1,228 research outputs found

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Improvement of Surface Accuracy and Shop Floor Feed Rate Smoothing Through Open CNC Monitoring System and Cutting Simulation

    Get PDF
    AbstractIn the milling process of complex workpiece shapes the feed rate normally becomes instable due to the high degree of surface curvature that requires high acceleration and deceleration of the interpolated axes. This condition impacts on process time and on the surface accuracy regarding the manufactured part form and texture. The challenge to simulate the real machine and control behavior requires accurate models with a set of experiments to tune and dimension the model to the respective machine tool. The aim is to improve the HSC milling process of complex surfaces before removing any material. In this paper experiments show that the surface form accuracy and texture can be optimized through an automatic feed rate smoothing of the finishing operation directly on the machine tool. The axis positions and spindle speeds monitored through the open CNC are used as input for a geometric cutting simulation, thus enabling to predict and optimize the surface quality

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Emergent Structure Detection for Multi-Axis Machining

    Get PDF
    This paper examines the phenomenon of emergent structures that occur in the transient stock material during multi-axis rough machining from a plurality of fixed orientations. Taking the form of thin webs and strings, emergent structures are stock material conditions that can lead to catastrophic failure during machining, even when tool path verification is successful. We begin by discussing the motivation for use of fixed orientations in multi-axis machining using multiple automated setups via rotary axes, which enables fast processing and ‘first part correct’ machining. Next, we demonstrate how unintended emergent structures occur in this paradigm of machining and can lead to catastrophic failure of the tool or work piece. Our original work focuses on the problem of geometric detection of these structures during process planning and prior to tool path planning, to the end of altogether avoiding emergent structure formation. To quickly simulate the machining process, we present an object-space method for determining the transient state of stock material based on the inverse tool offset. To identify emergent structures within this transient stock state, we propose a metric based on the medial axis transformation. Finally, we present our implementation of these methods and demonstrate realtime computation appropriate for an optimization scheme to eliminate emergent structures. Our methods provide consistent and logical results, as demonstrated with several freeform component examples. This work enables the development of robust algorithms for autonomous tool path planning and machining in multi-axis environments

    Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations

    Get PDF
    Hybrid machine tools combining additive and subtractive processes have arisen as a solution to increasing manufacture requirements, boosting the potentials of both technologies, while compensating and minimizing their limitations. Nevertheless, the idea of hybrid machines is relatively new and there is a notable lack of knowledge about the implications arisen from their in-practice use. Therefore, the main goal of the present paper is to fill the existing gap, giving an insight into the current advancements and pending tasks of hybrid machines both from an academic and industrial perspective. To that end, the technical-economical potentials and challenges emerging from their use are identified and critically discussed. In addition, the current situation and future perspectives of hybrid machines from the point of view of process planning, monitoring, and inspection are analyzed. On the one hand, it is found that hybrid machines enable a more efficient use of the resources available, as well as the production of previously unattainable complex parts. On the other hand, it is concluded that there are still some technological challenges derived from the interaction of additive and subtractive processes to be overcome (e.g., process planning, decision planning, use of cutting fluids, and need for a post-processing) before a full implantation of hybrid machines is fulfilledSpecial thanks are addressed to the Industry and Competitiveness Spanish Ministry for the support on the DPI2016-79889-R INTEGRADDI project and to the PARADDISE project H2020-IND-CE-2016-17/H2020-FOF-2016 of the European Union's Horizon 2020 research and innovation program
    corecore