940 research outputs found

    Hierarchical Hole-filling For Depth-based View Synthesis In Ftv And 3d Video

    Get PDF
    Methods for hierarchical hole-filling and depth adaptive hierarchical hole-filling and error correcting in 2D images, 3D images, and 3D wrapped images are provided. Hierarchical hole-filling can comprise reducing an image that contains holes, expanding the reduced image, and filling the holes in the image with data obtained from the expanded image. Depth adaptive hierarchical hole-filling can comprise preprocessing the depth map of a 3D wrapped image that contains holes, reducing the preprocessed image, expanding the reduced image, and filling the holes in the 3D wrapped image with data obtained from the expanded image. These methods are can efficiently reduce errors in images and produce 3D images from a 2D images and/or depth map information.Georgia Tech Research Corporatio

    Chapter 4D Ray-Space and Ultra-Wide Area FTV

    Get PDF
    Ultra-wide area FTV is an FTV with very wide viewing zone where motion parallax is realized. 4D orthogonal ray-space is analyzed and applied to ultra-wide area FTV. Ray-space of “a group of rays through one point” is derived in 4D orthogonal ray-space. It is extended to obtain ray-space captured by linear arrangement cameras. View generation of ultra-wide area FTV needs rays that are not captured by real cameras. These rays are synthesized by interpolating the captured ray-space so that the intersections of the captured ray-space and the ray-space of rays emitted from a light source have the same color

    New visual coding exploration in MPEG: Super-MultiView and free navigation in free viewpoint TV

    Get PDF
    ISO/IEC MPEG and ITU-T VCEG have recently jointly issued a new multiview video compression standard, called 3D-HEVC, which reaches unpreceded compression performances for linear,dense camera arrangements. In view of supporting future highquality,auto-stereoscopic 3D displays and Free Navigation virtual/augmented reality applications with sparse, arbitrarily arranged camera setups, innovative depth estimation and virtual view synthesis techniques with global optimizations over all camera views should be developed. Preliminary studies in response to the MPEG-FTV (Free viewpoint TV) Call for Evidence suggest these targets are within reach, with at least 6% bitrate gains over 3DHEVC technology

    Representation and coding of 3D video data

    Get PDF
    Livrable D4.1 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.1 du projet

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames
    • …
    corecore