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Abstract: 

Animal models allow for detailed investigation of neuronal function, particularly 

invasive localization and developmental studies not possible in humans.  This thesis will 

review the technical challenges of simultaneous EEG-fMRI, and epileptogenesis studies 

in animal models, including issues related to anesthesia, movement, signal artifact, 

physiology, electrode compatibility, data acquisition, and data analysis, and review recent 

findings from simultaneous EEG-fMRI studies in epilepsy and other fields. 

Original research will be presented on the localization of neuronal networks 

involved during spike-and-wave seizures in the WAG/Rij rat, a model of human absence 

epilepsy.  Simultaneous EEG-fMRI at 9 Tesla, complimented by parallel 

electrophysiology, including Multiple Unit Activity (MUA), Local Field Potential (LFP), 

and Cerebral Blood Flow (CBF) measurements were employed to investigate the 

functioning of neuronal networks.  This work indicates that while BOLD signal increases 

in the Somaotsensory Cortex and Thalamus during SWD are associated with MUA, LFP, 

and CBF increases, BOLD signal decreases in the Caudate are associated with CBF 

decreases and relatively larger increase in LFP and smaller increase in MUA.   

Complimenting the localization studies, original research will also be presented 

on the development of spike-and-wave epilepsy in the C3H/Hej mouse, a model which 

will allow for more advanced genetic and molecular investigation.  This work shows 

seizure development progressing though immature, transitional, and mature stages. 
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1. Introduction to the use of Simultaneous EEG-fMRI: 
 

Neuroscientists have long sought techniques for investigating the neuronal 

mechanisms of normal behavior and disease.  The uniquely enigmatic nature of the brain 

and the difficulties inherent to its study limited early physiological investigations of brain 

function.  For example, although able to provide great insight into the localization of 

brain function, lesion studies are inherently destructive, and thus reveal limited 

information about brain functioning in situ.  Techniques for the noninvasive monitoring 

of brain function were needed.  The advent of recording electrical brain activity via 

electroencephalography (EEG) opened new avenues for the noninvasive study of brain 

activity (Berger 1929).  For many years, neuroimaging lagged behind 

electrophysiological techniques.  However, early studies of cerebral hemodynamic 

responses showed that brain function could be related to measurements of blood flow.  

Seizures occurring during neurosurgery have long been known to produce a focal blood 

flow increase in the cerebral cortex (Horsley 1892; Penfield 1933), and early 

measurements using intracarotid sensors likewise demonstrated increased cerebral blood 

flow during seizures (Gibbs, Lennox et al. 1934).  Advancements in electrical recording 

and functional imaging technology in recent decades have now made it possible to 

noninvasively study the brain at sufficiently high temporal and spatial resolutions to 

reveal fundamental neuronal processes in great detail. 

EEG measures extracellular electrical field potentials generated by populations of 

cortical neurons, and can capture brain electrical activity with excellent temporal 

resolution.  Although EEG provides high temporal resolution, it is limited in its spatial 

sampling and cannot completely characterize neuronal activity throughout the entire 
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brain.  The spatial resolution of EEG is not sufficient to reveal the contribution of 

individual brain regions to neuronal function.  The electrical signal recorded in the EEG 

reflects a spatial summation of the underlying cortical electrical activity, and does not 

sample subcortical areas; thus EEG with scalp electrodes may not detect deeply 

originating discharges (Gloor 1985).  

Neuroimaging techniques offer a comprehensive spatial sampling of the brain and 

can look deep into subcortical structures noninvasively.  Blood oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI) is a powerful tool, with excellent 

spatial resolution, for the noninvasive study of hemodynamic and metabolic changes 

during brain activity.  BOLD-fMRI signals depend on blood oxygenation and cerebral 

blood flow, the specific implications of which we will discuss, and can therefore provide 

useful information about neuronal activity (Ogawa, Lee et al. 1990; Ogawa, Menon et al. 

1993; Ogawa, Menon et al. 1998).    

The advent of fMRI has seen an enormous interest in utilizing the technique to 

study normal and abnormal brain function in humans.  Furthermore, simultaneous EEG-

fMRI is an ideal method to study the interdependent neuronal, neuroenergetic and 

hemodynamic changes that occur during brain activity.  However, human fMRI studies of 

pathological brain processes have been limited for several reasons.  First, because fMRI 

techniques are highly sensitive to motion, many human studies are limited to the study of 

neuronal processes with limited movement, such as the spike-wave seizures associated 

with absence epilepsy, the interictal (between seizures) period of other epilepsy 

syndromes, or purely cognitive tasks.  Second, human studies are inherently less well 
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controlled than animal models due to intersubject variability, while in animal models 

consistent experimental methods and invasive techniques can be used.  

Animal models offer the opportunity to fully utilize the power of EEG-fMRI 

methods to noninvasively record normal and abnormal activity throughout the brain.  The 

ictal (during seizure) activity of multiple seizure types can be investigated using animal 

models, and these studies are not limited by movement as animals can be studied under 

anesthetized, paralyzed and ventilated conditions.  Variables affecting brain activity can 

be better controlled in animals, such as the onset and type of seizure, and the induction 

and type of anesthesia.  Furthermore, invasive studies of electrical, hemodynamic, and 

histological properties can be performed in animals to relate fMRI signals to underlying 

neuronal activity.  Thus, simultaneous EEG-fMRI studies of animal models can provide 

an important contribution to the understanding of many types of neuronal activity, 

including epilepsy, sleep, and sensory-motor processing.  Additionally, studies of animal 

models can contribute to our knowledge of fMRI interpretation, thereby informing our 

understanding of neuroimaging studies in humans, and the neuronal basis of human 

pathology.   Human studies of simultaneous EEG-fMRI including those of epilepsy, 

sleep, evoked activity, behavior and cognition have recently been reviewed elsewhere 

(Salek-Haddadi, Merschhemke et al. 2002; Ritter and Villringer 2006).  Additionaly, 

many animal MRI studies are highly relevant for investigating changes in functional and 

structural anatomy, and exploring physiology (Blumenfeld 2007; Grohn and Pitkanen 

2007; Hiremath and Najm 2007). 

 

1.1. Advantages of EEG-fMRI in animal models: 
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Animal models offer a number of distinct advantages, compared to human 

subjects, in utilizing simultaneous EEG-fMRI to study neuronal function.  Animal 

models allow the investigator to exert greater control over the timing and conditions of 

neurological events, including seizures, sleep and sensory-motor processing.  Animal 

models also allow for the invasive monitoring and control of anesthesia and physiological 

parameters that may influence neuronal activity and fMRI signal changes.  Small animal 

models allow for the use of higher magnetic field strengths, as the energy required in 

maintaining a homogenous magnetic field at a given strength is directly related to its size.  

Studying the hemodynamic response to neural activity at higher field strengths is 

desirable as it increases the sensitivity to BOLD contrast mechanisms (Menon, Ogawa et 

al. 1993; Turner, Jezzard et al. 1993; Yang, Wen et al. 1999).  Additionally, the use of 

paralyzed animals allows for the near elimination of movement artifact, important for all 

fMRI studies and particularly so for studying events associated with excessive muscle 

activity, such as partial or generalized motor seizures.  Finally, balistocardiogram artifact, 

a common problem in human fMRI, is comparatively minimal in small animals (Sijbers, 

Vanrumste et al. 2000). 

Animal also provide an excellent model for studying the relationship between 

neuronal activity and cerebral hemodynamic and metabolic responses.  These 

fundamental relationships can be studied with invasive electrophysiological 

measurements, and multiple imaging techniques (Logothetis, Pauls et al. 2001; Schwartz 

and Bonhoeffer 2001; Smith, Blumenfeld et al. 2002; Hyder and Blumenfeld 2004; 

Nersesyan, Hyder et al. 2004; Shmuel, Augath et al. 2006; Maandag, Coman et al. 2007; 
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Schridde, Khubchandani et al. 2007).  Simultaneous EEG-fMRI investigations can guide 

tissue studies to specific brain regions of interest, and contribute to elucidating molecular 

mechanisms related to seizure susceptibility or other disorders.  Finally, animal models 

with genetic variants can be studied with simultaneous EEG-fMRI to examine the 

neurophysiological changes associated with these genes. 

 

1.2.  Limitations and Technical challenges of EEG-fMRI in animal models: 

 

 Animal models are constrained by the same limitations inherent to any model 

system, namely that models are only an approximation of human disease, and need to be 

interpreted with appropriate caution.  There are also several technical challenges to 

simultaneous EEG-fMRI studies of animals related to their size and the spatial constraints 

due to using relatively high magnetic fields (Blumenfeld 2007; Mirsattari, Ives et al. 

2007). 

Although desirable for many investigations, recording simultaneous EEG-fMRI in 

animals presents a number of challenges.  Anesthesia must be carefully considered; as we 

will discuss many anesthetic agents can alter the cerebral hemodynamic response and 

may alter the neurophysiological behavior under investigation.  Guaranteeing the quality 

of the MR image can be a formidable challenge, as the imaging signals are sensitive to 

small amounts of movement, and to magnetic susceptibility differences, especially at air-

tissue interfaces, that can introduce unwanted distortions.  Animal movement in the 

scanner must be restricted, either by chemical muscular blockade (curarization) or 

through habituation to a restraining device.  Electrodes must be carefully chosen to avoid 
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unwanted interactions with magnetic fields and with the tissue (e.g. scalp, subdermal, 

brain) they contact.  Lastly, animal physiology must be carefully monitored during 

experiments utilizing anesthesia (Mirsattari, Bihari et al. 2005).  

Investigations of particular brain processes will present their own unique 

challenges.  Animal studies of epilepsy often encounter additional complications, as 

seizure activity is prone to alteration by commonly used anesthetic agents, seizures may 

be difficult to induce in anesthetized animals, and motion artifact can occur during 

seizures (Blumenfeld 2007).   

 

1.2.1. Anesthesia: 

 

Choosing an appropriate anesthetic agent is crucial in simultaneous EEG-fMRI 

studies; considerations of the agent’s effects on the EEG data, fMRI signal intensity, 

long-term physiology, and on the neurological event being studied must all be carefully 

considered.  Furthermore, anesthetic agents are known to induce changes in the EEG data 

(Winters 1976; Sloan 1998; Hudetz 2002), and different experimental designs may be 

best served by different combinations of anesthetic agents. 

Anesthetic agents that are inhaled may be ideal for some designs because of the 

swiftness with which the depth of anesthesia can be adjusted (Makiranta, Ruohonen et al. 

2005; Mirsattari, Ives et al. 2005).  However, these agents can alter the hemodynamic 

response.  Isoflurane has been found to greatly diminish the BOLD signal changes seen 

in the gamma-butyrolactone (GBL) induced spike-and-wave discharge (SWD) rat model 

(Tenney, Duong et al. 2003).  Conversely, the use of both fentanyl and haloperidol does 
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not block the occurrence of SWDs in two rat genetic models of absence epilepsy (Pinault, 

Leresche et al. 1998; Nersesyan, Hyder et al. 2004).  Furthermore, haloperidol can 

actually increase the frequency of SWDs (Coenen and Van Luijtelaar 1987; 

Midzianovskaia, Kuznetsova et al. 2001).  Fentanyl in combination with haloperidol has 

also been used successfully to produce anesthesia without blocking tonic-clonic seizures 

in a rat model (Nersesyan, Hyder et al. 2004; Schridde, Khubchandani et al. 2007).   

