-growth-based graph mining [YH06]. They perform

the isomorphism test (Lines 1–2), add patterns to the result set (Line 9) and extend

the current pattern (Line 11), leading to a set of frequent patterns P . The algorithm

then processes them recursively (Lines 12–13) and stops depth-first search when P
is empty (Line 20).

Lines 4–7 and 15–17 are new in our extension. Instead of directly adding the cur-

rent pattern p into the result set F , the algorithm first checks the sizemin parameter

(Line 4). Only if the minimum size is reached, it calculates the weight-based mea-

sures (Line 5). Line 7 checks the constraints (if cl or cu is not set, the thresholds are 0
or∞, respectively; see Definition 8.2). If they are not violated, or the minimum size

is not reached, the algorithm saves the pattern to the result set (Line 9) and contin-

ues as in generic pattern growth (Lines 12–13). Otherwise, the algorithm prunes the

search, i.e., it does not continue the search in that branch. Note that this step is crit-

ical, as it determines both the speedup and the result quality. As mentioned before,

we always save the last pattern before we prune due to upper bounds (Lines 16–17).

This leads to result sets which are larger than those from standard graph mining when

the constraints are applied in a postprocessing step.

One can realise constraints on more than one measure in the same way, by evaluat-

ing several constraints instead of one, at the same step of the algorithm. As mentioned

before, mining with weight-based constraints produces a result set with unweighted

subgraph patterns. In case one needs weighted subgraphs in the result set, arbitrary
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Algorithm 8.1 pattern-growth(p,D, suppmin, tl, tu, sizemin, F )
Input: current pattern p, databaseD, suppmin, parametersmeasure, tl, tu and sizemin

Output: result set F
1: if p ∈ F then
2: return
3: end if
4: if ∣p∣ ≥ sizemin then
5: calculate weight-based measures for all edges

6: end if
7: if (∃ e1 ∶ measure(e1) > tl ∧ ∄ e2 ∶ measure(e2) > tu) ∨ (∣p∣ < sizemin) then
8: if (algorithm ≠ CloseGraph ∨ p is closed) then
9: F = F ∪ {p}
10: end if
11: P = extend-by-one-edge(p,D, suppmin)
12: for all p′ ∈ P do
13: pattern-growth(p′,D, suppmin, tl, tu, sizemin, F )
14: end for
15: else
16: if ∃ e ∶ measure(e) > tu then
17: F = F ∪ {p}
18: end if
19: end if
20: return
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functions, e.g., the average, can be used to derive weights from the supporting graphs

in the graph database.

Closed Mining

Closed mining returns closed graph patterns only (see Section 2.3.3). When dealing

with weight-based constraints, we deviate from this characteristic. We favour graphs

which are interesting (according to the measures) over graphs which are closed. This

is because the weight-based constraints might stop mining when ‘interesting enough’

patterns are found. Extending the CloseGraph [YH03] algorithm is slightly more

complicated than pattern growth as described before. CloseGraph performs further

tests in order to check for closedness (Line 8 in Algorithm 8.1). In our extension,

these tests are done after weight-based pruning. Therefore, when the search is pruned

due to a constraint, it might happen that the algorithm misses a larger closed pattern.

In this case it adds patterns to the result set which are not closed.

Implementation

The extensions we describe here are compatible with any pattern-growth graph miner.

We for our part use the ParSeMiS graph-mining suite [PWDW09] with its gSpan
[YH02] and CloseGraph [YH03] implementations (see Section 2.3.3).

8.4 Weighted Graph Mining Applied

We now say how to exploit the information contained in the weights of graphs in dif-

ferent application scenarios building on weight-constraint-based frequent subgraph

mining. Concretely, we first review our software-defect-localisation scenario from

Chapter 5 (Section 8.4.1). Then we introduce weighted graph classification (Sec-

tion 8.4.2) and exploitative graph mining (Section 8.4.3).

8.4.1 Software-Defect Localisation

In order to localise defects with our weight-constraint-based frequent-subgraph-mi-

ning technique, we alter the defect-localisation approach from Section 5.3.1 as fol-

lows: Instead of employing two separate analysis steps for frequent subgraph mining

and weight analysis (Lines 6 and 7 in Algorithm 5.1, respectively), we perform a sin-

gle weight-constraint-based subgraph-mining step. Our implementation calculates

the values of the employed measure for all edges in all frequent subgraphs by de-

fault, and we interpret these values as defectiveness likelihoods. We now use the

InfoGain measure instead of gain ratio, as InfoGain leads to results of the same

quality (see Section 7.4.3) and can be calculated more efficiently (see Definition 2.7).
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As in Section 5.3.1, we then use the maximum value from all outgoing edges in all

subgraphs in the result set as the weight-based likelihood of a methodm:

Pw(m) ∶=max(measure({(m,x)∣(m,x) ∈ E ∧ x ∈ V}))
where V and E are the unions of the vertex and edge sets of all subgraph patterns in

the result set, and measure applied to a set calculates the measure of every element

separately.

Similar to our combined approach in Section 5.3.2, we look at the subgraph struc-

tures as well. The result sets mined with weight-based constraints let us define an-

other likelihood based on support. They contain a higher number of interesting graphs

with interesting edges (according to the measure chosen) than a result set from vanilla

graph mining. Therefore, it seems promising not only to give a high likelihood to

edges with interesting weights. We additionally consider nodes (methods) occurring

frequently in the graph patterns in the result set. We calculate this structural likeli-

hood similar to a support in the result set F :

Ps(m) ∶= ∣{f ∣f ∈ F ∧m ∈ f}∣
∣F ∣

The next step is to combine the two likelihoods. We do this by averaging the

normalised values:

P constr
comb (m) ∶= Pw(m)

2 max
n∈V (sg),sg⊆g∈D

(Pw(n)) +
Ps(m)

2 max
n∈V (sg),sg⊆g∈D

(Ps(n))
where n is a method in a subgraph sg of the database of all call graphs D.

For the evaluation of this technique, one can use the measures we have used in

the previous chapters. In particular, a suitable evaluation measure is the amount of

methods or source code a developer has to investigate when the debugging process is

guided by the ranking obtained with P constr
comb .

8.4.2 Weighted-Graph Classification

Subgraph patterns from weighted graphs cannot directly be used for classification.

With unweighted graphs, it is common to use binary feature vectors, indicating which

subgraph is included in a graph [CYH10a]. Every such vector corresponds to a graph

in the graph database. In the following, we explain how we assemble feature vectors

including weights to use them for classification. We use one feature in the vector

for every edge in every frequent subgraph mined. These features are numerical and

stand for the corresponding weight in the original graph. If a graph does not contain

a certain subgraph, the corresponding features are null values.
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Figure 8.3: Two typical fragments from a small unconnected graph in the logistics

dataset.

Example 8.5: We construct a feature vector for the graph in Figure 8.3. Imagine that

there are two frequent subgraphs, A → E → F and L → M . The vector consists of

the values of the edges A→ E, E → F and L→M : (25,29,53).
In cases where labels in the subgraph patterns are not unique, the position of an

edge in a subgraph describes a certain edge. In case of multiple embeddings of a

pattern, we use aggregates of the weights from all embeddings. This encoding allows

to analyse every edge weight in the context of every subgraph.

