30,839 research outputs found

    PABO: Mitigating Congestion via Packet Bounce in Data Center Networks

    Full text link
    In today's data center, a diverse mix of throughput-sensitive long flows and delay-sensitive short flows are commonly presented in shallow-buffered switches. Long flows could potentially block the transmission of delay-sensitive short flows, leading to degraded performance. Congestion can also be caused by the synchronization of multiple TCP connections for short flows, as typically seen in the partition/aggregate traffic pattern. While multiple end-to-end transport-layer solutions have been proposed, none of them have tackled the real challenge: reliable transmission in the network. In this paper, we fill this gap by presenting PABO -- a novel link-layer design that can mitigate congestion by temporarily bouncing packets to upstream switches. PABO's design fulfills the following goals: i) providing per-flow based flow control on the link layer, ii) handling transient congestion without the intervention of end devices, and iii) gradually back propagating the congestion signal to the source when the network is not capable to handle the congestion.Experiment results show that PABO can provide prominent advantage of mitigating transient congestions and can achieve significant gain on end-to-end delay

    Development of an hydrophobic fluoro-silica surface for studying homotypic cancer cell aggregation–disaggregation as a single dynamic process in vitro

    Get PDF
    Under normal conditions the detachment of anchorage-dependant cells from their extracellular matrix typically induces programmed cell death which is mediated through a pathway referred to as anoikis. However, a resistance to anoikis in cancer enables the migration of cells from the primary tumour and the establishment of aggressive metastatic disease. Although cancer cell aggregation is known to be an important mechanism within anoikis resistance, research into the underlying mechanisms that govern this process remain problematic as commercially available tissue culture material can only sustain 2D monolayer or 3D aggregate/spheroid cultures. This necessitates the development of a system that can accommodate for cancer cell aggregation–disaggregation as a single dynamic process, without the disruption of passaging cells between alternate substrates. This study describes a procedure for modifying tissue culture polystyrene (TCP) to produce a fluoro-silica (FS) surface which preferentially promotes the deposition of a distinct profile of proteins/factors from serum which mediate the transient aggregation of human breast cancer cell lines. This modified surface therefore provides an experimental platform for better understanding cancer cell aggregation–disaggregation events in vitro, and their influence on the establishment of metastatic disease in patients with cancer

    QoSatAr: a cross-layer architecture for E2E QoS provisioning over DVB-S2 broadband satellite systems

    Get PDF
    This article presents QoSatAr, a cross-layer architecture developed to provide end-to-end quality of service (QoS) guarantees for Internet protocol (IP) traffic over the Digital Video Broadcasting-Second generation (DVB-S2) satellite systems. The architecture design is based on a cross-layer optimization between the physical layer and the network layer to provide QoS provisioning based on the bandwidth availability present in the DVB-S2 satellite channel. Our design is developed at the satellite-independent layers, being in compliance with the ETSI-BSM-QoS standards. The architecture is set up inside the gateway, it includes a Re-Queuing Mechanism (RQM) to enhance the goodput of the EF and AF traffic classes and an adaptive IP scheduler to guarantee the high-priority traffic classes taking into account the channel conditions affected by rain events. One of the most important aspect of the architecture design is that QoSatAr is able to guarantee the QoS requirements for specific traffic flows considering a single parameter: the bandwidth availability which is set at the physical layer (considering adaptive code and modulation adaptation) and sent to the network layer by means of a cross-layer optimization. The architecture has been evaluated using the NS-2 simulator. In this article, we present evaluation metrics, extensive simulations results and conclusions about the performance of the proposed QoSatAr when it is evaluated over a DVB-S2 satellite scenario. The key results show that the implementation of this architecture enables to keep control of the satellite system load while guaranteeing the QoS levels for the high-priority traffic classes even when bandwidth variations due to rain events are experienced. Moreover, using the RQM mechanism the user’s quality of experience is improved while keeping lower delay and jitter values for the high-priority traffic classes. In particular, the AF goodput is enhanced around 33% over the drop tail scheme (on average)

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan
    • …
    corecore