A change in the signal strength of the BOLD-fMRI signal compared to the awake 

state can be seen with anesthetic agents such as alpha-chloralose (Shulman, Rothman et 

al. 1999; Peeters, Tindemans et al. 2001; Hyder, Rothman et al. 2002; Smith, Blumenfeld 

et al. 2002) propofol (Katariina M. Lahti 1999) and halothane (Maandag, Coman et al. 

2007).  In a porcine model sudden deepening of thiopental anesthesia in nonepileptic 

animals produced significant signal changes in the fMRI response (Makiranta, Jauhiainen 

et al. 2002).  High dose morphine and the sedating antihistamine aceproamzine was 

found to provide adequate anesthesia in a sheep model of penicillin induced focal 

epilepsy with minimal EEG suppression (Opdam, Federico et al. 2002).  Alpha-

chloralose with urethane has been successfully used in a rat model of pentylenetetrazol 

induced seizures (Keogh, Cordes et al. 2005).  Ketamine and xylazine produces adequate 

anesthesia without blocking limbic seizures studied by fMRI (Englot, Mishra et al. 2008). 

In a rat model halothane was found to have no effect on the BOLD response at 

doses that showed a clear reduction in the baseline neuronal activity on EEG, while a 

transition from halothane to alpha-chloralose showed an immediate reduction in the 

spatial extent of the BOLD response without a change in the peak signal change, which 

evolved over several hours to an increase in both the spatial extent and peak signal 
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change of the BOLD signal (Austin, Blamire et al. 2005; Maandag, Coman et al. 2007).  

Halothane has been successfully used to induce temporary anesthesia in rodent models 

during subject preparation, with data acquired from paralyzed non-anesthetized animals 

treated with mivacurium (Van Camp, D'Hooge et al. 2003), however, special training is 

needed for non-anesthetized preparations as discussed shortly.  Halothane is commonly 

used as an induction agent to allow rapid anesthesia of an animal for placement of 

intravascular lines, tracheostomy, electrodes and placement in a holding apparatus for 

positioning of the surface coil (Nersesyan, Hyder et al. 2004; Schridde, Khubchandani et 

al. 2007).  A one hour period has been used to allow complete wash-out of the halothane 

(Keogh, Cordes et al. 2005).   

Limiting the use of general anesthesia to the period of preparing the animal with 

reversal of the anesthesia during simultaneous EEG-fMRI acquisition has also been 

accomplished with the combination of the anesthetic medetomidine (alpha 2 

adrenoreceptor agonist) and the reversal agent atipamezole (alpha 2-adrenergic 

antagonist) in rats (Tenney, Duong et al. 2003), or with ketamine and medetomidine 

reversed with atipamezole in rats (Tenney, Duong et al. 2004; Brevard, Kulkarni et al. 

2006), or with the combination of medetomidine, ketamine and isoflurane reversed with 

atipamezole in marmoset monkeys (Tenney, Marshall et al. 2004).   

In situations where significant movement does not occur, such as during spike-

wave seizures, the study of unanesthetized animals may be feasible (Tenney, Duong et al. 

2003; Van Camp, D'Hooge et al. 2003).  This raises additional technical challenges, as 

lengthy training of animals is necessary to habituate them to the recording procedures 

(Khubchandani, Mallick et al. 2003; Sachdev, Champney et al. 2003).  Recording from 
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awake animals can further be facilitated by the use of a topical anesthetic (e.g. lidocaine 

gel) at any pressure points from restraint devices or needle electrodes (Tenney, Duong et 

al. 2004; Tenney, Marshall et al. 2004).  Performing simultaneous EEG-fMRI studies in 

awake animals is an important technical challenge to overcome as these studies more 

closely resemble human studies of conscious subjects.   

The anesthetic approaches discussed show great promise in expanding the utility 

of EEG-fMRI studies in animal models, and in contributing to our understanding of 

human studies.  The wide variety of successful protocols illustrates the importance of 

tailoring the experimental design to the specific animal model and research question 

being investigated.   

 

1.2.2. Movement: Curarization and Habituation: 

 

 As in human studies, subject movement must be addressed in studies with animal 

models to limit the creation of artifact in the MR images.  As previously discussed, 

anesthetic agents must be carefully considered for possible interference with the 

neurological event being studied, and for possibly altering the hemodynamic response.  

Lightly anesthetized preparations or unanesthetized preparations are advantageous for 

preserving the normal electrophysiology and neurovascular response but will increase the 

likelihood of movement by the subject.  This has been overcome by curarization with 

non-depolarizing neuromuscular blockers, such as mivacurium (Van Camp, D'Hooge et 

al. 2003), pancuronium (Opdam, Federico et al. 2002; Makiranta, Ruohonen et al. 2005), 

d-tubocurarine (Nersesyan, Hyder et al. 2004; Schridde, Khubchandani et al. 2007; 
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Englot, Mishra et al. 2008), or vacuronium (Mirsattari, Wang et al. 2006).  Curarization 

requires the animal be ventilated and their physiology monitored throughout the 

experiment. 

 Habituation to the restraint device and noise of the MRI scanner is required for 

the study of awake and conscious animals.  This has been accomplished through the use 

of habituation to a custom designed restraint devices in rats (Khubchandani, Mallick et al. 

2003; Sachdev, Champney et al. 2003).  Habituation to a restraint device may be 

facilitated by positive reinforcement (e.g. chocolate milk) combined with diazepam 

administrated one hour prior to data acquisition to minimize stress (Sachdev, Champney 

et al. 2003). 

 It is critical to review data carefully after acquisition for movement artifact using 

methods such as cine review and center of mass analysis (Nersesyan, Hyder et al. 2004) 

and to reject data in which significant movement occurs, since even tiny movements can 

produce large false fMRI signal changes on difference calculations. 

 

1.2.3. Physiology: 

 

 Physiological stability is crucial in the study of animals during simultaneous 

EEG-fMRI.  Animal models are commonly studied using inhaled anesthetic agents which 

require that the animal undergo a tracheostomy and be ventilated.  Animals require 

physiological stabilization for the duration of the experiment (Wood, Klide et al. 2001).  

Monitoring of heart rate, blood pressure, temperature and ventilation rate can be done 

continuously (Nersesyan, Hyder et al. 2004; Schridde, Khubchandani et al. 2007).  
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Arterial blood gas measurements of pH, pCO2, and pO2 can be performed to monitor the 

physiological state of the animal, as these parameters will affect the hemodynamic 

response and may affect neuronal function (Jones, Berwick et al. 2005; Mirsattari, Bihari 

et al. 2005).  Mechanical ventilation may be required for some anesthesia regiments or 

when muscle paralysis is used (Nersesyan, Hyder et al. 2004; Tenney, Duong et al. 2004; 

Schridde, Khubchandani et al. 2007).  Mechanical ventilation, blood pressure monitoring 

and anesthesia delivery machinery should be kept far from the imaging field to avoid 

disturbances in the images.  This equipment is preferably kept outside of the room 

containing the magnet, which ideally is itself magnetically shielded. 

Hypercapnia can alter the cerebral hemodynamic response, causing vasodilatation 

of veins and microcapillaries in rat cortex at even mild levels (Nakahata, Kinoshita et al. 

2003).  Hypercapnia has also been shown to reduce blood flow and volume changes 

during whisker stimulation, and may also affect changes in the BOLD-fMRI signal 

(Jones, Berwick et al. 2005).  Furthermore, hypercapnia can alter neuronal activity in rats 

(Kida, Rothman et al. 2007) possibly by inducing periods of cortical desynchronization 

that may be associated with changes in oxidative metabolism (Martin, Jones et al. 2006).   

 

1.2.4. MRI compatible electrodes: 

 

MRI compatible electrodes and EEG recording equipment has been developed 

and utilized in multiple studies using simultaneous EEG-fMRI (Mirsattari, Ives et al. 

2007).  EEG electrodes commonly contain metals that are affected by an external 

magnetic field; silver-silver chloride (Ag/AgCl), gold-plated silver, platinum, stainless 
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steel, and tin.  Silver and copper electrodes are theoretically compatible with MRI but are 

not appropriate for invasive recording that may involve direct contact of the electrode to 

brain tissue due to possible toxicity (Babb and Kupfer 1984).  Gold and platinum 

electrodes have been found to be non-toxic to living tissue (Tallgren, Vanhatalo et al. 

2005).  Custom-made gold electrodes were found to be superior compared to both 

custom-made carbon, and commercial platinum-iridium alloy electrodes in size, and 

effect on image quality (Jupp, Williams et al. 2006).  However, gold and platinum may 

cause artifacts in MR images due to differences between their magnetic susceptibly and 

that of brain tissue (Mirsattari, Ives et al. 2007).  Choosing appropriate MRI compatible 

EEG recording equipment will depend on whether the goal is for scalp, subdermal, or 

intracranial recordings.   

Scalp and subdermal electrodes have the advantage of leaving the brain intact and 

theoretically will introduce the least amount of artifact in the MR images.  Carbon fiber 

electrodes are the most widely used material for EEG with simultaneous MRI; for scalp 

(Van Audekerkea, Peeters et al. 2000) and subdermal recordings (Nersesyan, Hyder et al. 

2004; Makiranta, Ruohonen et al. 2005; Schridde, Khubchandani et al. 2007), and 

directly overlying the cortex via insertion through burr holes (Mirsattari, Wang et al. 

2006).  Carbon fiber electrodes can also be used for intracranial recordings (Opdam, 

Federico et al. 2002; Mirsattari, Ives et al. 2005).  Teflon coated silver-silver chloride 

(Ag/AgCl) electrodes can be used alone or in combination with carbon fiber electrodes 

(Mirsattari, Ives et al. 2005; Young, Ives et al. 2006).  fMRI compatible electrodes 

designed for human use, such as conductive plastic cups and gold plated silver disc 
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electrodes attached to copper wires can be used in larger animal studies (Mirsattari, Ives 

et al. 2007).   

Intracranial EEG recordings with simultaneous fMRI has the advantage of 

recording neuronal activity from specific areas of the brain, such as the occipital cortex 

(Logothetis, Pauls et al. 2001; Shmuel, Augath et al. 2006), or from the site of seizure 

induction in animal models of focal epilepsy (Opdam, Federico et al. 2002; Englot, 

Mishra et al. 2008).  However, intracranial electrode placement increases the risk of 

damaging the cerebral cortex and may cause artifact in the MR images if there is bleeding 

under the burr holes or at the craniotomy site (Mirsattari, Ives et al. 2007).  Burr holes 

should be made with a drill that is compatible with MRI, for example, one coated by 

titanium or made of diamond to avoid artifacts from any metallic particles the drill may 

leave (Mirsattari, Ives et al. 2007).  

