4,467 research outputs found

    Multi-mode entanglement of N harmonic oscillators coupled to a non-Markovian reservoir

    Full text link
    Multi-mode entanglement is investigated in the system composed of NN coupled identical harmonic oscillators interacting with a common environment. We treat the problem very general by working with the Hamiltonian without the rotating-wave approximation and by considering the environment as a non-Markovian reservoir to the oscillators. We invoke an NN-mode unitary transformation of the position and momentum operators and find that in the transformed basis the system is represented by a set of independent harmonic oscillators with only one of them coupled to the environment. Working in the Wigner representation of the density operator, we find that the covariance matrix has a block diagonal form that it can be expressed in terms of multiples of 3×33\times 3 and 4×44\times 4 matrices. This simple property allows to treat the problem to some extend analytically. We illustrate the advantage of working in the transformed basis on a simple example of three harmonic oscillators and find that the entanglement can persists for long times due to presence of constants of motion for the covariance matrix elements. We find that, in contrast to what one could expect, a strong damping of the oscillators leads to a better stationary entanglement than in the case of a weak damping.Comment: 21 pages, 4 figure

    Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments

    Full text link
    We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.Comment: 10 two-column pages, 8 figures, to appear in Phys. Rev.

    Synchronization, quantum correlations and entanglement in oscillator networks

    Get PDF
    Synchronization is one of the paradigmatic phenomena in the study of complex systems. It has been explored theoretically and experimentally mostly to understand natural phenomena, but also in view of technological applications. Although several mechanisms and conditions for synchronous behavior in spatially extended systems and networks have been identified, the emergence of this phenomenon has been largely unexplored in quantum systems until very recently. Here we discuss synchronization in quantum networks of different harmonic oscillators relaxing towards a stationary state, being essential the form of dissipation. By local tuning of one of the oscillators, we establish the conditions for synchronous dynamics, in the whole network or in a motif. Beyond the classical regime we show that synchronization between (even unlinked) nodes witnesses the presence of quantum correlations and entanglement. Furthermore, synchronization and entanglement can be induced between two different oscillators if properly linked to a random network.Comment: 10 pages, 5 figures, submitted to Scientific Report

    Entanglement dynamics in presence of diversity under decohering environments

    Get PDF
    We study the evolution of entanglement of a pair of coupled, non-resonant harmonic oscillators in contact with an environment. For both the cases of a common bath and of two separate baths for each of the oscillators, a full master equation is provided without rotating wave approximation. This allows us to characterize the entanglement dynamics as a function of the diversity between the oscillators frequencies and their mutual coupling. Also the correlation between the occupation numbers is considered to explore the degree of quantumness of the system. The singular effect of the resonance condition (identical oscillators) and its relationship with the possibility of preserving asymptotic entanglement are discussed. The importance of the bath's memory properties is investigated by comparing Markovian and non-Markovian evolutions

    Quantum correlations and synchronization measures

    Full text link
    The phenomenon of spontaneous synchronization is universal and only recently advances have been made in the quantum domain. Being synchronization a kind of temporal correlation among systems, it is interesting to understand its connection with other measures of quantum correlations. We review here what is known in the field, putting emphasis on measures and indicators of synchronization which have been proposed in the literature, and comparing their validity for different dynamical systems, highlighting when they give similar insights and when they seem to fail.Comment: book chapter, 18 pages, 7 figures, Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer (2017

    "Hot Entanglement"? -- A Nonequilibrium Quantum Field Theory Scrutiny

    Get PDF
    The possibility of maintaining entanglement in a quantum system at finite, even high, temperatures -- the so-called `hot entanglement' -- has obvious practical interest, but also requires closer theoretical scrutiny. Since quantum entanglement in a system evolves in time and is continuously subjected to environmental degradation, a nonequilibrium description by way of open quantum systems is called for. To identify the key issues and the contributing factors that may permit `hot entanglement' to exist, or the lack thereof, we carry out a model study of two spatially-separated, coupled oscillators in a shared bath depicted by a finite-temperature scalar field. From the Langevin equations we derived for the normal modes and the entanglement measure constructed from the covariance matrix we examine the interplay between direct coupling, field-induced interaction and finite separation on the structure of late-time entanglement. We show that the coupling between oscillators plays a crucial role in sustaining entanglement at intermediate temperatures and over finite separations. In contrast, the field-induced interaction between the oscillators which is a non-Markovian effect, becomes very ineffective at high temperature. We determine the critical temperature above which entanglement disappears to be bounded in the leading order by the inverse frequency of the center-of-mass mode of the reduced oscillator system, a result not unexpected, which rules out hot entanglement in such settings.Comment: 13 pages, 2 figure

    Quantum Entanglement at High Temperatures? II. Bosonic Systems in Nonequilibrium Steady State

    Full text link
    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T1>T2T_1 > T_2. For \textit{constant bilinear inter-oscillator coupling} studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature TcT_c. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T1T_{1}, T2T_{2} , the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature TcT_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction. In Paper III we will examine the case (C2) of \textit{time-dependent driven coupling } which contains the parametric pumping type described in [2] wherein entanglement was first shown to sustain at high temperatures.Comment: 47 pages, 9 figure

    Quantum Brownian motion of multipartite systems and their entanglement dynamics

    Full text link
    We solve the model of N quantum Brownian oscillators linearly coupled to an environment of quantum oscillators at finite temperature, with no extra assumptions about the structure of the system-environment coupling. Using a compact phase-space formalism, we give a rather quick and direct derivation of the master equation and its solutions for general spectral functions and arbitrary temperatures. Since our framework is intrinsically nonperturbative, we are able to analyze the entanglement dynamics of two oscillators coupled to a common scalar field in previously unexplored regimes, such as off resonance and strong coupling.Comment: 10 pages, 6 figure
    • …
    corecore