144 research outputs found

    Quantitative MRI of Cerebral Arterial Blood Volume

    Get PDF
    Baseline cerebral arterial blood volume (CBVa) and its change are important for potential diagnosis of vascular dysfunctions, the determination of functional reactivity, and the interpretation of BOLD fMRI. To quantitative measure baseline CBVa non-invasively, we developed arterial spin labeling methods with magnetization transfer (MT) or bipolar gradients by utilizing differential MT or diffusion properties of tissue vs. arteries. Cortical CBVa of isoflurane-anesthetized rats was 0.6 – 1.4 ml/100 g. During 15-s forepaw stimulation, CBVa change was dominant, while venous blood volume change was minimal. This indicates that the venous CBV increase may be ignored for BOLD quantification for a stimulation duration of less than 15 s. By incorporating BOLD fMRI with varied MT effects in a cat visual cortical layer model, the highest ΔCBVa was observed at layer 4, while the highest BOLD signal was detected at the surface of the cortex, indicating that CBVa change is highly specific to neural activity. The CBVa MRI techniques provide quantified maps, thus, may be valuable tools for routine determination of vessel viability and function, as well as the identification of vascular dysfunction

    Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)—Part B: Effects of Anesthetic Agents, Doses and Timing

    Full text link
    In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable

    Development of Pharmacological Magnetic Resonance Imaging Methods and their Application to the Investigation of Antipsychotic Drugs: a Dissertation

    Get PDF
    Pharmacological magnetic resonance imaging (phMRI) is the use of functional MRI techniques to elucidate the effects that psychotropic drugs have on neural activity within the brain; it is an emerging field of research that holds great potential for the investigation of drugs that act on the central nervous system by revealing the changes in neural activity that mediate observable changes in behavior, cognition, and perception. However, the realization of this potential is hampered by several unanswered questions: Are the MRI measurements reliable surrogates of changing neural activity in the presence of pharmacological agents? Is it relevant to investigate psychiatric phenomena such as reward or anxiolysis in anesthetized, rather than conscious animals? What are the methods that yield reproducible and meaningful results from phMRI experiments, and are they consistent in the investigations of different drugs? The research presented herein addresses many of these questions with the specific aims of 1) Developing pharmacological MRI methodologies that can be used in the conscious animal, 2) Validating these methodologies with the investigation of a non-stimulant, psychoactive compound, and 3) Applying these methodologies to the investigation of typical and atypical antipsychotic drugs, classes of compounds with unknown mechanisms of therapeutic action Building on recent developments in the field of functional MRI research, we developed new techniques that enable the investigator to measure localized changes in metabolism commensurate with changing neural activity. We tested the hypothesis that metabolic changes are a more reliable surrogate of changes in neural activity in response to a cocaine challenge, than changes observed in the blood-oxygen-level-dependent (BOLD) signal alone. We developed a system capable of multi-modal imaging in the conscious rat, and we tested the hypothesis that the conscious brain exhibits a markedly different response to systemic morphine challenge than the anesthetized brain. We identified and elucidated several fundamental limitations of the imaging and analysis protocols used in phMRI investigations, and developed new tools that enable the investigator to avoid common pitfalls. Finally, we applied these phMRI techniques to the investigation of neuroleptic compounds by asking the question: does treatment with typical or atypical antipsychotic drugs modulate the systems in the brain which are direct or indirect (i.e. downstream) substrates for a dopaminergic agonist? The execution of this research has generated several new tools for the neuroscience and drug discovery communities that can be used in neuropsychiatric investigations into the action of psychotropic drugs, while the results of this research provide evidence that supports several answers to the questions that currently limit the utility of phMRI investigations. Specifically, we observed that metabolic change can be measured to resolve discrepancies between anomalous BOLD signal changes and underlying changes in neural activity in the case of systemically administered cocaine. We found clear differences in the response to systemically administered morphine between conscious and anesthetized rats, and observed that only conscious animals exhibit a phMRI response that can be explained by the pharmacodynamics of morphine and corroborated by behavioral observations. We identified fundamental and drug-dependent limitations in the protocols used to perform phMRI investigations, and designed tools and alternate methods to facilitate protocol development. By applying these techniques to the investigation of neuroleptic compounds, we have gained a new perspective of the alterations in dopaminergic signaling induced by treatment with antipsychotic medications, and have found effects in many nuclei outside of the pathways that act as direct substrates for dopamine. A clearer picture of how neuroleptics alter the intercommunication of brain nuclei would be an invaluable resource for the classification of investigational antipsychotic drugs, and would provide the basis for future studies that examine the neuroplastic changes that confer therapeutic efficacy following chronic treatment with antipsychotic medications