Intracranial electrodes may also be used for stimulating brain regions during 

fMRI experiments.  Electrical stimulation has been accomplished in the rat; including in 

the motor cortex with carbon fiber electrodes (V.C. Austin 2003), in the amygdale 

kindling model with custom made carbon and gold electrodes, and commercial platinum-

iridium electrodes (Jupp, Williams et al. 2006), in rat medial thalamus with glass-coated 

carbon fiber microelectrode (Shyu, Lin et al. 2004), and in perforant pathway 

(Angenstein, Kammerer et al. 2007) and dorsal hippocampus using bipolar tungsten 

electrodes (Englot, Mishra et al. 2008).  Precise electrical stimulation of the Macaque 

monkey visual cortex using custom glass-coated iridium microelectrodes during fMRI 

signal acquisition has also been done (Tolias, Sultan et al. 2005). 
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1.3. fMRI Signal Generation: 

 

The BOLD fMRI signal (S) is only indirectly related to neuronal activity.  Animal 

models provide an excellent opportunity to more precisely investigate this relationship.  

Neuronal activity consumes energy, which is repleted through increased delivery of 

oxygen and nutrients via neurovascular coupling.  Measurement of S depends on levels of 

oxygenated hemoglobin (Ogawa, Menon et al. 1998), and therefore on the balance 

between oxygen delivery and consumption.  During neuronal activity, there is an increase 

in cerebral blood flow (CBF) and oxygen delivery through neurovascular coupling, but 

there is also an increase in the cerebral metabolic rate of oxygen consumption (CMRO2) 

(Ogawa, Menon et al. 1998; Hyder, Kida et al. 2001). Increased oxygen delivery 

normally exceeds oxygen consumption, so that S usually increases in response to 

increased neuronal activity.  However, as we will discuss below, exceptions can occur, 

especially during the intense neuronal activity accompanying tonic-clonic seizures.  The 

complex relationship between changes in BOLD signal compared to baseline (∆S/S) and 

physiology is given in Equation 1. (Kennan, Zhong et al. 1994; Weisskoff, Zuo et al. 

1994; Ogawa, Menon et al. 1998). 

 

∆S/S = Á [(∆CBF/CBF - ∆CMRO2/CMRO2)/(1+∆CBF/CBF) - ∆CBV/CBV] 

 

Equation 1.  This equation shows the relationship of the BOLD signal change (∆S/S) to 

the changes in the cerebral metabolic rate of oxygen consumption (∆CMRO2/CMRO2), 
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cerebral flood flow (∆CBF/CBF), and cerebral blood volume (∆CBV/CBV).  Where Á is 

a measurable physiologic and magnetic field dependent constant. 

 

Because the majority of neuronal energy is ultimately produced through oxidative 

metabolism (Shulman, Rothman et al. 2004) measuring changes in the CMRO2 offers the 

most direct neuroimaging measure of neuronal activity. 

 

1.3.1. Measurement of CMRO2 by MR spectroscopy:  

 

 fMRI signals originate in changes in energy consumption and blood flow.  

Neuronal activity is dependent on neurotransmission, and the stoichiometry of glutamate 

and GABA neurotransmission, and the energy consumption supplied by glucose 

oxidation, as has been established in vivo by 13C magnetic resonance spectroscopy 

(MRS) (Rothman, Sibson et al. 1999).  The relationship between neuronal activity and 

energy consumption provides insight into brain function, and the interpretation of the 

neuroimaging signal obtained in fMRI experiments (Shulman, Hyder et al. 2001; 

Shulman, Hyder et al. 2002).  Early 13C-MRS experiments in animals and humans used 

glucose labeled at the C1 carbon atom (Behar, Petroff et al. 1986; Gruetter, Novotny et 

al. 1994).  Infused glucose-C1 enters the TCA cycle via pyruvate dehydrogenase activity 

and labels glutamate-C4 in the first turn of the neuronal TCA cycle.  The C3 and C2 

carbon atoms are labeled in the following turn of the cycle.  Thus, the time course of 13C 

turnover of glutamate-C4 can be converted into a measure of the neuronal TCA cycle 
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flux (Mason, Behar et al. 1992; Mason, Gruetter et al. 1995; Gruetter, Seaquist et al. 

1998). 

 

1.3.2. Estimation of CMRO2 by calibrated BOLD: 

 

Equation 1 can be rearranged and approximate CMRO2 maps can be obtained 

where  ∆CMRO2/CMRO2 can be calculated by using the data from separate 

measurements of ∆CBF/CBF, ∆S/S and ∆CBV/CBV in the same experiment (Kida, 

Kennan et al. 2000; Hyder 2004).  This technique is referred to as calibrated BOLD, and 

has been validated by showing good agreement with CMRO2 measurements made using 

MRS during somatosensory stimulation over a wide range of conditions (Hyder, Kida et 

al. 2002).  Changes in spiking frequency have been directly linked to calibrated fMRI 

measurements of energetics in rat somatosensory cortex (Smith, Blumenfeld et al. 2002).  

Calibrated BOLD allows CMRO2 maps to be obtained at the same spatial and temporal 

resolution as fMRI, which is much higher than in MRS experiments.  Although CMRO2 

can be measured by neuroimaging methods, the BOLD-fMRI signal is a more 

convenient, although indirect, method of mapping neuronal activity.    

 

1.3.3. CBV: 

 

 The relative changes in CBV from baseline can be measured by the administration 

of a high susceptibility MRI contrast agent to enhance the blood volume induced changes 

(Hyder, Kida et al. 2002).  AMI-227, an ultrasmall iron oxide colloid contrast agent can 
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be used, and remains in the intravascular space for several hours (Kennan, Zhong et al. 

1994).   

 

1.3.4. CBF: 

 

 Absolute CBF maps can be obtained by using spin-echo slice selective and non-

slice selective inversion-recovery weighted EPI data (Hyder, Kida et al. 2001).  Arterial 

spin labeling (ASL) MRI utilizes endogenous water as a magnetic contrast agent.  Blood 

water flowing to the brain is saturated in the neck region with a slice-selective saturation 

imaging sequence, creating an endogenous tracer in the form of proximally saturated 

spins.  This technique allows regional perfusion maps to be measured noninvasively 

(Detre, Leigh et al. 1992; Detre and Wang 2002).  Optical imaging techniques like laser 

Doppler flowmetry (LDF) can measure CBF, although these methods differ in the 

underlying physical mechanisms from ASL-MRI (He, Devonshire et al. 2007).  LDF 

values for CBF have proven useful in calculating CMRO2 and are comparable to CBF 

measurements acquired using ASL-MRI (Mandeville, Marota et al. 1999; He, Devonshire 

et al. 2007; Schridde, Khubchandani et al. 2007). 

 

1.4. Signal Artifact and Artifact removal: 

 

Signal artifact presents an additional problem as fMRI equipment can cause 

artifact in the EEG recording in general, and particularly during image acquisition (Ives, 

Warach et al. 1993) and EEG equipment can cause significant artifact in the fMRI images 
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(Krakow, Allen et al. 2000).  Gradient coil induced magnetic field variations and 

radiofrequency pulses associated with image acquisition can cause high voltages in the 

EEG recording electrodes that obscure EEG signals.  Revealing the full EEG signal may 

require removal of the MRI artifact through offline digital filtering, including simple low-

pass frequency filtering (Nersesyan, Hyder et al. 2004), or using methods such as 

temporal principle component analysis (Negishi, Abildgaard et al. 2004).  Care must be 

taken in placing the EEG electrodes on the animal skull in such a way as to minimize 

unwanted magnetic field inhomogeneity and image distortion (Nersesyan, Hyder et al. 

2004).   

Movement-related artifact has already been discussed, and any runs containing 

significant movement should be rejected from the analysis.  Low frequency drift can also 

occur, especially during prolonged fMRI acquisitions, which may be related to a number 

of physiological or technical factors.  It is important to be aware of these slow signals, 

and to take them into consideration when planning data analysis, or to prevent them at the 

source when appropriate.  Although low frequency drift in some situations can be related 

to physiology, in other cases it can be shown to occur due to purely technical factors and 

not physiology (e.g. by demonstrating similar drift when scanning a phantom, or a non-

living perfused brain). 

 

1.5. Data analysis: 

 

Data analysis of simultaneous EEG-fMRI experiments allows for pairing of fMRI 

acquisitions with neuronal signal.  Prior knowledge of the time course of CBF changes 
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during the neuronal function being studied will direct the analysis of the fMRI signal.  

For example, in analyzing fMRI signals during rodent spike-wave discharges (SWD) 

prior measurements using LDF showed that CBF peaked 3 to 4 seconds after SWD onset 

began on EEG, and then decreased back to baseline after 3 to 4 seconds (Nersesyan, 

Herman et al. 2004).   Pixel based measurements of the BOLD signal response showed a 

similar time course (Nersesyan, Hyder et al. 2004).  Therefore, in constructing functional 

maps of BOLD signal changes during SWD compared to baseline it was first assumed 

that each BOLD image acquisition should be related mainly to SWD occurring in the 

preceding 5 second EEG interval.  Pairs of consecutive images and associated pairs of 

consecutive EEG intervals were selected where the first EEG interval contained quiet 

EEG baseline, and the second contained SWD (Nersesyan, Hyder et al. 2004).  t-maps 

were then constructed by contrasting the set of baseline images to SWD images on a 

pixel-by-pixel basis (Nersesyan, Hyder et al. 2004).  t-maps can also be constructed by be 

combined with region of interest (ROI) analysis to evaluate differences in BOLD signal 

change and time course limited to specific brain regions (Tenney, Duong et al. 2003; 

Tenney, Duong et al. 2004; Tenney, Marshall et al. 2004; Schridde, Khubchandani et al. 

2007). 

The time course of generalized tonic-clonic seizures (GTCS) begins with an 

abrupt onset of sustained, high-frequency neuronal firing during the tonic phase, followed 

by rhythmic high-frequency firing in the clonic phase (Matsumoto and Marsan 1964; 

Avoli, Gloor et al. 1990), with a total duration of several minutes.  Therefore, analysis of 

more prolonged events such as tonic-clonic seizures requires a different approach to 

analysis.  Comparison of bicuculline induced tonic-clonic seizures to baseline activity has 
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been done by comparing a set of baseline images before bicuculline injection to a set of 

images after seizure onset (Nersesyan, Hyder et al. 2004; Schridde, Khubchandani et al. 

2007).  t-maps can then be constructed by comparing the set of baseline images to the set 

of images during the beginning of seizure activity (Nersesyan, Hyder et al. 2004; 

Schridde, Khubchandani et al. 2007). 

Hierarchical clustering algorithms can also be used to identify voxels of interest in 

the fMRI data (Keogh, Cordes et al. 2005).  The clustering analysis utilizes a t-test 

applied independently to each voxel, comparing a chosen baseline period to a period of 

signal activity; voxels without significant changes are discarded.  Voxels that are acting 

similarly to another portion of brain can be chosen by applying a further test requiring 

that each voxel have a correlation with two other voxels.  This has been applied in the 

study of pentylenetetrazol (PTZ) induced seizures in rats (Keogh, Cordes et al. 2005). 

Changes in CMRO2 can be estimated for individual brain regions using the known 

general relationship between oxygen consumption and BOLD, CBV, and CBF data at 

steady state (Equation 1) (Kida, Rothman et al. 2007; Schridde, Khubchandani et al. 