Finally, any classifier featuring numerical attributes and null values can work with

the vectors to learn a model or to make predictions. Arbitrary evaluation measures for

classification can quantify the predictive quality of the weighted-graph-classification

problem. We for our part use the established measures accuracy and AUC (area

under the ROC curve; see, e.g., [WF05]).

8.4.3 Explorative Mining

Besides automated analysis steps following graph mining, another important appli-

cation is explorative mining. Here, the results are interpreted directly by humans.

One is interested in deriving useful information from a dataset. In our weight-

constraint-based scenario, such information is represented as subgraphs with certain

edge-weight properties in line with the constraints. For instance, the logistics dataset

is well suited for explorative mining. As motivated in Example 8.3, one might be

interested in subgraphs featuring edges with high or low variance.

Evaluation in this context is difficult, as it is supposed to provide information for

humans. Therefore, it is hard to define a universal measure. In this study, we focus

on basic properties of the dataset mined, in particular the size of the subgraphs. This

size can be seen as a measure of expressiveness, as larger subgraphs tend to be more

significant.
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8.5 Experimental Evaluation

We now investigate the characteristics of pruning with several non-anti-monotone

constraints, given the real-world analysis problems described before. We do so by

comparing different application-specific quality criteria with the speedup in runtime

as well as by assessing the completeness of approximate result sets. While other solu-

tions to the real-world problems (without weighted graph mining) might be conceiv-

able as well, studying them to a larger extend is not the concern of this dissertation.

(In Section 5.4.3, we have compared call-graph-based software-defect localisation

to alternative proposals from the literature.) We first describe the datasets in Sec-

tion 8.5.1. We then present the experimental settings in Section 8.5.2 and the results

in Section 8.5.3.

8.5.1 Datasets

Software-Defect Localisation

We investigate the dataset we have already used in Chapter 5 (see Section 5.4.1),

which consists of classified weighted call graphs. It consists of 14 defective versions
of a Java programme. Every version was executed exactly 100 times with different

input data, resulting in roughly the same number of graphs representing correct and
failing executions. The graphs are quite homogeneous; the following numbers de-

scribe one of the 14 datasets. The mean number of nodes is 19.6 (standard deviation

σ = 1.9), the mean number of edges is 23.8 (σ = 4.6), but the edge weights are quite
diverse with a mean value of 227.6 (σ = 434.5).

Logistics

This dataset is the one from [JVB+05]. It is origin-destination data from a logistics

company, attributed with different information. The graphs are as follows: Trans-

ports fall into two classes with full truckload (TL) and less than truckload (LTL). The
transports from the two classes form two sets of graphs, which we label accordingly.

We further arrange transports (edges) with a similar weight of the load in one graph.

Next, as the spatial coordinates in the dataset are fine grained, we combine locations

close to each other to a single node, e.g., locations from the same town. We use the

time needed to get from origin to destination as edge weight. The duration is a crucial

parameter in transportation logistics, and there is no obvious connection to the class

label. The dataset describes a weighted-graph-classification problem, i.e., predict if

a graph contains fully or partly-loaded transports.

Finally, the dataset consists of 51 graphs. The two class labels are evenly dis-

tributed, the mean number of nodes is 234.3 (σ = 517.1), and the mean number of

edges is 616.1 (σ = 2,418.6). As indicated by the high standard deviations, this is
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a very diverse dataset, containing some very large graphs. The large graphs are not

problematic for mining algorithms in this case, as most graphs are unconnected, and

the fragments are quite small. Besides heterogeneous structural properties, the edge

weights with a mean value of 73.2 (σ = 50.9) are quite close to each other. Figure 8.3
is a part of one of the logistics graphs.

8.5.2 Experimental Settings

In our experiments we compare a regular CloseGraph implementation to ours with

weight-based constraints. We evaluate the quality of the results with scenario-specific

evaluation measures (see Section 8.4) along with the runtime. We use a single core of

an AMD Opteron 2218 with 2.6 GHz and 8 GB RAM for all experiments. We mine

with a suppmin of 3 in all experiments with the defect-localisation dataset and with

a suppmin of 8 in all experiments with the logistics data. We set the sizemin to 0 in

all experiments, as we are interested in the pure results with the different lower and

upper bounds.

Software-Defect Localisation

In this scenario, we compare our results based on edge-weight-based pruning with a

vanilla graph-mining technique. To be fair, we repeat the experiments from Chapter 5

with slight revisions1 and the same suppmin (3). We use upper-bound constraints on

the two class-aware measures.

Weighted-Graph Classification

For classification experiments, we use both datasets. In the software-defect-locali-

sation dataset, we predict the class labels correct or failing, in the logistics dataset

the truck-load labels TL and LTL (see Section 8.5.1). We mine the graph databases

with different upper-bound-constraint thresholds on the two class-aware measures

and assemble feature vectors, as described in Section 8.4. We then use them along

with the corresponding class labels in a 10-fold-cross-validation setting with stan-

dard algorithms. In concrete terms, we use the Weka implementation [HFH+09] of

the C4.5 decision-tree classifier [Qui93] and the LIBSVM support-vector machine

[CL01] with standard parameters. For scalability reasons, we employ a standard

chi-squared feature-selection implementation [HFH+09] for dimensionality reduc-

tion before applying LIBSVM.

1In Chapter 5, a zero in the feature vectors indicates that a certain call does not occur. We now use

null values, as this allows for a fair comparison to the new approach.
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Figure 8.4: Experimental results.

Explorative Mining

For explorative-mining experiments, we investigate different lower-bound-constraint

thresholds on variance in the logistics dataset. We compare their quality and runtime

with mining runs without constraints.

8.5.3 Experimental Results

Software-Defect Localisation

Figure 8.4(a) displays the runtimes of InfoGain and PMCC with different upper-

bound thresholds on all 14 versions of the dataset. The InfoGain constraint is always

faster than the execution time without pruning, irrespective of the threshold. For low

threshold values (0.01 to 0.04), InfoGain reaches speedups of around 3.5. PMCC in

turn always performs better than InfoGain and reaches speedups of up to 5.2. This is

natural, as the calculations to be done during mining in order to derive the measures

are more complicated for InfoGain (involving logarithms) than for PMCC . For high

thresholds (0.32 to 0.8) on both measures, the runtime increases significantly. This is

caused by less pruning with such thresholds.

Figure 8.4(c) contains the results in defect localisation without pruning and with

InfoGain and PMCC pruning with various upper bounds. The figure shows the

average position of the defect in the returned ranking of suspicious methods, averaged
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for all 14 versions. The InfoGain almost always performs a little bit (a fifth ranking

position for the two lowest thresholds) better than the baseline (‘no pruning’). As

the baseline approach uses InfoGain as well, we explain this effect by the improved

structural likelihood computation (Ps, see Section 8.4), which takes advantage of the

edge-weight-based pruning. The PMCC curve is worse in most situations. This is as

expected, as we know that entropy-based measures performwell in defect localisation

(see Section 5.3.1). Figure 8.4(d) contains the defect-localisation results for the 14

different versions. We use the average of the three executions with the best runtime

(thresholds 0.01 to 0.04). The figure reveals that the precision of localisations varies

for the different defects, and the curve representing the InfoGain pruning is best in all

but two cases. Concerning the threshold values, observe that small changes always

lead to very small changes in the resulting defect-localisation precision, with mild

effects on runtime.

