10 research outputs found

    On Frequency LTL in Probabilistic Systems

    Get PDF
    We study frequency linear-time temporal logic (fLTL) which extends the linear-time temporal logic (LTL) with a path operator GpG^p expressing that on a path, certain formula holds with at least a given frequency p, thus relaxing the semantics of the usual G operator of LTL. Such logic is particularly useful in probabilistic systems, where some undesirable events such as random failures may occur and are acceptable if they are rare enough. Frequency-related extensions of LTL have been previously studied by several authors, where mostly the logic is equipped with an extended "until" and "globally" operator, leading to undecidability of most interesting problems. For the variant we study, we are able to establish fundamental decidability results. We show that for Markov chains, the problem of computing the probability with which a given fLTL formula holds has the same complexity as the analogous problem for LTL. We also show that for Markov decision processes the problem becomes more delicate, but when restricting the frequency bound pp to be 1 and negations not to be outside any GpG^p operator, we can compute the maximum probability of satisfying the fLTL formula. This can be again performed with the same time complexity as for the ordinary LTL formulas.Comment: A paper presented at CONCUR 2015, with appendi

    Flat Model Checking for Counting LTL Using Quantifier-Free Presburger Arithmetic

    Full text link
    This paper presents an approximation approach to verifying counter systems with respect to properties formulated in an expressive counting extension of linear temporal logic. It can express, e.g., that the number of acknowledgements never exceeds the number of requests to a service, by counting specific positions along a run and imposing arithmetic constraints. The addressed problem is undecidable and therefore solved on flat under-approximations of a system. This provides a flexibly adjustable trade-off between exhaustiveness and computational effort, similar to bounded model checking. Recent techniques and results for model-checking frequency properties over flat Kripke structures are lifted and employed to construct a parametrised encoding of the (approximated) problem in quantifier-free Presburger arithmetic. A prototype implementation based on the z3 SMT solver demonstrates the effectiveness of the approach based on problems from the RERS Challange

    Introduction to Runtime Verification

    Get PDF
    International audienceThe aim of this chapter is to act as a primer for those wanting to learn about Runtime Verification (RV). We start by providing an overview of the main specification languages used for RV. We then introduce the standard terminology necessary to describe the monitoring problem, covering the pragmatic issues of monitoring and instrumentation, and discussing extensively the monitorability problem

    Model counting for reactive systems

    Get PDF
    Model counting is the problem of computing the number of solutions for a logical formula. In the last few years, it has been primarily studied for propositional logic, and has been shown to be useful in many applications. In planning, for example, propositional model counting has been used to compute the robustness of a plan in an incomplete domain. In information-flow control, model counting has been applied to measure the amount of information leaked by a security-critical system. In this thesis, we introduce the model counting problem for linear-time properties, and show its applications in formal verification. In the same way propositional model counting generalizes the satisfiability problem for propositional logic, counting models for linear-time properties generalizes the emptiness problem for languages over infinite words to one that asks for the number of words in a language. The model counting problem, thus, provides a foundation for quantitative extensions of model checking, where not only the existence of computations that violate the specification is determined, but also the number of such violations. We solve the model counting problem for the prominent class of omega-regular properties. We present algorithms for solving the problem for different classes of properties, and show the advantages of our algorithms in comparison to indirect approaches based on encodings into propositional logic. We further show how model counting can be used for solving a variety of quantitative problems in formal verification, including probabilistic model checking, quantitative information-flow in security-critical systems, and the synthesis of approximate implementations for reactive systems.Das Modellzählproblem fragt nach der Anzahl der Lösungen einer logischen Formel, und wurde in den letzten Jahren hauptsächlich für Aussagenlogik untersucht. Das Zählen von Modellen aussagenlogischer Formeln hat sich in vielen Anwendungen als nützlich erwiesen. Im Bereich der künstlichen Intelligenz wurde das Zählen von Modellen beispielsweise verwendet, um die Robustheit eines Plans in einem unvollständigen Weltmodell zu bewerten. Das Zählen von Modellen kann auch verwendet werden, um in sicherheitskritischen Systemen die Menge an enthüllten vertraulichen Daten zu messen. Diese Dissertation stellt das Modellzählproblem für Linearzeiteigenschaften vor, und untersucht dessen Rolle in der Welt der formalen Verifikation. Das Zählen von Modellen für Linearzeiteigenschaften führt zu neuen quantitativen Erweiterungen klassischer Verifikationsprobleme, bei denen nicht nur die Existenz eines Fehlers in einem System zu überprüfen ist, sondern auch die Anzahl solcher Fehler. Wir präsentieren Algorithmen zur Lösung des Modellzählproblems für verschiedene Klassen von Linearzeiteigenschaften und zeigen die Vorteile unserer Algorithmen im Vergleich zu indirekten Ansätzen, die auf Kodierungen der untersuchten Probleme in Aussagenlogik basieren. Darüberhinaus zeigen wir wie das Zählen von Modellen zur Lösung einer Vielzahl quantitativer Probleme in der formalen Verifikation verwendet werden kann. Dies beinhaltet unter anderem die Analyse probabilistischer Modelle, die Kontrolle quantitativen Informationsflusses in sicherheitskritischen Systemen, und die Synthese von approximativen Implementierungen für reaktive Systeme

    Temporal logic for properties with relative frequency

    Get PDF
    Inherently unreliable or fault-tolerant systems demand for a specification formalism that allows the user to express a required ratio of certain observations. Such a requirement can be, e.g. that deadlines in a real-time system must be met in at least 80% of all cases. Logics and in particular temporal logics provide powerful, flexible and well established specification formalisms. We therefore propose fLTL, an extension to linear-time temporal logic that allows for expressing relative frequencies by an intuitive generalization of the temporal operators. We develop a game theoretical methodology and a semantics for temporal logic with counters. For our novel logic, we establish an undecidability result regarding the satisfiability problem but identify a decidable fragment which strictly increases the expressiveness of linear-time temporal logic by allowing, e.g., to express non-context-free properties

    Frequency Linear-time Temporal Logic

    No full text
    We propose fLTL, an extension to linear-time temporal logic (LTL) that allows for expressing relative frequencies by a generalization of temporal operators. This facilitates the specification of requirements such as the deadlines in a realtime system must be met in at least 95 % of all cases. For our novel logic, we establish an undecidability result regarding the satisfiability problem but identify a decidable fragment which strictly increases the expressiveness of LTL by allowing, e.g., to express non-context-free properties
    corecore