2007).  This can be done using CBF values obtained from ASL-MRI or from LDF, 

together with separate measurements of BOLD and CBV (Schridde, Khubchandani et al. 

2007). 

  

1.6. Sequential EEG-fMRI Studies in Animals: 

  

Experimental designs where the timing of the hemodynamic response is relatively 

controlled may circumvent the technical challenges inherent to simultaneous EEG-fMRI 
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studies by using sequential EEG-fMRI.  These studies record the EEG-fMRI under the 

same conditions and where the time course is relatively consistent allowing for 

investigation of both neuronal electrical data and cerebral hemodynamic responses.  

Sequential EEG-fMRI has been employed to study epilepsy in the rat model of 

pentylenetetrazol induced seizures (Keogh, Cordes et al. 2005; Brevard, Kulkarni et al. 

2006).  Sequential electrical recording and BOLD-fMRI has also been used to investigate 

visual processing in the cat (Kayser, Kim et al. 2004).   

Sequential investigations are limited in the accuracy with which fMRI signals can 

be correlated to EEG activity.  Therefore, sequential measurements are not ideal for the 

study of animal models where the neuronal function under investigation is variable, and 

where the variability is an important aspect of the phenomenon being studied.  

 

1.7. Simultaneous EEG-fMRI in Animals: 

 

Simultaneous EEG-fMRI investigations of animal models have distinct 

advantages, as previously mentioned, in the correlating of brain electrical, hemodynamic 

and neurometabolic responses.  Simultaneous EEG recording with MRI was first 

performed in a rat cortical spreading depression model in 1995 (Busch, Hoehn-Berlage et 

al. 1995).  Subsequent EEG-fMRI studies in animal models have mainly focused on 

epilepsy.  Here, we will review EEG-fMRI animal studies of epilepsy, including 

generalized and partial seizures, sleep, and studies where electrical stimulation was 

applied during signal acquisition.  We will also discuss animal studies where the primary 
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aim was to investigate the relationship between neuronal activity and the BOLD signal 

response. 

 

1.7.1. Epilepsy: 

 

 The first animal model studies of epilepsy with simultaneous EEG-fMRI were 

performed less than a decade ago (Van Audekerkea, Peeters et al. 2000).  As we have 

mentioned, animal models allow the full power of fMRI methods to be employed to 

noninvasively map epileptic activity throughout the brain.  Animal models provide a 

means study the ictal activity of all seizure types, and are not limited by movement 

artifact as animals can be studied under anesthetized, paralyzed and ventilated conditions.  

The onset and type of seizure can be controlled in animal models, and invasive studies 

can be done to relate fMRI signals to underlying neuronal activity (Blumenfeld 2007). 

Simultaneous EEG-fMRI in epilepsy can be used to accomplish several goals, 

including the accurate localization of seizure onset, the evolving physiology of seizures 

in focal regions or distributed networks, and to relate fMRI signals to underlying 

physiology.  Interpretation of human studies will be improved by a better understanding 

of the relationship between neuronal activity and the fMRI signal in animal models.  A 

better understanding of the local networks and brain regions involved in specific seizure 

disorders may help design improved focal resective surgery, and could provide targets for 

deep brain stimulation, medication or even gene therapy.  Animal studies may also 

improve our understanding of functional brain impairment and cognitive dysfunction 

(Blumenfeld  and Taylor 2003; Blumenfeld 2005). 
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1.7.1.1. Absence Seizure Models: 

 

Human studies of spike-wave discharges (SWD) in absence epilepsy patients 

(Archer, Abbott et al. 2003; Salek-Haddadi, Lemieux et al. 2003; Aghakhani, Bagshaw et 

al. 2004) have revealed a great deal regarding the neural networks involved in SWD 

formation and propagation.  However, additional information is needed to correctly 

interpret fMRI signal increases and decreases in this disorder.  Animal models can be 

used to study in depth the relationship of fMRI signal changes to underlying neuronal 

activity, and molecular mechanisms during SWDs (Blumenfeld 2005).  The Wistar 

AlbinoGlaxo rats of Rijswijk (WAG/Rij) have spontaneous spike-and-wave discharges, 

and are an established model of human absence epilepsy (Coenen and Van Luijtelaar 

2003).  fMRI studies in this model have shown BOLD signal increases in focal bilateral 

regions of the cortex and thalamus (Nersesyan, Hyder et al. 2004).  Interestingly, 

although considered a generalized seizure disorder, focal anterior regions of the brain are 

most intensely involved both in fMRI and electrical recordings of SWD, while other 

brain regions are relatively spared (Meeren, Pijn et al. 2002; Nersesyan, Hyder et al. 

2004).  Although human fMRI studies of SWD have shown both increase and decreases 

in the cortex (Archer, Abbott et al. 2003; Salek-Haddadi, Lemieux et al. 2003; Gotman, 

Grova et al. 2005; Labate, Briellmann et al. 2005; Aghakhani, Kobayashi et al. 2006; 

Hamandi, Salek-Haddadi et al. 2006; Laufs, Lengler et al. 2006), studies in WAG/Rij rats 

have so far shown mainly increases in the cortex (Nersesyan, Hyder et al. 2004; Tenney, 

Duong et al. 2004).  However, recent studies have shown that the basal ganglia show 
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prominent fMRI signal decreases during SWD in rodent models (Guillemain, David et al. 

2007; Mishra, Schridde et al. 2007). 

Gamma-butyrolactone (GBL) is a precursor of gamma-hydroxybutyrate, and 

produces robust SWD in rats, resembling petit mal status epilepticus (Snead, Depaulis et 

al. 1999; Tenney, Duong et al. 2003).  A simultaneous EEG-fMRI study, using epidural 

electrodes, of SWD in rats treated with GBL showed thalamic increases and mixed 

cortical increases and decreases in fMRI signals (Tenney, Duong et al. 2003).  However, 

a similar study in marmoset monkeys given GBL showed only fMRI increases during 

SWD (Tenney, Marshall et al. 2004). 

   

1.7.1.2. Generalized Tonic-Clonic Seizure Models: 

 

Generalized tonic-clonic seizures (GTCS) in animal models can be induced by 

pharmacologic means, allowing the researcher control over the timing of seizures.  The 

first investigation of GTCS using fMRI was performed over 15 years ago (Ogawa and 

Lee 1992).  Simultaneous EEG-fMRI studies of GTCS in animals face the challenge of 

constraining movement in the scanner (Van Camp, D'Hooge et al. 2003; Nersesyan, 

Hyder et al. 2004; Schridde, Khubchandani et al. 2007). 

Kainic acid, a potent central nervous system stimulant, has been used to induce 

GTCS in animals (Ben-Ari, Lagowska et al. 1979).   A distinct change in the BOLD-

fMRI signal has been seen following injection of kainic acid (Ogawa and Lee 1992).  

Another proconvulsive agent, pentylenetetrazol, an antagonist of GABA, has also been 

used to induce GTCS in rats (Van Camp, D'Hooge et al. 2003; Keogh, Cordes et al. 2005; 



 28 

 

Brevard, Kulkarni et al. 2006).  Finally, bicuculline, another GABA receptor antagonist, 

has also been used to induce rat GTCSs, showing widespread cortical BOLD-fMRI 

increases (Nersesyan, Hyder et al. 2004; Schridde, Khubchandani et al. 2007). 

Studies of bicuculline induced GTCS using multiple techniques to investigate 

neuronal activity, CBF, CBV, CMRO2, and BOLD signal changes, indicate that these 

parameters all increase in parallel in the cortex during bicuculline-induced GTCS.  In 

contrast, some regions such as the hippocampus may show variable BOLD signal 

changes or even BOLD decreases even though direct recordings of neuronal activity from 

the hippocampus showed consistent large increases in neuronal activity during GTCS 

(Schridde, Khubchandani et al. 2007).  Interestingly, the CBF increase exceeded the 

CMRO2 increase in the cortex, producing the expected consistent increase in BOLD.  

However, in the hippocampus, CBF increases did not on average exceed CMRO2 so that 

mismatch between metabolism and CBF can lead to paradoxical BOLD decreases in 

some cases (Schridde, Khubchandani et al. 2007). 

  

1.7.1.3. Partial Seizure Models: 

  

Simultaneous EEG-fMRI in animal models of focal epilepsy necessitates 

additional operative techniques to induce localized seizure activity.  Where genetic and 

systemic pharmacologic models allow the study of generalized seizure disorders, direct 

focal introduction of seizure inducing drugs, commonly penicillin, or electrical 

stimulation is required to cause focal seizures.  One such early study used focal penicillin 

infusion into the prefrontal cortex of sheep (Opdam, Federico et al. 2002).  Localized 
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increases in the fMRI signal were identified in the sheep cortex during seizures (Opdam, 

Federico et al. 2002).  Penicillin has also been applied to the somatosensory cortex in a 

porcine model, showing regional signal increases during interictal spikes (Makiranta, 

Ruohonen et al. 2005), and to the occipital cortex in rats, showing regional signal 

increases during seizures (Mirsattari, Wang et al. 2006).   

Electrical stimulation of the hippocampus has been recently been performed 

during simultaneous depth electrode and fMRI (Englot, Mishra et al. 2008).  Following 

electrical stimulation, neuronal electrical activity increased intensely in the hippocampus.  

BOLD signal increases were also observed in the hippocampus, as well as in the 

thalamus and septal nuclei during seizures.  Separate experiments also showed neuronal 

electrical activity increases in the thalamus and septal nuclei in this model.  In addition, 

BOLD decreases were seen in the orbital frontal cortex (Englot, Mishra et al. 2008) 

which may resemble decreases in neocortical function seen during human limbic seizures 

(Blumenfeld, McNally et al. 2004; Blumenfeld, Rivera et al. 2004). 

 

1.7.2. Sleep: 

 

 Simultaneous EEG-fMRI has also been used to investigate sleep in rodent models 

(Khubchandani, Jagannathan et al. 2005).  Simultaneous EEG allows for the 

determination of sleep and wake cycles in the animal while scanning.  fMRI signal 

increases were shown in the medial preoptic area during sleep, corroborating other work 

indicating the importance of this area in maintaining slow wave sleep (Khubchandani, 
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Jagannathan et al. 2005).  Simultaneous EEG-fMRI has been used primarily in epilepsy 

research, but potential exists for much additional work in other fields, including sleep. 

 

1.7.3. Sensory-motor stimulation models: 

 

Simultaneous EEG-fMRI can be used to study activation of specific brain regions 

during sensory-motor stimulation.  Electrical forepaw stimulation has been used to 

compare cortex activation during fully conscious curarization compared to during alpha-

chloralose anesthesia (Peeters, Tindemans et al. 2001).  Simultaneous acquired EEG data 

was used to identify the awake and anesthetized states, showing that the BOLD signal 

was smaller under alpha-chloralose anesthesia, compared to the awake state (Peeters, 

Tindemans et al. 2001).  Simultaneous EEG-fMRI has also been used to study the 

interaction between simultaneous and sequential electrical forepaw stimulations in the rat 

and the effects on the associated stimulation evoked potentials and BOLD signal 

responses (Ogawa, Lee et al. 2000) showing fMRI signal modification in response to two 

stimuli directly following another, although on EEG the changes associate with the 

second stimulation was extinguished. 