Next to the defect-localisation results, the performance of classifiers learned with

the software dataset is very high. The values with InfoGain-pruning only vary

slightly for the different thresholds on both classifiers, the SVM (accuracy : 0.982–
0.986; AUC : 0.972–0.979) and the decision tree (accuracy: 0.989–0.994; AUC :

0.989–0.994). Although the variance is very low, higher thresholds yield slightly

higher values in most cases. This is as expected, as less pruning leads to larger

graphs, encapsulating potentially more information. With PMCC , the values are

very close to those before, and one can make the same observation.

Logistics

Figure 8.4(b) shows the runtimes of both measures with different upper-bound thresh-

olds. With an upper bound of up to 0.10 on InfoGain or PMCC , our extension runs

about 2.9 times faster than the reference without pruning. For larger upper bounds

on PMCC , graph mining with our extension still needs only half of the runtime.

InfoGain becomes less efficient for larger values, and for a high threshold of 0.75 it

needs the same time as the algorithm without edge-weight-based pruning. As before,

PMCC performs better than InfoGain.
In the experiments, the performance of classifiers does not depend on the upper

bound, independently of the threshold. We evaluated the same values as in Fig-

ure 8.4(b). For the InfoGain measure, accuracy and AUC of the SVM are 0.902

and 0.898, and they are a little lower with the decision tree: 0.863 and 0.840. For

PMCC , the results are the same for most upper bounds. Only for the bounds 0.50

and 0.75, where less pruning takes place and more subgraphs are generated, the re-

sults are slightly better (decision tree only). Next to classification performance, the

runtimes change only slightly when the threshold values change.

These results demonstrate that the edge weights in this dataset are well suited for

classification. Further, the degree of edge-weight-based pruning did not influence

the results significantly. Therefore, InfoGain and PMCC obviously are appropriate
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Figure 8.5: Experimental results.

measures. With low upper-bound values on both measures, the runtime can be im-

proved by a factor of about 2.9, while the classifiers have almost the same quality.

On the other side, these results also show that the graph structure of this particular

dataset is less important to solve the classification problem than the edge weights.

Besides the performance of classification, we also evaluate the variance measure

in an explorative mining setting on the logistics dataset. Figure 8.5(a) shows the run-

times with several lower bounds along with the corresponding averaged subgraph-

pattern sizes (in edges) in the result set. At the lowest threshold (50), the runtime al-

ready decreases to 73% of the runtime without pruning. At the highest value (5,000),

the runtime decreases to 7% only, which is a speedup of 13. At the same time, the av-

erage subgraph size decreases from 7 to 1. Therefore, values between 250 and 1,000

might be good choices for this dataset (depending on the user requirements), as the

runtime is 3 to 7 times faster, while the average subgraph size decreases moderately

from 7.4 to 6.1 and 4.6.

Completeness of Approximate Result Sets

We now investigate the completeness of our result sets and look at the defect-loca-

lisation experiments with InfoGain-constraints another time. Figure 8.5(b) refers to

these experiments with the approximate constraint-based CloseGraph algorithm, but

displays the sizes of result sets (averaged for all 14 versions). We compare these re-

sults with a non-approximate reference, obtained from a non-constrained execution,

where we remove all subgraph patterns violating an upper bound afterwards. Our

constraint-based mining algorithms save all patterns violating upper bounds before

pruning the search (see Section 8.3). For comparison, we apply the same postpro-

cessing as with the reference and present two variants of constraint-based mining:

The pure variant (‘const.’) and the postprocessed one (‘const. & postproc.’). Com-

paring the two postprocessed curves, for thresholds of 0.64 and larger, constraint-

based result sets have the same size as the reference and are smaller for thresholds of

0.32 and lower. Preliminary experiments with different suppmin values have revealed
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that the difference between the curves decreases (suppmin of around 20 instead of 3)

or vanishes (suppmin of 70). The pure result sets (those we used in the experiments

before), are always larger than closed mining, even if no constraints are applied. To

conclude, our approximate result sets contain less than half of the patterns as the

non-approximate reference, for small suppmin and upper bound values. However,

the pure result sets obtained from constraint-based mining in a shorter runtime (see

Figure 8.4(a)) contain many more interesting subgraph patterns (see curve ‘const.’),

which is beneficial for the applications.

8.6 Subsumption
In this chapter, we have dealt with mining of weighted graphs. We have integrated

non-anti-monotone constraints based on weights into pattern-growth frequent-sub-

graph-mining algorithms. This has led to improved runtime and approximate results.

The goal of our study was to investigate the quality of these results. Besides an

assessment of result completeness, we have evaluated its usefulness, i.e., the result

quality of higher-level real-world analysis problems based on this data. The evalu-

ation shows that a correlation of weights with the graph structure exists and can be

exploited by means of faster analyses. Frequent subgraph mining with weight-based

constraints has proven to be useful – at least for the problems investigated.

Besides the hierarchical approach presented in Chapter 6, weight-constraint-based

approximate mining is another contribution to scalable software-defect localisation.

It allows to perform faster analyses than with our approach presented in Chapter 5.

Alternatively, constraint-based approximate mining allows for analyses of larger soft-

ware projects. At the same time, the results in defect localisation even are a little more

precise.

The constraint-based approximate-mining approach presented in this chapter can

be employed in a hierarchical-mining scenario (see Chapter 6) and with dataflow-

enabled call graphs (DEC graphs, see Chapter 7) without any special challenges.

Both proposals (hierarchical mining and DEC graphs) feature graphs with edges an-

notated with tuples of weights, and our approach can deal with several constraints

at the same time. Therefore, constraints can be defined on all tuple elements. How-

ever, when measures need to be calculated for an increased number of weights, this

will increase runtime. Depending on the number of tuple elements and the nature

of the dataset investigated, the post-processing approaches used in Chapters 6 and 7

might be faster than the constraint-based variant. However, there are also possibil-

ities to increase the efficiency of the implementation presented in this chapter. For

instance, incremental techniques could be used for the calculation of the measures

during mining.
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9 Conclusions and Future
Research Directions

Defect localisation is an important problem in software engineering. In this disser-

tation, we have investigated call-graph-mining-based software defect localisation, a

relatively recent direction of research in defect localisation. Respective approaches

aim at supporting software developers by providing hints where defects might be lo-

cated, in order to reduce the amount of code a developer has to inspect manually.

They rely on the analysis of dynamic call graphs, which are representations from

correct and failing programme executions. In this dissertation, we have investigated

call-graph-mining-based techniques to draw conclusions on their suitability to de-

rive useful defect localisations. To this end, we have extended the state-of-the-art in

call-graph-based defect localisation in various ways. This leads to a broader range

of detectable defects, to an increased localisation precision and finally to the con-

clusion that dynamic call graphs are indeed a suitable data representation for defect

localisation.

From a data-mining point of view, mining dynamic call graphs bears a number of

challenges. Most importantly, graphs need to be represented adequately, techniques

for mining weighted graphs and to derive defect localisations need to be developed,

and respective techniques should scale for the analysis of large software projects.

In this dissertation, we have dealt with all these challenges, resulting in several

call-graph representations, various techniques for defect localisation with weighted

call graphs and a technique for graph mining with weight-based constraints. The

weight-constraint-based technique in particular is not only limited to the software-

engineering application domain, but is a general approach for constraint-based min-

ing of weighted graphs.

In the following, we review the different contributions of this dissertation in more

detail (Section 9.1), discuss the lessons learned (Section 9.2) and present some inter-

esting opportunities of future work (Section 9.3).

