330 research outputs found

    Gait Generation for Damaged Hexapods using Genetic Algorithm

    Get PDF
    This paper discusses the design and implementation of a Genetic Algorithm for the generation of gaits compensating for system damage on the joint level of a hexapod system. The hexapod base used for this algorithm consists of six three degree of freedom legs on a rectangular body. The purpose of this algorithm is to generate a gait such that when N motors become inoperable, as detected by the robot’s internal software, the system is able to continue moving about its environment. While algorithms like this have been implemented before, the generated gaits are a sequence of discrete foot positions. This work aims to generate continuous motions profiles for each joint of the leg rather than discrete foot positions. Previous works commonly disable an entire leg when damage occurs, instead this work aims to disable only individual joint motors

    Design of a Biomimetic Mechanical Leg and Accompanying Sensor System for Terrain Detection

    Get PDF
    Autonomous robots are useful in a wide range of applications. However, finding a balance between speed and stability in an autonomous robot can be difficult. The goal of this project was to design a biomimetically-inspired robotic leg and accompanying sensor system for detecting terrain; the mechanical leg and sensor system designs in combination are intended to enable a quadruped robot to move quickly while maintaining its stability. In order to accomplish this goal, a leg was designed based on the leg of a cheetah and the team performed a variety of mechanical analyses on it. Additionally, the output from a force sensor landing on hard and muddy surfaces was collected and algorithms for determining which of the two surfaces the robot was walking on were developed

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    New Joint Design to Create a More Natural and Efficient Biped

    Get PDF
    This paper presents a human-oriented approach to design the mechanical architecture and the joint controller for a biped robot. Starting from the analysis of the human lower limbs, we figured out which features of the human legs are fundamental for a correct walking motion, and can be adopted in the mechanical design of a humanoid robot. We focus here on the knee, designed as a compliant human-like knee instead of a classical pin-joint, and on the foot, characterised by the mobility and lightness of the human foot. We implemented an elastic actuator, with a simple position control paradigm that sets the joint stiffness in real time, and developed the basic controller. Results in simulation are discussed. In our approach the robot gains in adaptability and energetic efficiency, which are the most challenging issues for a biped robot

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Evolving Predator Control Programs for an Actual Hexapod Robot Predator

    Get PDF
    In the development of autonomous robots, control program learning systems are important since they allow the robots to adapt to changes in their surroundings. Evolutionary Computation (EC) is a method that is used widely in learning systems. In previous research, we used a Cyclic Genetic Algorithm (CGA), a form of EC, to evolve a simulated predator robot to test the effectiveness of a learning system in the predator/prey problem. The learned control program performed search, chase, and capture behavior using 64 sensor states relative to the nearest obstacle and the target, a simulated prey robot. In this paper, we present the results of a new set of trials, which were tested on the actual robots. The actual robots successfully performed desired behaviors, showing the effectiveness of the CGA learning system
    corecore