Studies investigating fMRI changes during anesthesia with parallel 

electrophysiology recordings during forepaw stimulation are ongoing, and have recently 

shown differences in the strength of fMRI changes under different types of anesthesia 

(Hyder, Rothman et al. 2002; Smith, Blumenfeld et al. 2002; Maandag, Coman et al. 

2007). 
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1.8. Relating fMRI Signals to Electrophysiological Recordings: 

 

One of the major goals of animal studies in this field is to relate neuroimaging 

signals to underlying electrical neuronal activity.  Direct measurement of neuronal 

activity in these models is therefore essential.  Simultaneous recordings of single neurons, 

local field potential (LFP) and BOLD fMRI signals has been accomplished in 

anesthetized monkeys (Logothetis, Pauls et al. 2001; Tolias, Sultan et al. 2005; Shmuel, 

Augath et al. 2006), but this method remains a significant challenge technically. 

The relationship between fMRI signals and electrophysiology can be successfully 

investigated by parallel benchtop electrophysiology and fMRI experiments performed 

under identical conditions (Hyder, Kida et al. 2002; Smith, Blumenfeld et al. 2002).  

Studies designed to investigate both modalities in the same animal model have shown 

good correspondence between fMRI increases and physiological measurements 

(Nersesyan, Herman et al. 2004; Schridde, Khubchandani et al. 2007).  Specifically, 

anterior brain regions such as the somatosensory cortex where fMRI signals are increased 

during SWD show increased neuronal firing and CBF, while posterior areas such as 

visual cortex spared by fMRI signal changes show few changes in physiological 

measurements (Nersesyan, Hyder et al. 2004).  Direct physiologic measurements during 

generalized tonic-clonic seizures, on the other hand, show increases in both anterior and 

posterior brain regions, in agreement with fMRI measurements in the same areas 

(Nersesyan, Hyder et al. 2004).  Interestingly, in the somatosensory cortex, the magnitude 

of BOLD fMRI, neuronal firing, and CBF changes were greatest for generalized tonic-

clonic seizures, less for normal whisker stimulation, and even less for SWD (Nersesyan, 
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Herman et al. 2004; Nersesyan, Hyder et al. 2004).  Understanding the relationship 

between fMRI signal increases and decreases in other regions will be the subject of future 

investigations, as will understanding the neuroenergetic mechanisms of fMRI signal 

changes. 

 

2.1 Introduction to localization in WAG/Rij rat and development in C3H/Hej 

mouse: 

 

Multi-modal fMRI experiments including BOLD, CBF, and CBV imaging, with 

simultaneous EEG recordings were performed in Wistar albino Glaxo rats of Rijswijk 

(WAG/Rij), an established animal model of human absence epilepsy (Coenen, 

Drinkenburg et al. 1992; Meeren, Pijn et al. 2002).  WAG/Rij rats exhibit spontaneous 

episodes of staring and unresponsiveness accompanied by SWD, which resembles human 

absence seizures in behavior, electroencephalography and anit-epileptic drug sensitivity 

(Coenen and Van Luijtelaar 1987; Peeters, Spooren et al. 1988; van Rijn, Sun et al. 

2004).  We also performed parallel invasive electrophysiology and cerebral blood flow 

analysis on WAG/Rij rats to directly measure neuronal firing rates, local field potential, 

and blood flow changes in regions of interest during SWD.  This approach made possible 

the calculation of the cerebral metabolic rate of oxygen consumption and allowed 

hemodynamic response functions to be calculated for individual regions of interest.  The 

methodology for functional imaging and electrophysiology is complex, but with 

knowledge and experience rats can be utilized to these type of experiments with success.  

The benefits of rats, as compared to mice, is their greater size and the greater experience 
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(as outlined above) of the neuroscience community in using rats for this work.  Mice, on 

the other hand, are difficult to utilize (currently) for imaging studies, however mice are 

more suitable for investigations into the development of epilepsy on the molecular and 

genetic level.  Although the development of SWD has been characterized in Wistar 

Albino Glaxo rats from Rijswijk (WAG/Rij)(Coenen and Van Luijtelaar 1987) and in 

genetic absence epilepsy rats of Strasbourg (GAERS) (Vergnes, Marescaux et al. 1986), 

rat models are limited by their relative paucity of genetic characterization compared to 

mouse models  In addition, particularly in WAG/Rij rats, onset of SWD takes several 

months, which can make investigation of epileptogenesis a slow process.   

Among mouse models for SWD, (Fletcher, Lutz et al. 1996; Cox, Lutz et al. 

1997; Letts, Felix et al. 1998), the C3H/HeJ mouse (Frankel, Beyer et al. 2005) has the 

advantage of relatively pure absence phenotype (brief episodes of SWD accompanied by 

behavioral immobility), without other kinds of seizures or neurological impairment such 

as cerebellar ataxia.  A specific genetic defect, namely a mutation of the AMPA receptor 

subunit Gria4, was recently identified as the cause of SWD in C3H/HeJ mice (Beyer, 

Deleuze et al. 2008).  In the interest of furthering progress in our understanding of 

epileptogenesis and its prevention, we sought to characterize the critical developmental 

period for SWD development in the C3H/HeJ mouse through serial EEG recordings.   

 

2.2. Methods: 

 

WAG/Rij Rat Animal preparation 
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All experimental procedures were in full compliance with approved institutional 

animal care and use protocols.  A total of 98 (43 BOLD, 45 electophysiology, 10 CBV) 

experiments were performed in 41 adult (34 female and 7 male) Wistar albino Glaxo rats 

of Rijswijk (WAG/Rij) (Harlan, Indianapolis, Indiana, USA) aged (6-16 months) 10 ± 1 

months (mean ± SEM) with an average weight of 220 ± 1 g (mean ± SEM) were used in 

these experiments.  21 animals were used for acute electrophysiological and laser 

Doppler flowmetry cerebral blood flow recordings. Neurophysiology experiments were 

included only where electrophysiology recordings captured seizures simultaneously in 

both regions of interest (recordings were done in CPu, S1BF, and VPM). 

 

C3H/Hej Mice Preparation 

All procedures were in full compliance with approved institutional animal care 

and use protocols.  We used a total of 44 C3H/HeJ mice (strain #000659, The Jackson 

Laboratory, Bar Harbor, Maine, USA,) for all experiments.  Mice were housed according 

to institutional guidelines with free access to food and water on a 12 hour light/dark cycle 

(lights on at 7am).   

Surgical implants and recordings were performed using methods similar to those 

we used previously (Klein, Khera et al. 2004; Blumenfeld, Klein et al. 2008).  Briefly, 

under ketamine (30mg/kg), xylazine (6mg/kg), and acepromazine (1mg/kg) anesthesia, 

we implanted tripolar electrodes (Part # MS333/3-A, Tripolar electrode uncut untwisted 

0.005; Plastics One Inc., Roanoke, VA; Internal control # 8LMS3333XXXE, Pedestal 

Height: 8 mm.) using a stereotactic frame (David Kopf Instruments, Tujunga, CA) in 

mice ranging in age from 5 d to 60 d.  To provide good electrical contact, the ends of the 



 35 

 

recording electrodes were prepared before wrapping around skull screws by scraping off 

the polyimide insulation and exposing stainless steel wire up to 10 mm from the tip, 

leaving insulation intact proximally as verified under the microscope.  Level of 

anesthesia was monitored by respiration, heart rate, glabrous skin perfusion, and response 

to foot pinch.  To anesthetize mice at 5-6 d old, mice were placed on cold packs (Phifer 

and Terry 1986; Danneman and Mandrell 1997), and physiology and level of anesthesia 

was monitored as described above.  In all animals, small burr holes (using Micro Drill 

Steel Burrs, 2.3mm shaft diameter, 44mm overall length; Item # 19008-09, Fine Science 

Tools (USA), Inc.) were made in the skull without disturbing the dura. In mice over ten 

days old electrodes were secured to the skull using stainless steel screws (Small Parts, 

Inc., Part # MX-000120-01B-10, binding screw, with shaft length=1/16”, size=000, 

thread=120). For mice less than 10 days of age electrodes were secured with a smaller 

screw (Small Parts, Inc., Part # MX-0000160-01FL-10, fillister screw, with shaft 

length=1/16”, size=0000, thread=160). EEG recording electrodes were placed at frontal 

cortex (AP +2.0, ML +2.0 mm from bregma in adult mice, AP +1.0 to  +2.0, ML +1.0 to 

+2.0 from bregma in younger animals), and parietal cortex (AP -6.0, ML +2.0 mm from 

bregma in adult mice, AP – 4.0 to - 6.0, ML + 1.0 to +2.0 from bregma in younger 

animals) and a ground electrode was placed in the midline over the cerebellum. Dental 

acrylic (Cat # 1255710; Henry Schein Inc, Indianapolis, IN; Lang Jet Denture Repair 

Acylic) was used to fix the electrode pedestal in place. Pups that had not yet been weaned 

(pups were typically weaned at 21 days) were implanted and returned to the dam’s cages 

by implanting the whole litter at the same time, with care taken to fully clean blood and 

debris from the implantation site.  Pups and dams were observed to resume normal 
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feeding and nesting patterns. Mice were given a post-operative analgesic of carprofen (5 

mg/kg subcutaneous immediately and in drinking water for 48 h after surgery) and given 

a recovery period of at least 24 hours after surgery.  EEG signals were recorded via 

commutator (Plastics One, Inc.) using a Grass CP 511 amplifier (Grass-Telefactor, Astro 

Med, Inc., West Warwick, RI).  Band pass frequency filter settings were 1-300 Hz.  

Signals were digitized at a sampling rate of 1 kHz with an NI USB-6008 A/D converter 

and LabView 7.1 software (National Instruments, Austin, TX), and analyzed using Spike 

2 (Cambridge Electronic Design, Cambridge, UK).  Continuous EEG data were recorded 

from awake-behaving mice starting at 12:00pm and usually concluding before 6:00pm. 

Most of the recordings were obtained from each mouse for 3 h per day.  Pups that were 

not yet weaned were removed from their mother’s cages just before recording sessions 

and returned promptly after recording.  EEG recording were obtained at the following 

time points:  5-7d (n=9), 10-15d (n=6), 20-22d (n=8), 23-25d (n=5), 26-30d (n=7), 31-

40d (n=11), 41-50d (n=5), and 51-62d (n=9). 

 

WAG/Rij Rat Electrophysiology Recording Parameters 

Electrophysiological recordings were acquired over 20-30 minutes under 

anesthesia.  Before electrophysiology experiments, animals were anesthetized with 

fentanyl (40 µg/Kg, IV) and haloperidol (1 mg/kg, IP).  A high-impedance (2-4 MΩ) 

microelectrode (FHC, Bowdoinham, ME, part #UEWMGGSEDNNM) was placed in two 

of the following three brain region at a time: caudate-putamen (AP 0.00 and ML +4.0), 

somatosensory cortex (AP -2.3 and ML -5.02 places at 300), and vetral-posterior-medial 

(VPM) nucleus of the thalamus (AP -3.3 and ML 3.2).  Twenty-two experiments (n=13 
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animals) were performed to record electrical activity and in twenty-three experiments 

(n=11 animals), an OxyFlo XP needle probe (Oxford Optronix, Oxford, UK, part 

#MNP110XP-3/50) was fixed to the recording micro electrode to measure CBF along 

with MUA and LFP.  Seven of twenty-three experiments (from 3 rats) recorded for CBF 

were also used for electrophysiology recordings.  4 seconds of whisker stimulations was 

done during electrophysiological recordings to verify brain regions.  At the end of 

experiments, animals were euthanized with an IP injection of Euthasol (Virbac AH, Inc., 

Fort Worth, TX) and brains were collected for histological verification of electrode 

locations. 