9.1 Summary of this Dissertation

At the beginning of this dissertation, we have observed that related call-graph-based

defect-localisation techniques localise structure-affecting bugs well, but have difficul-

ties in localising frequency-affecting bugs (Chapter 5). This is as the graphs analysed
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do not encode the information needed to derive good defect localisations. Therefore,

we have proposed graph representations that include such information: call frequen-

cies annotated as numerical edge weights (Chapter 4). In order to use the respective

graphs for defect localisation, we have developed a technique that analyses both the

graph structure (topology) and the numerical edge weights (Chapter 5). To this end

we have developed a combined approach that consists of frequent subgraph min-

ing and feature selection. Besides this, we have identified that the relatively severe

total-reduction techniques for call graphs used in the related work lead to a loss of

structural information. We have therefore also defined call-graph representations that

are a little larger than totally reduced graphs and encode more structural informa-

tion. In order to be able to localise both kinds of defects, structure-affecting bugs and

frequency-affecting bugs, we have proposed combined approaches for defect locali-

sation.

In a first evaluation (Chapter 5) with defects we have artificially seeded into a small

programme, we have shown that our call-graph representations and analysis tech-

niques are indeed useful for the localisation of defects. Concretely, we have achieved

defect-localisations with a doubled precision compared to related call-graph-based

techniques. We have also shown that our approach can detect defects that other ap-

proaches cannot detect in principle. Further, we have demonstrated that the numerical

information kept with our call-graph representations is important for good results.

Besides the comparison to closely related techniques, we have also compared our

technique to established techniques from software engineering. The result has been,

based on our admittedly relatively small test suite, that our technique performs better

than these approaches in most cases.

The next step in this dissertation has dealt with scalability and with a broader eval-

uation with a real software project and defects from the field (Chapter 6). Based on

the observation that our approach proposed so far has difficulties scaling to larger

software projects (the approaches from the related work are faced with the same

problem), we have proposed a hierarchical procedure: Starting with novel call-graph

representations at coarse levels of abstraction, our approach identifies suspicious re-

gions in the call graphs and then zooms-in into these regions. There, it applies the

same technique to graphs of a more fine-grained abstraction etc. In an evaluation

with real defects from a relatively large open-source project, we have shown that our

new call-graph abstractions, as well as our hierarchical mining procedure, are well

suited to localise defects and scale for larger software projects. In particular, in our

experiments, the source code a software developer has to investigate could be limited

to 6% of the whole software project on average. To our knowledge, this is the first

study applying call-graph mining to a software project of this size.

A principle problem of all call-graph-based approaches for defect localisation –

including our techniques described so far – is that they analyse the graph structure,

but are agnostic regarding the dataflow. Therefore, they are unable to detect defects

that influence the dataflow only. In order to be able to capture those defects as well,
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we have proposed dataflow-enabled call graphs that include abstractions referring

to the dataflow (Chapter 7). As well, we have adopted our mining technique and

have evaluated our procedure with various defects. The result is that considering the

dataflow information allows us to localise defects that cannot be localised otherwise

with techniques relying on call graphs. Furthermore, with these enhancements, we

are able to increase the defect-localisation precision of a number of further defects.

In most parts of this dissertation, we have relied on combined approaches for min-

ing weighted graphs and ultimately for the localisation of defects. This is, caused

by the absence of suitable techniques for mining weighted graphs directly, we have

employed frequent subgraph mining in a first analysis step and feature selection in a

subsequent postprocessing step. At the end of this dissertation (Chapter 8), we have

proposed a unified approach for mining weighted graphs in a single analysis step.

Concretely, we have pushed the postprocessing step into the mining algorithm by

formulating and processing weight-based constraints. These constraints consider the

weights of the graph and allow for pruning the internal search space of frequent sub-

graph mining. This leads to speed-ups of the mining algorithm (e.g., 3.5 times for the

defect-localisation dataset), while obtaining results of a comparable quality. For de-

fect localisation, we have even obtained mining results that are a little more precise.

Besides the application to defect localisation, mining with weight-based constraints

is a universal approach, and we have as well successfully evaluated it with data from

a completely different domain, transportation logistics.

In this dissertation, we have focused on the localisation of defects that occur in

single-threaded sequential programmes. However, there are certain classes of defects

related to the parallel execution of several threads within the same programme. In or-

der to show that call-graph-based techniques are in principle as well suited to localise

certain defects referring to parallel executions, we have performed a first study with a

call-graph-representation for multithreaded programmes and an adopted localisation

technique (Appendix A). The result is that certain defects can be localised well, but

that further investigations will probably lead to more sophisticated call-graph rep-

resentations that allow for the localisation of a broader range of defects related to

parallel executions.

9.2 Lessons Learned

Throughout the research conducted for this dissertation, we have experienced and

learned many things. In the following, we highlight the most important lessons we

have learned.

Data representations are key for good results. Although it seems to be

quite obvious, a data-mining technique can only find patterns, predict behavious or
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localise defects if there is respective evidence in the data. In the context of this disser-

tation, we have investigated several call-graph variations as data representations. Our

experience is that particularly weighted call graphs are key to successfully localise a

broad range of defects (see Chapters 5 and 7). Weighted call graphs are annotated

with numerical information such as call frequencies and dataflow abstractions. Fur-

ther, finding suitable graph topologies is key for both well results (see Chapter 5)

and scalable defect localisation. While frequent subgraph mining does not scale for

method-level call graphs from large software projects, it can be used for graphs at

coarser levels of granularity or for cut-outs of call graphs (see Chapter 6). To sum

up, finding the right data representation and acquiring the data needed to solve the

analysis problem is essential – maybe even more important than the actual analysis

technique. These observations confirm the more general literature on the data-mining

process and on applied data mining [CCK+00, FPSS96, HG08].

Dynamic call graphs are a suitable abstraction for defect localisation.
In this dissertation, we have investigated the suitability of dynamic call graphs for

defect localisation in software. As shown by the evaluations in the different chap-

ters, call-graph mining does lead to defect localisations that are useful. This is, the

amount of code that needs to be investigated manually can be reduced significantly.

Furthermore, the comparative evaluation in Chapter 5 has shown that our technique

can compete with state-of-the-art approaches that do not rely on call graphs, at least

using the test suite considered. More concretely, our technique has outperformed the

other approaches in 12 out of 14 cases in our test suite, and we have shown that there

are types of defects that can be localised with our technique, but not with the other

techniques considered.

Our conclusion that dynamic call graphs are a suitable abstraction for defect local-

isation holds for the call-graph representations considered in this dissertation. This

is, in particular graphs that are annotated with numerical information referring to call

frequencies or dataflow values are well suited – along with an analysis technique that

makes use of both structural and numerical evidence encoded in the graphs.

Even if graph mining is expensive, it leads to good results. For the anal-

ysis of call graphs, we have successfully followed approaches that employ frequent-

subgraph-mining techniques. This allows for a very detailed analysis of numerical

weights in the context of the different subgraphs and for the derivation of structural

scoring measures. However, graph mining is computationally expensive, and it is the

bottleneck of our proposed analysis techniques. Even if instrumenting source code

leads to moderate runtime overheads, and running feature-selection algorithms needs

some time as well, our experience is that graph mining is the most expensive step.