    The (un)conscious mouse as a model for human brain functions: key principles of anesthesia and their impact on translational neuroimaging

    Get PDF
    In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca(2+) imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species

    A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses

    Get PDF
    The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature

    A systematic review of physiological methods in rodent pharmacological MRI studies

    Get PDF
    Rationale: Pharmacological magnetic resonance imaging (phMRI) provides an approach to study effects of drug challenges on brain processes. Elucidating mechanisms of drug action helps us to better understand the workings of neurotransmitter systems, map brain function or facilitate drug development. phMRI is increasingly used in preclinical research employing rodent models; however, data interpretation and integration are complicated by the use of different experimental approaches between laboratories. In particular, the effects of different anaesthetic regimes upon neuronal and haemodynamic processes and baseline physiology could be problematic. Objectives: This paper investigates how differences in phMRI research methodologies are manifested and considers associated implications, placing particular emphasis on choice of anaesthetic regimes. Methods: A systematic review of rodent phMRI studies was conducted. Factors such as those describing anaesthetic regimes (e.g. agent, dosage) and parameters relating to physiological maintenance (e.g. ventilatory gases) and MRI method were recorded. Results: We identified 126 eligible studies and found that the volatile agents isoflurane (43.7 %) and halothane (33.3 %) were most commonly used for anaesthesia, but dosage and mixture of ventilatory gases varied substantially between laboratories. Relevant physiological parameters were usually recorded, although 32 % of studies did not provide cardiovascular measures. Conclusions: Anaesthesia and animal preparation can influence phMRI data profoundly. The variation of anaesthetic type, dosage regime and ventilatory gases makes consolidation of research findings (e.g. within a specific neurotransmitter system) difficult. Standardisation of a small(er) number of preclinical phMRI research methodologies and/or increased consideration of approaches that do not require anaesthesia is necessary to address these challenges

    Development and Localization of Spike-Wave Seizures in Animal Models

    Get PDF
    Animal models allow for detailed investigation of neuronal function, particularly invasive localization and developmental studies not possible in humans. This thesis will review the technical challenges of simultaneous EEG-fMRI, and epileptogenesis studies in animal models, including issues related to anesthesia, movement, signal artifact, physiology, electrode compatibility, data acquisition, and data analysis, and review recent findings from simultaneous EEG-fMRI studies in epilepsy and other fields. Original research will be presented on the localization of neuronal networks involved during spike-and-wave seizures in the WAG/Rij rat, a model of human absence epilepsy. Simultaneous EEG-fMRI at 9 Tesla, complimented by parallel electrophysiology, including Multiple Unit Activity (MUA), Local Field Potential (LFP), and Cerebral Blood Flow (CBF) measurements were employed to investigate the functioning of neuronal networks. This work indicates that while BOLD signal increases in the Somaotsensory Cortex and Thalamus during SWD are associated with MUA, LFP, and CBF increases, BOLD signal decreases in the Caudate are associated with CBF decreases and relatively larger increase in LFP and smaller increase in MUA. Complimenting the localization studies, original research will also be presented on the development of spike-and-wave epilepsy in the C3H/Hej mouse, a model which will allow for more advanced genetic and molecular investigation. This work shows seizure development progressing though immature, transitional, and mature stages

    Normothermic mouse functional MRI of acute focal thermostimulation for probing nociception

    Get PDF
    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus
    • …
    corecore