A Microelectrode AC Amplifier (Model #1800, A-M Systems, Carlsborg, WA) 

with broad-band filtered from 0.1 Hz to 10 kHz (×100 gain) was used to record electrical 

signal during spontaneous spike-wave seizures in WAG/Rij rats under fentanyl and 

haloperidol anesthesia.  Signals were recorded either from S1BF and CPu or from S1BF 

and VPM simultaneously.  Signals were then filtered with a Model #3363 Filter (Krohn-

Hite Corporation, Brockton, MA) into LFP (1-100 Hz) and multiunit activity (MUA) 

(400 Hz - 10 kHz).  For CBF measurement experiments, we used a Model # 4000 LDF 

system (Oxford Optronix, Oxford, UK).  Electrophysiology and CBF signals were 

digitized with a Power 1401 (CED) at a sampling rate of 1 kHz for LFP and CBF and 20 

kHz for MUA, and recorded using Spike 2 software.  

 

WAG/Rij Rat fMRI-EEG Data analysis and statistics 

EEG signals acquired during MRI experiments were first processed by applying a 

principal component analysis (PCA) based algorithm (Negishi, Abildgaard et al. 2004) to 
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reduce residual magnetic field gradient induced artifacts in the EEG recordings.   All 

EEG data were marked for individual SWD onset and offset time in spike 2 software 

manually using script provided by CED. These marking of SWD onset and offset were 

used for analyzing time course of BOLD, CBV, electrophysiology, and CBF changes in 

different brain regions.  SWDs were defined as large-amplitude (>2X the background 

EEG peak-to-peak amplitude) rhythmic 7–8 Hz discharges with typical spike-wave 

morphology lasting >1.0 second.  fMRI images were processed using in-house program 

running on a MATLAB platform (The MathWorks, Inc., Natick, MA).  Although rats 

were paralyzed during experiments, all fMRI series were first screened for movement 

artifacts using a MOVIE function and center of mass analysis, restricted to voxels within 

the brain boundaries, to ensure that all runs exhibited movement of less than 20% of a 

pixel in either X or Y plane of the center of mass image.  For BOLD and flow-related 

CBV experiments, t-maps were calculated for baseline and activated image acquired after 

SWD.  The t-maps were thresholded for P < 0.05 (t = 2) to help control for multiple 

comparisons, and t-map images were superimposed onto corresponding high-resolution 

anatomical images for each slice and from each individual animal.  

 

WAG/Rij Rat Electrophysiology and CBF experiments 

Data were prepared for analysis by defining 1) Baseline images (B) as those 

within the last 2 seconds of recording before the SWD onset; 2) SWD images (A) as 

large-amplitude (>2X the background EEG peak-to-peak amplitude) rhythmic 7–8 Hz 

discharges with typical spike-wave morphology lasting >1.0 s (van Luijtelaar and Coenen 

1986).  LFP and MUA signal power were processed using Spike 2 software, to see 
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changes in neuronal activity during recordings of spike-wave seizures (SWD) in 

anesthetized animals. SWD onset and offset were marked in spike 2 software manually 

using script provided by CED. These onset/offset (s) marking were used for analyzing 

time course of electrophysiology and CBF changes. To show time course of mean percent 

changes in LFP and MUA power during SWD, the root mean square (RMS) voltage was 

measured in 0.5 s time bins from 2 s before SWD onset (as baseline) to 9 s after SWD 

onset. Mean LDF signals were also binned in 0.5 s bin to show time course of mean 

percent change in CBF signals.  Data time points were synchronized to the time of SWD 

onset, and plotted as mean percent change ± standard error of the mean (SEM) from a 2 s 

uninterrupted baseline recording immediately before SWD onset. We used MUA power 

as an estimate of action potential firing because this has been shown to correspond well 

to spiking rate measured by template matching (Shmuel, Augath et al. 2006).   

For analysis and comparison of temporal relationship between BOLD and CBV 

signal changes measured in the caudate-putamen, somatosensory cortex, and VPM, and 

CBF signal changes recorded in those regions during electrophysiology experiments, 

regions of interest (ROIs) were chosen for the MRI data analysis based on coordinates 

(Paxinos and Watson 1998) for the above mentioned brain regions.  In addition to the 

above three ROIs, five additional brain regions were also analysed using ROIs approach 

to see for BOLD signal timecourse changes.  These include the anterior cingulate cortex, 

retrosplenial/posterior cingulate cortex, hippocampus, superior colliculli, and visual 

cortex.  

SWD onset with respect to fMRI image acquisition start time is variable and thus 

we arranged SWD events on EEG in each second (i.e. images acquired with start of 
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SWD, images acquired after 1 s of SWD onset, images acquired after 2 s of SWD onset, 

and so on) to calculate BOLD signal change time-courses.  To determine if signal 

changes were significantly different between baseline and seizure recordings for all ROIs, 

the mean percent signal change for 0 to 3.0 s after SWD onset compared to the mean 

percent signal change during an uninterrupted 2 s baseline immediately before SWD 

onset were calculated.  Paired t-tests were used to analyze signal changes during seizures 

compared with baseline recordings, with significance assessed at p ≤ 0.05. All graphs are 

plotted as mean ± SEM over the time range of the experiments in 0.5 s bins and 

synchronized to time of SWD onset.  

 

Analysis of C3H/Hej Mice EEG data 

SWDs were defined as large-amplitude (>2× the background EEG peak-to-peak 

amplitude) rhythmic 5-8 Hz discharges with spike-wave morphology lasting >1.0 s.  We 

were more liberal in defining spike-wave morphology for the purposes of this study than 

in prior criteria  (Coenen and Van Luijtelaar 1987) so that any precursors of spike-wave 

activity could be identified at an early age.  Intervals containing artifact or slow wave 

sleep were excluded from the analysis.  Start and end time for all SWDs were manually 

marked and the number of seizures, and seizure durations were then calculated.  Percent 

time in SWD was determined as (sum of SWD interval durations/total usable recording 

time) × 100%.   

Power spectral analysis was performed for mice age 5-7 d (n = 9), 20-22 d (n = 8), 

and 51-62 (n = 9) on all marked SWD intervals included in the above analysis.  Power 

spectra were calculated for using Spike2 software, with scripts provided by Cambridge 
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Electronic Design (Cambridge, U.K.).  Bin size for the fast Fourier transform was 1.024 

s. 

 

2.3. Results: 

 

Ictal BOLD signal changes in spike-wave seizures in WAG/Rij Rats 

BOLD fMRI detected both increases and decreases in multiple cortical and 

subcortical regions from 43 experiments on 20 animals.  We found fMRI increases in 

face somatosensory cortex (S1BF) (43/43 experiments), thalamus (37/43), anterior and 

posterior cingulate (29/43), and superior colliculi (12/23), and fMRI decreases in the 

caudate-putamen (28/43) with no change in visual cortex (V1M) (Fig. 1). 

 

CBV signal changes in spike-wave seizures in WAG/Rij Rat 

Flow related CBV during SWD were measured during the same experimental 

session following injection of iron oxide contrast agent (Combidex [ferumoxtran-10], 

Advanced Magnetics Inc.).  CBV measurements demonstrated regional changes which 

closely resembled BOLD fMRI maps, with CBV increases in the bilateral somatosensory 

cortex (10/10 experiments) and thalamus (8/10), and decreases in the caudate-putamen 

(6/10) from 3 animals (Fig. 2). 

 

Neuronal activity and CBF during SWD in WAG/Rij Rats 

Electrical recording studies of SWD were performed with extracellular multiunit 

electrode recordings in 21 WAG/Rij rats, we found that multiunit activity and local field 
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potentials were maximal in the somatosensory cortex and the thalamic ventral posterior 

medial nucleus.  

For simultaneous recordings of electrophysiologic and CBF changes, we focused 

our studies on the caudate-putamen (CPu) and whisker area of the barrel field (S1BF), 

and the thalamic ventral posterior medial nucleus (VPM), because these regions were, 

respectively, found to be maximally involved, by SWD on our fMRI study on these rats. 

We sampled electrophysiology and CBF from established (Nersesyan, Herman et al. 

2004) as well as coordinates showing optimal responses to both whisker stimulation and 

SWD (in S1BF) and then used these for group analyses in the remaining all animals.  

Total SWD recorded for electrophysiology were of 213, 456, and 243 from CPu, S1BF, 

and VPM, respectively, from 13 animals with an average duration of 5.45± 2.1 seconds 

(mean ± SD; range, 1.77–15.76 seconds). CBF data represented were from 180, 399, and 

330 SWD from CPu, S1BF, and VPM, respectively, from 11 animals with an average 

duration of 4.81±2.58 seconds (mean ± SD; range, 1.38–16.91 seconds).  A total of 104 

whisker stimulation (32 from CPu, 41 from S1BF, and 31 from VPM) responses were 

recorded with constant stimulus duration of 4 seconds. In all rats, spontaneous SWD 

induced a noticeable CBF increase in S1BF and VPM and decreases in CPu. We already 

reported negligible CBF increases in V1M (Nersesyan, Herman et al. 2004).  The CBF 

changes correlated strongly with multiunit neuronal activity, which showed a prominent 

increase in MUA power during SWDs in S1BF, VPM.  These increases were associated 

with small increase in CPu.  The onset of CBF increases in S1BF was delayed by 

approximately 1 or 2 seconds after the onset of SWD.  After the seizure, CBF decreased 

to basal levels with a lag of approximately 2 seconds.  The mean peak increases in MUA 
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power and CBF during SWD were much greater in S1BF than in VPM.  S1BF and VPM 

shows 21.84% and 34.37% increase, respectively, in LFP signal whereas 12.75% and 

14.57% increase in MUA in S1BF and VPM, respectively.  S1BF and VPM show 5.31% 

and 4.54% increase, respectively, in CBF signal.  CPu show small increase in MUA 

which was associated with 88.57 % increase in LFP.  This increase in MUA was 

associated with 3.71% decrease in CBF in CPu. Decrease in CBF signal in CPu was 

significantly different compared to S1BF and VPM (p = 0.008 and 0.028, respectively, 

with Bonferroni correction for multiple comparisons). CBF signals were not significantly 

different between S1BF and VPM (p = 1.0).  

 

Neuronal activity and CBF during whisker stimulations in WAG/Rij Rats 

Similar transient increases in neuronal firing and CBF were observed in the barrel 

cortex (S1BF) during whisker stimulation.  However, during whisker stimulation, the 

increases in MUA power and in CBF were greater than during SWD in the same location. 