However, with our hierarchical procedures (see Chapter 6), the runtime of graph-

mining algorithms is in the range of a few minutes. We consider such runtimes to
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be acceptable for defect localisation. However, there might be other approaches that

analyse the call-graph representations proposed and lead to good localisation results,

too. Investigating all such possible approaches was not the aim of this dissertation.

Pruning with non-anti-monotone constraints is useful for applications.
Most weight-based constraints are not anti-monotone. Thus, using them for pruning

does not guarantee the completeness of the mining results and leads to approximate

results. This is as there are no guaranteed laws that relate the graph structure (topol-

ogy) to the weights attached to the graphs. As topology and weights are nevertheless

correlated in many real-world graphs [MAF08], we have proposed weight-based con-

straints and have integrated them into frequent-subgraph-mining algorithms. Then,

we have investigated the effect from approximate (incomplete) result sets on real-

world analysis problems. The result is that approximate results have very mild effects

on the final result quality, while achieving well speed-ups in runtime.

9.3 Future Research Directions
There are a number of problems with respect to call-graph-mining-based defect lo-

calisation that we did not address in order to focus the scope of this dissertation.

Some possible extensions of the proposed techniques have already been discussed in

the subsumption sections of the individual chapters. We now highlight some more

general directions of possible future research. They build on – or arise from – the

techniques, results and lessons learned in this dissertation.

Clustering Call Graphs. Caused by the class hierarchy of a grown software

project, class and package sizes frequently are very imbalanced. This can lead to

a limited applicability of the hierarchical mining approach proposed in Chapter 6

and thus to scalability issues. Furthermore, the manual assignment of software en-

tities to larger units, as typically done by the software developer (e.g., of a class to

a package), is often arbitrary. To overcome such problems, it would be helpful to

have natural and balanced hierarchies. Such hierarchies could be obtained by means

of (weighted) graph clustering [AW10a] on call graphs. More concretely, cluster-

ing algorithms could be applied to (sets of) large call graphs. The clusters identified

would then be the first hierarchy level, and the same technique could be applied

within the individual clusters in order to find more fine-grained clusters. Alterna-

tively, hierarchical clustering methods could be employed. Such an approach has

recently been proposed in the context of mining for community structures in (social)

networks [HSH+10]. However, it is unclear if clustering techniques can be identified

that would result in the desired balanced call-graph hierarchies.

From a general data-mining perspective, clustering call graphs would be interesting

as well, because our setting would provide an objective evaluation framework. In
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this context, ‘objective’ means that cluster-analysis results of different quality are

expected to yield results with different defect-localisation precision as well. This is

in contrast to numerous evaluations where domain experts have decided how good

the various clustering results are.

Weighted Subgraph Mining. In this dissertation, we have proposed two princi-

pal approaches for mining weighted call graphs:

1. Postprocessing, i.e., we analyse weighted call graphs by means of a two-step

approach, consisting of frequent subgraph mining and feature selection (Chap-

ters 5–7).

2. Constraint-based mining, i.e., we let the user specify constraints based on

weights and integrate the two steps from the approach mentioned before into a

single analysis step (Chapter 8).

Besides the two approaches mentioned, the discretisation-based approaches pre-

sented in Section 3.2.1 analyse weights in a preprocessing step. As a drawback of

such approaches, we have identified a loss of information, which would possibly lead

to worse defect-localisation results. However, it would be interesting to develop such

a preprocessing-based approach that relies on discretisation and is tailored for lo-

calising defects with weighted call graphs. Even if discretisation leads to a loss of

information, this effect could be minimised by employing supervised discretisation

techniques (see Section 7.5). Further, such an approach might lead to other positive

properties that compensate for this effect, such as decreased runtime.

Besides the techniques based on preprocessing, postprocessing and weight-based

constraints discussed so far – and a small number of further studies presented in Sec-

tion 3.2.1 – weighted subgraph mining has not drawn a lot of attention. In particular,

it has never been studied systematically, and most available approaches deal with very

specific analysis problems for dedicated applications. As respective algorithms could

be used in many domains where weighted graphs are present, and as they promise

to achieve good results, it would be rewarding to systematically investigate weighted

subgraph mining. It would in particular be desirable to propose techniques that com-

plement the ones proposed in this dissertation – specifically weight-based constraints

– and can be applied to a broad field of applications.

Evaluations with Software Repositories from Large Projects. This dis-

sertation contains a number of sections that evaluate the defect-localisation tech-

niques proposed. Some of these evaluations build on relatively small programmes

and on defects that have been seeded artificially into them. However, as it is desir-

able that localisation techniques scale for large programmes, evaluations with larger
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software projects substantiate the results of an evaluation. Further, when an evalua-

tion features defects that actually occurred in a real software project, the evaluation is

much more credible. In Chapter 6, we have presented an evaluation that features both

a real and relatively large project and defects from the field. In order to draw more

substantial conclusions about the effectiveness of defect-localisation techniques – not

only the ones proposed in this dissertation – it would be desirable if future evaluations

would feature even larger software projects, more defects, more kinds of defects and

a broader comparison of different defect-localisation techniques. This would require

to assemble more test suites that fulfil (parts of) the aspects mentioned before and

include enough test cases that lead to both correct and failing executions. Similarly

to the iBUGS repository [DZ07, DZ09] we have used in Chapter 6, such test suites

could be derived from the test cases and repositories of real (open-source) software

projects. Such repositories, in particular bug-tracking systems and revision-control

systems, are used in most large software projects and contain lots of interesting data

to derive test suites for defect-localisation tools.

Controlled User Experiments with Software Developers. All defect-loca-

lisation techniques that have been discussed or have been newly proposed in this

dissertation have been evaluated with quantitative evaluation measures. These mea-

sures refer directly or indirectly to the amount of code a software developer still has

to investigate to find the defect when the respective localisation technique was em-

ployed. Thus, they rely on the assumption that all kinds of defects can be identified

with the same effort when the same hints are given by a defect-localisation technique.

However, this assumption might not hold in reality. This is as developers might have

background knowledge that can hardly be assessed, and different defect-localisation

results that refer to the same amount of source code to be investigated might be more

or less helpful for the developer. Therefore, it would be an interesting experiment

to let software developers having the same level of experience find (and fix) defects

with the aid of different defect-localisation techniques.

Localising Defects in Multithreaded Programmes. This dissertation has fo-

cused on the localisation of defects in single-threaded programmes. However, mul-

tithreaded programmes are a challenging field for defect localisation, as respective

defects are notoriously hard to localise. In Section 4.3, we have already presented

some call-graph representations for multithreaded programmes, and we have con-

ducted a first study on call-graph-based defect localisation in Appendix A. Due to a

number of issues related to multithreaded executions, we have employed a relatively

simple call-graph representation in this study. However, we believe that alternatives

with more sophisticated graph representations that overcome the problems discussed

in Section 4.3 are worth being investigated and might substantiate the encouraging

results. This is motivated by the experiments with single-threaded programmes in
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Chapter 5, where graphs more sophisticated than the total reduction have localised

defects more precisely. Graph representations for multithreaded programmes can,

for instance, include additional information on thread IDs, as well as information

about synchronisation constructs used. Section 4.3 contains some more concrete

ideas for possible call-graph extensions. Further, the study in Appendix A does not

exploit dataflow-related information. A dataflow extension for call graphs from mul-

tithreaded programmes, similar to the one in Chapter 7 for the singe-threaded case, is

likely to make race detection more accurate. This is because unsynchronised threads

incorrectly alter data and affect the values in the dataflow in typical race situations.

