17 research outputs found

    Multi-Cell Uplink Radio Resource Management. A LTE Case Study

    Get PDF

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Resource allocation in non-orthogonal multiple access technologies for 5G networks and beyond.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The increasing demand of mobile and device connectivity poses challenging requirements for 5G wireless communications, such as high energy- and spectral-efficiency and low latency. This necessitates a shift from orthogonal multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques, namely, power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). The basic idea behind NOMA schemes is to co-multiplex different users on the same resource elements (time slot, OFDMA sub-carrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter while permitting controllable interference, and their successful multi-user detection (MUD) at the receiver albeit, increased computational complexity. In this work, an analysis on the performance of the existing NOMA schemes is carried out. Furthermore, we investigate the feasibility of a proposed uplink hybrid-NOMA scheme namely power domain sparse code multiple access (PD-SCMA) that integrates PD-NOMA and CD-NOMA based sparse code multiple access (SCMA) on heterogeneous networks (HetNets). Such hybrid schemes come with resource allocation (RA) challenges namely; codebook allocation, user pairing and power allocation. Therefore, hybrid RA schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook assignment (CA), opportunistic macro cell user equipment (MUE)- small cell user equipment (SUE) pairing (OMSP) for user pairing (UP), and a QoS-aware power allocation (QAPA) for power allocation (PA) are developed for an energy efficient (EE) system. The performance of the RA schemes is analyzed alongside an analytical RA optimization algorithm. Through numerical results, the proposed schemes show significant improvements in the EE of the small cells in comparison with the prevalent schemes. Additionally, there is significant sum rate performance improvement over the conventional SCMA and PD-NOMA. Secondly, we investigate the multiplexing capacity of the hybrid PD-SCMA scheme in HetNets. Particularly, we investigate and derive closed-form solutions for codebook capacity, MUE multiplexing and power capacity bounds. The system’s performance results into low outage when the system’s point of operation is within the multiplexing bounds. To alleviate the RA challenges of such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM) based RA schemes are proposed. The results show significant capacity gain with DPR-RA in comparison with conventional RA schemes. Lastly, we investigate the feasibility of integrating the hybrid PD-SCMA with multiple-input multipleoutput (MIMO) technique namely, M-PD-SCMA. The attention to M-PD-SCMA resides in the need of lower number of antennas while preserving the system capacity thanks to the overload in PDSCMA. To enhance spectral efficiency and error performance we propose spatial multiplexing at the transmitter and a low complex joint MUD scheme based on successive interference cancellation (SIC) and expectation propagation algorithm (EPA) at the receiver are proposed. Numerical results exhibit performance benchmark with PD-SCMA schemes and the proposed receiver achieves guaranteed bit error rate (BER) performance with a bounded increase in the number of transmit and receive antennas. Thus, the feasibility of an M-PD-SCMA system is validated

    Adaptive implementation of turbo multi-user detection architecture

    Get PDF
    MULTI-access techniques have been adopted widely for communications in underwater acoustic channels, which present many challenges to the development of reliable and practical systems. In such an environment, the unpredictable and complex ocean conditions cause the acoustic waves to be affected by many factors such as limited bandwidth, large propagation losses, time variations and long latency, which limit the usefulness of such techniques. Additionally, multiple access interference (MAI) signals and poor estimation of the unknown channel parameters in the presence of limited training sequences are two of the major problems that degrade the performance of such technologies. In this thesis, two different single-element multi-access schemes, interleave division multiple access (IDMA) and code division multiple access (CDMA), employing decision feedback equalization (DFE) and soft Rake-based architectures, are proposed for multi-user underwater communication applications. By using either multiplexing pilots or continuous pilots, these adaptive turbo architectures with carrier phase tracking are jointly optimized based on the minimum mean square error (MMSE) criterion and adapted iteratively by exchanging soft information in terms of Log-Likelihood Ratio (LLR) estimates with the single-user’s channel decoders. The soft-Rake receivers utilize developed channel estimation and the detection is implemented using parallel interference cancellation (PIC) to remove MAI effects between users. These architectures are investigated and applied to simulated data and data obtained from realistic underwater communication trials using off-line processing of signals acquired during sea-trials in the North Sea. The results of different scenarios demonstrate the penalty in performance as the fading induces irreducible error rates that increase with channel delay spread and emphasize the benefits of using coherent direct adaptive receivers in such reverberant channels. The convergence behaviour of the detectors is evaluated using EXIT chart analyses and issues such as the adaptation parameters and their effects on the performance are also investigated. However, in some cases the receivers with partial knowledge of the interleavers’ patterns or codes can still achieve performance comparable to those with full knowledge. Furthermore, the thesis describes implementation issues of these algorithms using digital signal processors (DSPs), such as computational complexity and provides valuable guidelines for the design of real time underwater communication systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Adaptive implementation of turbo multi-user detection architecture