Therefore, smaller relative increases in neuronal firing and CBF were observed in the 

barrel cortex during SWD than during whisker stimulation.  We found that mean changes 

in CBF during SWD and whisker stimulation were 5.30% and 9.92%, respectively.  

S1BF and VPM show 21.85% and 34.37% increase in LFP signal, respectively, whereas 

CPu shows big increase of 88.57%.  Increase in LFP in CPu was significantly higher 

compared to S1BF and VPM (p = 0.000 and 0.000, respectively, with Bonferroni 

correction for multiple comparisons).  LFP signals were marginally high in VPM 

compared to S1BF.  S1BF and VPM show 12.75% and 14.57% increase, respectively, in 

MUA signal whereas CPu shows small increase of 3.62%. MUA signal in CPu was 
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significantly low compared to S1BF and VPM (p = 0.033 and 0.01, respectively, with 

Bonferroni correction for multiple comparisons).  MUA signals were insignificantly 

different between S1BF and VPM (p = 1.0). 

 

Electroencephalography Recordings in C3H/Hej Mice 

We found that SWD were very uncommon at age 5 through age 15 days, then 

gradually increased, and appeared to plateau after age 25 days (Fig. 4).  We did not find 

significant differences in the peak power spectrum amplitude between all four groups 

(age 5-7 days, age 20-22 days, age 31-40 days, age 51-62 days) using ANOVA (F=1.00, 

p=.40).  Independent T-test between age group 5-7 days and age 20-22 days also did not 

reveal a significant difference in peak power spectrum amplitudes (T=-.841, p=0.41). 

 To investigate the progression of EEG changes during development, we analyzed 

repeated EEG samples at different ages ranging from 5d through 62d.  We found that the 

percentage of time in SWD and the number of SWD per hour were very low below age 

15 d, but then progressively increased, and appeared to level off after age 26-30d.  

Percent time in SWD increased from a mean of 0.1% in immature animals (age 5-15d) to 

4% in adulthood (ages 26-62d) (p=0.006, two-tailed t-test).  Comparing all 8 groups (age 

5-7, 10-15, 20-22, 23-25, 26-30, 31-40, 41-50, 51-62) shows the differences in variance 

of percent time in seizures to be significant (F=15.82, p<.001, ANOVA), with an 

inflection point using raw data and a 3rd degree polynomial regression of 33.33 days.  

Similarly, the mean SWD per hour increased from 3 per hour in immature mice (5-15d) 

to 45 per hour in mature mice (26-62d) (p=0.0001) (Fig. 5).  Comparing all 8 groups (age 

5-7, 10-15, 20-22, 23-25, 26-30, 31-40, 41-50, 51-62) shows the difference in variance of 
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SWD per hour to be significant (F=18.59, p<.001, ANOVA) with an infelction point 

using raw data and a 3rd degree polynomial regression of 13.08 days.  Seizure duration 

also showed a progressive, though less dramatic increase during development, with a 

mean seizure duration of 1.75 s at 5-15d, and 3.40 s at 26-62d (p=0.03). Comparing all 8 

groups (age 5-7, 10-15, 20-22, 23-25, 26-30, 31-40, 41-50, 51-62) shows the difference in 

variance of seizure duration to be significant (F=14.00, p<.001, ANOVA) with an 

infelction point using raw data and a 3rd degree polynomial regression of 31.25 days. 

 

2.4. Discussion: 

 

Spike-Wave Discharges in WAG/Rij Rats: Role of Cortex, Thalamus, and Caudate 

Multi-modal imaging of WAG/Rij rats during SWD with simultaneous EEG 

recordings allows for examining the time course and amplitude of BOLD signal changes 

in the WAG/Rij somatosensory cortex (S1BF), VPM nucleus of the thalamus and the 

caudate putamen.  While the somatosensory cortex and thalamus both exhibit BOLD 

signal increases during SWD, the caudate consistently showed BOLD signal decreases 

(Fig. 1).  Measurement of CBV using a paramagnetic contrast agent shows that the blood 

volume changes generally match the changes in the BOLD signal (Fig. 2).  

Electrophysiology experiments utilizing microelectrodes and LDF probes showed 

that while BOLD signal increases in S1BF and VPM were matched by increases in CBF, 

local field potentials (LFP) and neuronal firing rates, BOLD signal decreases in the 

Caudate correlated with CBF decreases, greater increases in LFP that SBF or VPM and a 

greatly attenuated increase MUA compared to S1BF or VPM.  Previous studies in 
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WAG/Rij rats have shown intense neuronal firing during SWD occurring in the 

somatosensory cortex and thalamus, with the perioral somatosensory cortex likely 

serving as the initial generator of SWD activity, and a relative sparing of other brain 

regions like the primary visual cortex (Meeren, Pijn et al. 2002; Blumenfeld 2003; 

Nersesyan, Herman et al. 2004; Nersesyan, Hyder et al. 2004). 

 Our data shows a strong temporal association in the BOLD, CBF, LFP, and MUA 

from the barrel cortex (SIBF) or thalamus (VPM) in the same direction, while the 

Caudate BOLD signal shows a decrease which begins earlier.  Also, the Caudate shows a 

relatively larger LFP increase with longer duration compared the either SIBF or VPM.  

During spike-wave events thalamic and cortical neurons within a thalamocortical sector 

become tightly interlocked, supporting the idea that mutually interconnected neurons at 

the thalamic and cortical level are necessary to create and oscillating network to maintain 

SWD (Avoli, Gloor et al. 1983).  

Using the time matched EEG data acquired during fMRI experiments allows for 

binning BOLD signal images with regard to SWD onset time, taken at different time 

points, we are able to investigate the time course of the BOLD signal with greater 

temporal resolution (Fig. 3).  Interestingly we find a consistent initial dip in CBF signal 

recordings from the barrel cortex (SIBF), which precedes an initial dip in the BOLD 

signal, while this phenomenon was not seen in the Thalamus or Caudate (Fig. 3).  

Intrinsic optical signal imaging studies in rat models of 4-aminopyridine induced seizures 

have shown a focal and reproducible drop in oxygenated hemoglobin at the seizure onset, 

with confirmation using oxygen-sensitive  electrodes (Bahar, Suh et al. 2006). 
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The benefits of high magnetic field strength (9 Tesla) imaging include both 

greater temporal and spatial resolution enabling region of interest analysis.  The 

advantages of a quantitative modeling of the hemodynamic response, by using 

experimental data and measurements of the BOLD (Fig. 1) and CBF responses, include a 

more specific assessment of brain physiology, including insight into neurovascular 

coupling and the shape of the neural response itself (Buxton, Uludag et al. 2004). 

Caudate recordings of BOLD and CBF from our study show a consistent decrease 

during seizures, beginning at seizure onset and resolving to baseline at 6-7 seconds after 

seizure onset.  Human functional imaging has show frequent task-independent decreases, 

suggesting there may be a baseline or resting state of the human brain (Raichle, MacLeod 

et al. 2001).  This implies that the decrease in BOLD and CBF may be related to 

pathologically induced changes that may contribute to the deficits seen in absence 

seizures.  Whether there is functional impairment of the caudate-putamen, and what the 

symptomatic effect would be from such impairment remains unkown.   

 

C3H/Hej Mouse Epileptogenesis: 

At the youngest ages, the few SWD that occurred had a somewhat irregular 

morphology, and the spikes tended to have a relatively broad appearance.  As the animals 

matured, SWD morphology became more regular in rhythm, and the spikes appeared 

more narrow (Fig. 4).  The shape, and different phases of the spikes and slow waves in 

C3H/HeJ mice were similar to those reported in other rodent models (Sitnikova and van 

Luijtelaar 2007), with a large negative-going spike, and a relatively small negative slow 

wave in each cycle.  Seizure morphology also changed during development in the 
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C3H/Hej mouse, with older animals exhibiting SWD that had a higher frequency, more 

regular rhythm, and narrower spikes (Fig. 4).  We observed the emergence and 

development of SWD in C3H/HeJ mice, with the most rapid changes occurring over a 

time period from approximately 15 to 25 days of age, apparent in the number of SWD per 

hour (Fig. 5).  We define a SWD as a pattern of rhythmic activity on 

electroencephalography with both a spike and a wave component with a frequency of 6-8 

hz lasting at least 1 second.  The total percent time in SWD also was very low before day 

15 and subsequently increased rapidly, but the plateau after day 26 was not as apparent, 

possibly because SWD duration showed a trend towards continued slight increases after 

day 26 (Fig. 5). 

Based on our findings we propose that SWD development in this model can be 

described in three stages.  In the “immature stage,” up to age 15 days, SWD-like events, 

possibly larval SWD or a related developmental phenomenon, were observed on average 

only 3 times per hour.  These events may indicate an early predisposition to later 

development of fully realized SWD in C3H/Hej mice, or may represent other related 

rhythmic brain activity.  SWD-like event morphology in the immature stage was 

characterized by irregular rhythm, relatively broad spikes, slow fundamental frequency 

(5-6 Hz), and brief duration (mean 1.75 s).  In the “transitional stage” from 16 through 25 

days, SWD incidence, duration, and fundamental frequency gradually increased.  In the 

“mature stage,” after approximately day 26 (or perhaps somewhat later with regard to 

SWD duration) SWD were observed an average of 45 times per hour.  Mature SWD had 

a more regular rhythm, narrower spikes, higher fundamental frequency (7-8 Hz), and 

longer duration (mean 3.4 s). 
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While EEG recordings from implanted skull electrodes allowed for good 

characterization of SWD events in young and adult mice, more refined electrophysiology 

techniques would better localize regional brain involvement during SWD in this mouse 

model.  One limitation of our study then is the lack of microelectrode recordings from 

specific cortical and subcortical brain areas during SWD.  Future investigations will 

focus on refining the spatial characterization of SWD in C3H/Hej mice through more 

invasive electrophysiology techniques.  In addition, we assumed that the SWD were 

bilaterally symmetrical, and we recorded from only one side, however further studies 

with bilateral recordings may be beneficial.  Furthermore, the evolution of 

epileptogenesis in this model may be better characterized through improved analysis 

methods such as averaged time-frequency wavelet analysis at different ages. 

While no previous studies have analyzed the development of epilepsy in the 

C3H/HeJ mouse in detail, extensive characterization has been completed in two other 

rodent models of absence epilepsy, rats of the WAG/Rij strain (Coenen and Van 

Luijtelaar 1987; Coenen and Van Luijtelaar 2003) and GAERS (Vergnes, Marescaux et 

al. 1982; Vergnes, Marescaux et al. 1986; Marescaux and Vergnes 1995; Danober, 

Deransart et al. 1998).  Researchers have previously concluded that the seizures in these 

strains of rats are morphologically, behaviorally, and pharmacologically similar to the 

absence seizures experienced by human patients (Micheletti, Vergnes et al. 1985; Van 

Luijtelaar and Coenen 1988; Coenen, Drinkenburg et al. 1992; Marescaux, Vergnes et al. 