All these ideas – as well as further proposals for call-graph representations – are

worth being investigated along with respective defect-localisation techniques to a

larger extend.

To conclude this dissertation, we have developed different techniques for call-

graph-mining-based defect localisation, and we have shown that they are useful. With

the mentioned directions for future work in mind, we feel that more software projects

and data-mining problems will benefit from this dissertation, and that data-mining-

based defect localisation remains an exciting field of research.
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A Multithreading Defect
Localisation

This dissertation focuses on call-graph-based defect localisation in sequential pro-

grammes. Apart from that, debugging multithreaded programmes is an important

and challenging field of research of its own (see Section 3.1.3). We have introduced

call-graph representations for multithreaded programmes in Section 4.3 and present

a first study on localising defects with such graphs in this appendix. It is a variation

from our approach in Chapter 5. The result is that call-graph-based defect locali-

sation can be used to localise typical defects in multithreaded programmes. How-

ever, there are open questions remaining, and we describe some ideas how to extend

call-graph-based defect localisation to adequately deal with defects in multithreaded

programmes (see Section 4.3 and Chapter 9).

In this appendix, we first present an introductory overview in Section A.1. Sec-

tion A.2 introduces a simple approach for defect localisation. Section A.3 evaluates

the approach. Section A.4 shows a detailed example. Section A.5 compares our

technique with other approaches. Section A.6 is a subsumption of this appendix.

A.1 Overview

Debugging multithreaded programmes is an important and challenging problem. De-

bugging aids for multithreaded programmes that are available today focus on iden-

tifying atomicity violations, race conditions or deadlocks (see Section 3.1.3). These

tools are specialised on a particular class of parallel programming errors that are

due to wrong usage of synchronisation constructs. In this appendix, we investigate

further causes, i.e., anomalies in the execution that might produce wrong parallel
programme behaviour. Let us consider another example besides the one presented in

Example 3.1:

Example A.1: Think of a programmer who incorrectly uses a sequential memory

allocator in a multithreaded context in a language without automatic garbage collec-

tion. In rare cases, different threads could allocate overlapping parts of the memory

and perform concurrent accesses, which leads to races. Even though race detectors

would be able to intervene and show a report when a race occurs on a particular

memory location, many tools offer little insight on the real cause of the problem.
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The examples illustrate that there is a need for more general defect-localisation

techniques to deal with such situations. This appendix addresses this problem area

and investigates the usage of call graphs for defect localisation in multithreaded

shared-memory programmes. The approach presented aims to detect a wider range of

defects that affect parallel execution rather than just race conditions. The controlled

experiments with typical applications presented in this appendix show that mining of

call graphs works and that it finds defects in multithreaded programmes.

A.2 Multithreading Defect Localisation
As in the other parts of this dissertation, the overall aim of the defect-localisation

procedure presented here is to derive a ranking of potentially defective methods. We

present an overview of the defect-localisation procedure in Section A.2.1 and then

more details on the localisation technique in Section A.2.2.

A.2.1 Overview

Algorithm A.1 works with a set T of traces obtained from programme executions.

Using a test oracle, the algorithm assigns a class (correct or failing) to every trace t ∈
T . Then the algorithm reduces every t to obtain a new call graph (using the Rmult

total

call-graph reduction, see Section 4.3), which is assigned to a class of either correct

or failing executions. Based on these Rmult
total graphs, the last step calculates for every

method m its likelihood of being defective. The likelihood is used to rank the order

of potentially defective methods.

Algorithm A.1 Overview of call-graph-based defect localisation.

Input: a set of programme traces t ∈ T
Output: a ranking based on each method’s likelihood to be defective P (m)
1: G = ∅ // initialise a set of reduced graphs

2: for all traces t ∈ T do
3: check if t refers to a correct execution,

and assign a class ∈ {correct , failing} to t
4: G = G ∪ {reduce(t)}
5: end for
6: calculate P (m) for all methodsm in G

We employ a test oracle to decide whether a programme execution is correct or not

(Line 3 in Algorithm A.1). Such oracles are specific for the examined programme,

and their purpose is to decide if a certain execution yields any observable problems

(i.e., a failure). An observable problem can be a wrong output or other erroneous

behaviour such as a deadlock.
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a→ b b→ c a→ d ⋯ Class

g1 445 445 7 ⋯ failing
g2 128 256 0 ⋯ correct
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Table A.1: Example of a feature table.

A.2.2 Calculating Defectiveness Likelihoods

We now describe how to calculate the defect likelihood of a method (Line 6 in Algo-

rithm A.1). In contrast to the methods presented in the earlier parts of this disserta-

tion, we now follow a relatively simple approach: We analyse the edge weights of the

Rmult
total call graphs (see Section 4.3) without employing any graph-mining technique.

We do so as the programmes investigated in this appendix are rather small and the re-

sulting call graphs do not deviate much between the different executions. Concretely,

we create a feature table as follows:

Notation A.1 (Feature tables for defect localisation in multithreaded programmes)

The feature tables have the following structure: The rows stand for all programme
executions, represented by their reduced call graphs. For every edge, there is one
column. The table cells contain the edge weights, except for the very last column,
which contains the class ∈ {correct , failing}. If an edge is not contained in a call
graph, the corresponding cells have value 0.

Example A.2: Table A.1 serves as an example. The first column in Table A.1 corre-

sponds to the edge from method a to method b, the second column to the edge from

b to c, and the third column represents an edge from a to d. The last column contains

the class correct or failing . Graph g2 does not possess edge a → d; therefore, the
respective cell has value 0.

We analyse the edge weights in tables as introduced in Notation A.1. Concretely,

we employ the information-gain-ratio measure (GainRatio, see Definition 2.7) in

its Weka implementation [HFH+09] to calculate the strength of discrimination of

columns. We then use these values as defect likelihoods for every column in the

table, i.e., for method calls. However, we are interested in likelihoods for meth-

ods m. As a method can call several other methods, we assign every column to the

calling method. We then calculate the method likelihood P (m) as the maximum of

the GainRatio values of the columns assigned to method m. We use the maximum

because it refers to the most suspicious invocation of a method. Other invocations

are less important, as they might not be related to a defect. However, the informa-

tion which specific invocation within method m is most suspicious (the column with

the highest likelihood) can be important for a software developer to find and fix the

defect. We therefore report this additional information to the user.
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Programme #M LOC #T Source Description

AllocationVector (Test) 6 133 2 [EU04] Allocation of memory

GarageManager 30 475 4 [EU04] Simulation of a garage

Liveness (BugGen) 8 120 100 [EU04] Client-server simulation

MergeSort 11 201 4 [EU04] Recursive sorting imple-

mentation

ThreadTest 12 101 50 [EU04] CPU benchmark

(random divisions)

Tornado 122 632 100 [C+09] HTTP Server

Weblech 88 802 10 [PH+02] Website download/

mirror tool

Table A.2: Programmes considered (#M/#T is the number of methods/threads).

A.3 Experimental Evaluation

We now present the experimental results to validate our approach. This section de-

scribes the benchmark programmes and their defects (Section A.3.1), the experimen-

tal setting (Section A.3.2), the metrics used to interpret the results (Section A.3.3)

and the actual results (Section A.3.4). Section A.5 presents comparisons to related

techniques.