    Get PDF
    MULTI-access techniques have been adopted widely for communications in underwater acoustic channels, which present many challenges to the development of reliable and practical systems. In such an environment, the unpredictable and complex ocean conditions cause the acoustic waves to be affected by many factors such as limited bandwidth, large propagation losses, time variations and long latency, which limit the usefulness of such techniques. Additionally, multiple access interference (MAI) signals and poor estimation of the unknown channel parameters in the presence of limited training sequences are two of the major problems that degrade the performance of such technologies. In this thesis, two different single-element multi-access schemes, interleave division multiple access (IDMA) and code division multiple access (CDMA), employing decision feedback equalization (DFE) and soft Rake-based architectures, are proposed for multi-user underwater communication applications. By using either multiplexing pilots or continuous pilots, these adaptive turbo architectures with carrier phase tracking are jointly optimized based on the minimum mean square error (MMSE) criterion and adapted iteratively by exchanging soft information in terms of Log-Likelihood Ratio (LLR) estimates with the single-user’s channel decoders. The soft-Rake receivers utilize developed channel estimation and the detection is implemented using parallel interference cancellation (PIC) to remove MAI effects between users. These architectures are investigated and applied to simulated data and data obtained from realistic underwater communication trials using off-line processing of signals acquired during sea-trials in the North Sea. The results of different scenarios demonstrate the penalty in performance as the fading induces irreducible error rates that increase with channel delay spread and emphasize the benefits of using coherent direct adaptive receivers in such reverberant channels. The convergence behaviour of the detectors is evaluated using EXIT chart analyses and issues such as the adaptation parameters and their effects on the performance are also investigated. However, in some cases the receivers with partial knowledge of the interleavers’ patterns or codes can still achieve performance comparable to those with full knowledge. Furthermore, the thesis describes implementation issues of these algorithms using digital signal processors (DSPs), such as computational complexity and provides valuable guidelines for the design of real time underwater communication systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Blind source separation for interference cancellation in CDMA systems

    Get PDF
    Communication is the science of "reliable" transfer of information between two parties, in the sense that the information reaches the intended party with as few errors as possible. Modern wireless systems have many interfering sources that hinder reliable communication. The performance of receivers severely deteriorates in the presence of unknown or unaccounted interference. The goal of a receiver is then to combat these sources of interference in a robust manner while trying to optimize the trade-off between gain and computational complexity. Conventional methods mitigate these sources of interference by taking into account all available information and at times seeking additional information e.g., channel characteristics, direction of arrival, etc. This usually costs bandwidth. This thesis examines the issue of developing mitigating algorithms that utilize as little as possible or no prior information about the nature of the interference. These methods are either semi-blind, in the former case, or blind in the latter case. Blind source separation (BSS) involves solving a source separation problem with very little prior information. A popular framework for solving the BSS problem is independent component analysis (ICA). This thesis combines techniques of ICA with conventional signal detection to cancel out unaccounted sources of interference. Combining an ICA element to standard techniques enables a robust and computationally efficient structure. This thesis proposes switching techniques based on BSS/ICA effectively to combat interference. Additionally, a structure based on a generalized framework termed as denoising source separation (DSS) is presented. In cases where more information is known about the nature of interference, it is natural to incorporate this knowledge in the separation process, so finally this thesis looks at the issue of using some prior knowledge in these techniques. In the simple case, the advantage of using priors should at least lead to faster algorithms.reviewe
    corecore