1992; Marescaux and Vergnes 1995; van Luijtelaar, Drinkenburg et al. 2002; Coenen and 

Van Luijtelaar 2003).  
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WAG/Rij rats exhibit almost no spike-wave activity at age 75 d, approximately 5 

– 7 SWD per hour at 140 d, and 16 – 18 SWD per hour at 245 d (Coenen and Van 

Luijtelaar 1987).  The cumulative duration of the spike-wave complexes increases in 

parallel, from close to zero at 75 d, to approximately 25 and 75 seconds per hour at the 

ages of 140 days and 245 days, respectively (Coenen and Van Luijtelaar 1987).  GAERS 

show essentially no SWD activity through 30 days of age, after which point SWD 

activity increases until the age of four months, when all tested GAERS show SWD 

activity, and SWD become even more severe at age six months (Vergnes, Marescaux et 

al. 1986; Marescaux, Vergnes et al. 1992; Marescaux and Vergnes 1995).   

The C3H/HeJ mouse model for human absence epilepsy was described relatively 

recently (Frankel, Beyer et al. 2005) and is particularly promising for studying 

epileptogenesis because of the earlier age of SWD onset, and the known genetic defect in 

this model (Beyer, Deleuze et al. 2008).  Like the rat models, epileptic activity in 

C3H/HeJ mice is morphologically, behaviorally, and pharmacologically similar to human 

absence epilepsy (Frankel, Beyer et al. 2005).  Previous characterization of the C3H/HeJ 

model revealed SWD activity with burst frequencies of 7 – 8 Hz and epileptiform activity 

in mice as young as 3.5 weeks.  We observed that the age of SWD development in 

C3H/HeJ mice was between age 15-25 d, which was substantially earlier than in either 

GAERS or WAG/Rij rats.  We also observed that the morphology and power spectra of 

SWD in mature C3H/HeJ mice were similar to rat models (Drinkenburg, van Luijtelaar et 

al. 1993; Blumenfeld, Klein et al. 2008), but that at earlier ages, the power spectrum 

peaked at lower frequencies. 
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Backcross studies in C3H/HeJ mice have shown a recessive, non-Mendelian 

mode of inheritance of the absence epilepsy phenotype.  It was recently found that the 

absence seizures in C3H/HeJ mice are due to a mutation of the AMPA receptor subunit 

Gria4, which is predominantly present in the thalamic reticular nucleus (Beyer, Deleuze 

et al. 2008).  Gria4 mutants display enhanced synaptic excitation of inhibitory thalamic 

reticular neurons, with increased duration of synaptic responses. Seizure genesis in Gria4 

mutants may then occur because of  stronger inhibition of thalamic relay cells and the 

promotion of rebound burst firing responses (Beyer, Deleuze et al. 2008).  Enhanced 

firing of thalamic reticular neurons has previously been implicated in triggering the 

transition from normal activity to SWD generation (Blumenfeld and McCormick 2000). 

 Several possible maturational changes could affect the time course of seizure 

onset in this model of absence epilepsy.  Differential production of hormones throughout 

the life of the organism has been shown to affect neural circuits and epileptic phenomena 

(Mattson and Cramer 1985; Morrell 1992), however, sexual maturity in mice occurs at 

about 7 weeks (Suckow, Brayton et al. 2001), substantially after the time of SWD onset.  

Developmental changes in the expression of voltage-gated ion channels have been 

reported previously in SWD models and could play a role (Klein, Khera et al. 2004; 

Strauss, Kole et al. 2004; Blumenfeld, Klein et al. 2008), as could changes in GABA 

receptor expression (Brooks-Kayal, Shumate et al. 2001). Another age-related change 

which occurs with appropriate timing to participate in the emergence of SWD in this 

model, is the switch of the GABA receptor’s activity from excitatory to inhibitory, 

dependent on the chloride transporter (Plotkin, Snyder et al. 1997; Dzhala, Talos et al. 

2005; Ben-Ari 2006; Huberfeld, Wittner et al. 2007; Munoz, Mendez et al. 2007; Kahle 
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and Staley 2008).  While these are a few possible mechanisms for the development of 

SWD in the C3H/HeJ model as it ages, numerous other possibilities exist (Jensen and 

Baram 2000; Ben-Ari and Holmes 2006; Dube, Brewster et al. 2007; Scharfman 2007).   

In conclusion, we observed the early appearance of SWD activity in C3H/HeJ 

mice, precursors of which are possibly seen on the fifth postnatal day.  Between age 15 

and 25 d there is a marked increase in the number of SWD per hour, and a progressive 

maturational development of SWD morphology, frequency, and duration.  Future 

investigations of the C3H/HeJ model should include the assessment of early interventions 

in this model, to determine if early treatment can suppress epileptogenesis as was 

observed in rats (Blumenfeld, Klein et al. 2008).  This model could then be used to 

determine the critical periods for intervention, the appropriate treatment window, and 

eventually further elucidate the molecular mechanisms of epileptogenesis.  Therefore, the 

C3H/HeJ model provides substantial hope for future epilepsy research, including 

investigations of primary prevention.   

 

2.5. Future Directions: 

 

 Simultaneous EEG-fMRI has contributed greatly to our understanding of 

hemodynamic responses that precede, accompany and follow epileptiform discharges, 

and to our understanding of hemodynamic and metabolic responses to neuronal activity.  

Additionally, the use of simultaneous EEG-fMRI will open many lines of investigation 

and will continuously refine our understanding of the temporal and spatial characteristics 

of neuronal activity.  BOLD signal acquisition is only one of many promising MRI 
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modalities, and it will become increasingly feasible to fully investigate the neuroenergetic 

basis of activity changes in the brain using multimodal techniques.  The integration of 

measurements of BOLD-fMRI, CBV, and CBF can be used to obtain estimates of the 

CMRO2, thereby allowing a full investigation into neuronal energetics (Davis, Kwong et 

al. 1998; Hyder, Kida et al. 2002; Smith, Blumenfeld et al. 2002; Hyder and Blumenfeld 

2004; Shulman and Rothman 2004; Stefanovic, Warnking et al. 2004; Maandag, Coman 

et al. 2007). 

 Knowledge of epileptogenesis, particularly greater insight into the neuronal 

networks and changes involved, using many of the above tools, would increase our 

understanding of the pathology of epilepsy, and may reveal novel treatment modalities 

aimed at preventing rather than treating epilepsy, and other neurological disorders.  

Substantial work remains to be done to further elucidate the molecular mechanisms of 

epileptogenesis, with the goal being total epilepsy prevention.  Specifically, a detailed 

knowledge of the appropriate time course for interventions is needed to lay the 

groundwork for future studies 

 Crucial questions regarding the localization of changes during epileptiform 

events, and other neuronal processes, remain unanswered.  Which region(s) are involved 

in seizure onset and propagation?  How do different regions of the brain vary in their 

hemodynamic and metabolic response regarding temporal and amplitude characteristics 

from varying stimuli or processes?  How do these hemodynamic and metabolic responses 

relate to electrical activity before, during and after neuronal events?  Similarly, crucial 

questions are still unanswered regarding the development of epilepsy.  What are the 

changes in neural structures and function that accompany epileptogenesis?  How might 
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knowledge of epileptogenesis be used to disrupt the development of neuropathology?  

Answering these questions will contribute to our understanding of neuronal function, and 

to the development of targeted investigations, and treatments, for epilepsy and other 

neurological disorders.   

 

2.6. Conclusions: 

  

 EEG-fMRI studies in animals can contribute to our understanding of epilepsy, 

sensory-motor processing and other neuronal events, and the relationship between fMRI 

signals and neuronal activity.  Regarding SWD localization, caudate recordings of BOLD 

and CBF from our study show a consistent decrease during seizures, that begins at 

seizure onset and resolves to baseline at 6-7 seconds after seizure onset, and a consistent 

initial dip in CBF signal recordings from the barrel cortex (SIBF) which precedes an 

initial dip in the BOLD signal, while this phenomenon was not seen in the Thalamus or 

Caudate.  Electrophysiolgy data shows that this decrease corresponds to a relatively 

larger LFP increase with longer duration compared the either SIBF or VPM.  We also 

characterize the development of epilepsy in the C3H/Hej mouse, a new model of absence 

epilepsy, showing the time course of seizure development. 
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Figure Legends: 

 

Figure 1. 

Example of BOLD fMRI changes during SWD in WAG/Rij rat at 9.4T 

Simultaneous EEG-fMRI was used to select BOLD images acquired 2-4 seconds after 

SWD onset, these were then compared to baseline images acquired before SWD onset.  

The somatosensory cortex (S1BF) and thalamus (Thal) show prominent increases.  The 

basal ganglia (Cpu) shows decreases.  There is no change during SWD in the visual 

cortex (V1M) or hippocampus (Hc). Results are displayed as % change in fMRI signal 

(∆S/S).  Calculated from 26 image pairs.  From (Mishra, Ellens et al. 2008). 

 

Figure 2. 

CBV changes during SWD in WAG/Rij rat at 9.4 T. 

CBV calculated using measured CBV-weighted BOLD changes during SWD and 

measured resting transverse (T2) relaxation rates with and without contrast agent. 

Simultaneous EEG-fMRI was used to select CBV images acquired 2-4 seconds after 

SWD onset, these were then compared to baseline images acquired before SWD onset. 

From (Mishra, Ellens et al. 2008). 

 

Figure 3. 

High temporal resolution time course of fMRI % changes (∆S/S) during SWD. 

Mean fMRI time courses were obtained in ROIs for bilateral somatosensory cortex 

(S1BF), thalamus (Thal), and basal ganglia (Cpu) in 33 experiememtns (800+ individual 
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SWD events).  Peak changes are approximately 3 seconds after SWD onset.  fMRI data 

were aligned temporally to SWD onset, based on simultaneous EEG recordings, enabling 

data binning at 0.5 to 1.0 second resolution (results shows are from 1.0 second bins).  

Data first pooled within each experiment and then combined across experiments (n=33). 

From (Mishra, Ellens et al. 2008). 

 

Figure 4.   

Examples of EEG recordings showing SWD in C3H/HeJ mice at different ages. 

Frequency of SWD is less at age 23 d (A) than at age 59 d (B). The morphology of SWDs 

changed as the mice aged, with examples shown on more expanded time scale at age 5 d 

(C), 23 d (D), and 59 d (E).  As mice increased in age, the spike-wave morphology 

became more regular, spikes became narrower, and SWD frequency increased.  SWD 

shown in (D) and (E) are from intervals marked by horizontal lines in (A) and (B).  The 

corresponding lower time resolution trace for (C) is not shown.  EEG was recorded in a 

bipolar montage (frontal minus parietal) with negative voltages displayed as upgoing.  

From (Ellens, Hong et al. 2009). 

 

Figure 5. 

Quantification of seizure development in C3H/HeJ mice.   

SWD were seen infrequently in 5-15 day old animals.  SWD progressively increased and 

the frequency stabilized at 26 days old.  (A) Percent time spent in SWD (=100 x time in 

SWD/total recording time).  (B) Number of SWD per hour.  (C) SWD duration.  Number 

of C3H/HeJ mice recorded at each time point:  5-7d (n=9), 10-15d (n=6), 20-22d (n=8), 
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23-25d (n=5), 26-30d (n=7), 31-40d (n=11), 41-50d (n=5), and 51-62d (n=9).  Values are 

mean + SEM. From (Ellens, Hong et al. 2009). 
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