A.3.1 Benchmark Programmes and Defects

Our benchmark contains a range of different multithreaded programmes. The bench-

mark covers a broad range of tasks, from basic sorting algorithms and various client-

server settings to memory allocators, which are fundamental constructs in many pro-

grammes [BMBW00]. As our prototype is implemented in AspectJ, all benchmark

programmes are in Java. Most of these programmes have been used in previous stud-

ies and were developed in student assignments [EU04]. We slightly modified some of

the programmes; for example, in the GarageManager application, we replaced dif-

ferent println() statements with methods containing code simulating the assign-

ment of work to different tasks. Furthermore, we included two typical client-server

applications from the open-source community in our benchmark. These programmes

are larger and represent an important class of real applications. Table A.2 lists all

programmes along with their size in terms of methods and normalised lines of code

(LOC)1.

The authors of the benchmark programmes have seeded known defects into the

programmes. In the two open-source programmes, we manually inserted typical

synchronisation defects. All defects are representative for common multithreaded

1In this appendix, we use the sum of non-blank and non-comment LOC inside method bodies.
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programming errors, e.g., forgotten synchronisation for some variable, and are oc-

casional. The defects cover a broad range of error patterns, such as atomicity viola-

tions/race conditions, on one or several correlated variables, deadlocks, but also other

kinds of programming errors, e.g., originating from non-parallel constructs, that can

influence parallel programme behaviour.

We categorise the defect patterns in the programmes of our evaluation as follows,

according to the classification by Farchi et al. [FNU03]:

1. AllocationVector, defect pattern: “two-stage access”.
Two steps of finding and allocating blocks for memory access are not exe-

cuted atomically, even though the individual steps are synchronised. Thus, two

threads might allocate the same memory and cause incorrect interference.

2. GarageManager, defect pattern: “blocking critical section”.
The defect itself is a combination of an incorrectly calculated value due to a

forgotten switch case. When this situation occurs, no task is assigned to a

particular thread, while a global variable is treated as if work had been assigned.

Thus, fewer than the number of threads recorded as active are active. This

makes the programme deadlock. We illustrate the GarageManager programme

in more detail in Section A.4.

3. Liveness, defect pattern: similar to the “orphaned thread” pattern.

When the maximum number of clients is reached, the next requesting client is

added to a stack. Although this data structure and a global counter are synchro-

nised, it can happen that the server becomes available while the client is added

to the stack. In this case, the client will never resume and will not finish its

task.

4. MergeSort, defect pattern: “two-stage access”.
Although methods working on global thread counters are synchronised, the

variables themselves are not, which might lead to atomicity violations. In par-

ticular, threads ask how many subthreads they are allowed to generate. When

two threads apply at the same time, more threads than allowed are generated.

This can lead to situations in which parts of the data are not sorted.

5. ThreadTest, defect pattern: “blocking critical section”.
The generation of new threads and checking a global variable for the maxi-

mum number of threads currently available is not done correctly in case of ex-

ceptions, which occur randomly in ThreadTest, due to divisions by zero. This

leads to a deadlock when all threads encounter this situation. We classify an

execution as failing when at least one thread encounters this problem, due to

reduced performance.

155



APPENDIX A. MULTITHREADING DEFECT LOCALISATION

6. Tornado, defect pattern: “no lock”.
Synchronisation statements are removed in one method. This leads to a race

condition and ultimately, in the context of Tornado, to unanswered HTTP re-

quests.

7. Weblech, defect pattern: “no lock”.
Removed synchronisation statements as in Tornado, resulting in Web pages

that are not downloaded.

For the Weblech programme, we have two versions: Weblech.orig and Weblech.inj.
In Weblech.inj, we introduced a defect in method run() by removing all synchro-
nized statements (Listing A.1 shows an excerpt of this method with one such state-

ment), aiming to simulate a typical programming error. During our experiments, we

realised that the original non-injected version (Weblech.orig) led to failures in very

rare cases as well. The failure occurred in only 5 out of 5,000 executions; we used a

sample of the correct executions in the experiments. Thus, Weblech.inj contains the
original defect besides the injected defects. With our tool, we were able to localise

the real defect by investigating two methods only. The result is that two global un-

synchronised variables (downloadsInProgress and running) are modified in

run(), occasionally causing race conditions. To fix the defect in order to produce a

defect-free reference, we added the volatile keyword to the variable declaration

in the class header.

1 while ((queueSize() > 0 || downloadsInProgress > 0)
2 && quit == false) {
3 // ...
4 synchronized (queue) {
5 nextURL = queue.getNextInQueue();
6 downloadsInProgress++;
7 }
8 // ...
9 }

10 running--;

Listing A.1: Method void weblech.spider.run() (excerpt).

A.3.2 Experimental Setting
Number of Executions. Our defect-localisation technique requires that we ex-

ecute every programme several times and that we ensure that there are sufficiently

many examples for correct and failing executions. This is necessary since we focus

on occasional bugs (see Chapter 2), i.e., failures whose occurrence depends on input
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data, random components or non-deterministic thread interleavings. Furthermore,

we tried to achieve stable results, i.e., analysing more executions would not lead to

significant changes. We used this criterion to determine the number of executions

required, in addition to obtaining enough correct and failing cases. Table A.3 lists the

number of correct and failing executions for each benchmark programme.

Varying Execution Traces. In order to obtain different execution traces from the

same programme, we rely on the original test cases that are provided in the bench-

mark suite. MergeSort, for instance, comes with a generator creating random arrays

as input data. Some programmes have an internal random component as part of

the programme logic, i.e., they automatically lead to varying executions. Garage-
Manager, for instance, simulates varying processes in a garage. Other programmes

produce different executions due to different thread interleavings that can lead to ob-

servable failures occasionally. For the two open-source programmes, we constructed

typical test cases ourselves; for the Tornado Web server, we start a number of scripts

simultaneously downloading files from the server. For Weblech, we download a num-

ber of files from a (defect-free) Web server.

Test Oracles. We use individual test oracles that come with every benchmark

programme. For the two open-source programmes, we compose test oracles that

automatically compare the actual output of a programme to the expected one. For

example, we compare the files downloaded with Weblech to the original ones.

Testing Environment. We run all experiments on a standard HP workstation

with an AMD Athlon 64 X2 dual-core processor 4800+. We employed a standard

Sun Java 6 virtual machine on Microsoft Windows XP.

A.3.3 Accuracy Measures for Defect-Localisation Results

As in the earlier parts of this dissertation, the locations of the actual defects are

known, so the report of a method containing a defect can be directly compared to

the known location. If there is more than one location which can be altered to fix a

defect, we refer to the position of the first of such methods in the ranking. For cases

as in Weblech.orig where the defect can be fixed outside a method body (e.g., in the

class header), one can still identify methods that can be altered to fix the erroneous

behaviour.

In order to evaluate the accuracy of the results, we report the position of the defec-

tive method in an ordered result list, as before. Similar to the approach investigated

in Chapters 6 and 7, we now always use a second static ranking criterion: We sort the

methods with the same likelihood decreasingly by their size in LOC. We provide the

percentage of LOC to review additionally to the ranking position. This is calculated
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Program
Executions Defect Localisation

#correct #failing Ranking Pos. %LOC to Review

AllocationVector 383 117 1 17.3%

GarageManager 74 26 1 14.2%

Liveness 149 53 1 44.2%

MergeSort 668 332 1 25.9%

ThreadTest 207 193 1 18.8%

Tornado 362 8 14 23.3%

Weblech.orig 494 5 2 23.3%

Weblech.inj 985 15 5 21.8%

Table A.3: Defect-localisation results.

as the ratio of methods that has to be considered in the programme, i.e., the sum of

LOC of all methods having a ranking position smaller than or equal to the position

reported in the table, divided by the total LOC (see Table A.2).

A.3.4 Results

We present our results in Table A.3. The numbers are encouraging: In all five bench-

mark programmes, the defective method is ranked first. The ranking position is lower

only in the two large programmes. However, taking the size of these programmes into

account, the quality of defect localisation is within the same range (see column “LOC

to Review”).

Overall, the average ranking position for methods containing the defects is 3.3.

Nevertheless, as Table A.2 shows, a developer only has to review just 7.1% of all

methods to find the defects or 23.6% of the normalised source code, which is low.

In other words, a developer has to consider less than a quarter of the source code

of our programmes in order to find a defect in the worst case. This reduces the

percentage of methods (code) to review by a factor of seven (code: more than by half)

when compared to an average expected amount of 50% of methods (code) to review.

Note that these all values are obtained without any possible prior knowledge of the

developer, which might further narrow down the code to be inspected. Furthermore,

they are maximum values, for two reasons: (1) Usually not all lines of a method

need to be inspected, in particular due to information reported additionally which

call within a method is most suspicious. (2) The methods ranked highest frequently

are good hints for the defect, even if the defective method itself is ranked lower. This

is as we know from our experience that non-defective methods that are ranked high

often are in the vicinity of the defective method, e.g., they might be invoked from the

defective method.
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Figure A.1: The percentage of defects localised when not examining a certain per-

centage of source code.

Figure A.1 provides an illustration of the percentage of localised defects versus the

percentage of source code that does not need to be examined. In our case, it shows

that we can skip the inspection of 50% of the code and still find 100% of the defects.

If we skip inspecting 70%, we would still find more than 80% of the defects. This is

a significant gain in programmer productivity.

A.4 A Detailed Example

We now illustrate a typical defect and the process of its localisation with our approach

using excerpts form the GarageManager programme [EU04]:

The Defect. In our example, the calculation of the taskNumber variable can

produce a negative value, which is read in method GoToWork() (see Listing A.2)

to calculate its modulo-8 value, which is then fed into a switch-case block. This

block, however, expects values between 0 and 7. Negative values can result when

Java calculates the modulo operation on a negative number. There are two alternative

positions where a developer can modify the code to fix the bug: (1) The switch-
case block, by adding negative cases or a default case; (2) The parts of the source

code where taskNumber is calculated (method SetTaskToWorker()).

From the Defect to an Infection. We now look at the call graph from a fail-

ing execution in more detail, shown in Figure A.2. The call of run() generates

five threads: Four “worker” threads calling methods WaitForManager(), GoTo-
Work() and PrintCard() and one “manager” thread calling the remaining meth-

ods. In WorkingOn() (a defective method), the programme state becomes infected:

Three threads evaluate their switch statement to 0, 1 and 7, but the fourth thread has

a negative value, thus causing the thread not to call any further methods.
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1 switch (taskNumber % 8) {
2 case 0:
3 WorkingOn("Cleaning", 1000);
4 break;
5 // similar for cases 1 to 5...
6 case 6:
7 WorkingOn("Working on breaks", 2200);
8 break;
9 case 7:

10 WorkingOn("Fixing engines", 2400);
11 break;
12 }

Listing A.2: Method void GoToWork() (excerpt).

From an Infection to a Failure. The aforementioned infection causes the fourth

thread not to call WorkerFinishedTask(). This method decreases a variable of

the global status object. This object is queried by AllWorkersFinished() in

method run() (see Listing A.3). AllWorkersFinished()will never be true,
as status will always indicate that only three out of four “worker” threads have

finished their tasks. This causes an infinite loop in run(). We manually stopped the

loop after 3,574 iterations. In other words, the infection has caused a deadlock, an

observable programme behaviour, which we consider a failure.

1 synchronized (status) {
2 System.out.println("Manager arrived !");
3 status.ManagerArrived();
4 }
5 boolean tasksNotFinished = true, printedOutput = false;
6 while (tasksNotFinished) {
7 printedOutput = PrintOutput(printedOutput);
8 synchronized (status) {
9 if (status.AllWorkersFinished())

10 tasksNotFinished = false;
11 else
12 yield();
13 }
14 }

Listing A.3: Method void run() (excerpt).
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Localising the Defect. In our experiments, our approach has found the three

methods GoToWork(), WorkingOn() and run() (ordered by increasing rank-

ing position) to be most likely defective. Thus, the defect was pinpointed directly.

The high likelihood for WorkingOn() is due to a follow-up infection, as it is al-

ways called from GoToWork(). The run() method has a high likelihood as well,

caused by the huge number of method calls in the infinite loop, compared to correct

executions. Both methods are inherently connected to the defect.

A.5 Result Comparisons with Related Work

We now compare our approach with two applicable techniques from the related work.

Our experiments with the IBM MulticoreSDK [QDLT09] applied to all programme

versions from our evaluation (see Section A.3) reveal that it is not able to find any of

the defects. From the eight versions, the MulticoreSDK incorrectly classified seven

versions as defect-free, while producing a false-positive warning for the eighth ver-

sion.

We applied FindBugs [AHM+08] to all programmes in our benchmark. We ob-

served that FindBugs did not directly report any of the defects. At the same time,

FindBugs produces false-positive warnings: On average, there are 5.8 warnings per

programme that on average affect 4.5 different methods. The warnings refer to the

correct method names in just four out of eight programmes. Further, the warnings

are not prioritised, so a developer would have to inspect the entire code of all meth-

ods with warnings. In each of the four programmes, inspection amounts to 47.5%,

36.8%, 29.2% and 29.2% of the source code, respectively. If FindBugs was im-

proved by a method ranking technique, such as inspecting larger methods first (as in

this appendix), then developers could save time finding the respective defects and re-

duce the amount of reviewed code to 14.2%, 25.9%, 25.4% and 25.4%, respectively.

In contrast, inspecting up to 25.9% of the source code with our technique finds seven

out of the eight defects (see the last column in Table A.3). These results are better

than FindBugs. Compared to our approach, FindBugs does not offer the developer

any hint on finding the remaining four defects, as they are not reported at all.

A.6 Subsumption

In this appendix, we have presented and evaluated a variation from our frequency-

based defect-localisation approach (see Section 5.3.1) for multithreaded programmes.

Although the call-graph variations investigated (see Section 4.3) are rather simple, we

were able to achieve well results in localising defects in multithreaded programmes.

The evaluation shows that mining call graphs is an effective approach to detect a wide

range of errors that affect parallel programme behaviour. These errors include race
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conditions, deadlocks and errors originating from the wrong usage of non-parallel

language constructs. This is in contrast to existing multithreading debugging aids

that concentrate on detecting specific situations such as race conditions. Notably, the

approach presented was able to localise a previously unknown (and undocumented)

defect in an open-source tool. However, certain defects in a multithreaded environ-

ment might not be captured by the approach presented in this appendix. Extensions

to the call-graph representations and to the mining technique might help to broaden

the range of detectable defects (see Section 4.3 and Chapter 9).
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